The power of indistinguishable particles in quantum computation
David Feder, University of Calgary

Institute for
QUANTUM SCIENCE AND TECHNOLOGY

- Indistinguishable particles: quantum field theory
- Cluster states
- Measurement-based quantum computing
- Fermions are maximally entangled, but....
- Conclusions

Indistinguishable particles

- All particles in the Universe come in two varieties: bosons (mostly mediators of forces) and fermions (mostly matter).
- Atoms are comprised of fermions, but (viewed from a distance) can be either bosonic (even \# of constituent fermions) or fermionic (odd \# of constituent fermions)
- Much work on making quantum degenerate atoms:
> Bosons: ${ }^{1} \mathrm{H},{ }^{4} \mathrm{He}$, $,{ }^{7} \mathrm{Li},{ }^{23} \mathrm{Na},{ }^{52} \mathrm{Cr},{ }^{85 / 87} \mathrm{Rb},{ }^{133} \mathrm{Cs}$, etc
> Fermions: ${ }^{6} \mathrm{Li},{ }^{40} \mathrm{~K},{ }^{53} \mathrm{Cr}$, etc

Indistinguishable particles

- Ultracold atoms can be confined in 'optical lattices’
- One-dimensional lattice:

- 3D lattice:
- Approximately 100 sites/dimension.

Indistinguishable particles

Can make effective 3D, 2D, or 1D optical lattices:

(Immanuel Bloch)
(Markus Greiner)

Indistinguishable particles

Represent the sites of a lattice as a graph:

Indistinguishable particles

- Represent the sites of a lattice as a graph:

- Suppose that there are three fermions:

$$
\begin{aligned}
\psi\left(r_{1}, r_{2}, r_{3}\right) & =\phi_{1}\left(r_{1}\right)\left[\phi_{2}\left(r_{2}\right) \phi_{3}\left(r_{3}\right)-\phi_{3}\left(r_{2}\right) \phi_{2}\left(r_{3}\right)\right] \\
& -\phi_{2}\left(r_{1}\right)\left[\phi_{1}\left(r_{2}\right) \phi_{3}\left(r_{3}\right)-\phi_{3}\left(r_{2}\right) \phi_{1}\left(r_{3}\right)\right] \\
& +\phi_{3}\left(r_{1}\right)\left[\phi_{1}\left(r_{2}\right) \phi_{2}\left(r_{3}\right)-\phi_{2}\left(r_{2}\right) \phi_{1}\left(r_{3}\right)\right] \\
& =\left|\begin{array}{lll}
\phi_{1}\left(r_{1}\right) & \phi_{2}\left(r_{1}\right) & \phi_{3}\left(r_{1}\right) \\
\phi_{1}\left(r_{2}\right) & \phi_{2}\left(r_{2}\right) & \phi_{3}\left(r_{2}\right) \\
\phi_{1}\left(r_{3}\right) & \phi_{2}\left(r_{3}\right) & \phi_{3}\left(r_{3}\right)
\end{array}\right|
\end{aligned}
$$

'Slater determinant' - accounts for fermionic antisymmetry

Indistinguishable particles

- Suppose that there are four sites instead:

Too many Slater determinants - unwieldy notation

- With bosons, we need to use permanents instead; one also has more terms because of multiple occupancy of sites.

Indistinguishable particles

- Quantum field theory makes the description more efficient. Generic Hamiltonian is written in terms of quantum fields:

$$
H=\sum_{i} \hat{\psi}^{\dagger}\left(\mathbf{x}_{i}\right)\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}\right) \hat{\psi}\left(\mathbf{x}_{i}\right)+\sum_{i j} \hat{\psi}^{\dagger}\left(\mathbf{x}_{i}\right) \hat{\psi}^{\dagger}\left(\mathbf{x}_{j}\right) V\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \hat{\psi}\left(\mathbf{x}_{j}\right) \hat{\psi}\left(\mathbf{x}_{i}\right)
$$

Expand quantum fields in suitable basis:

$$
\begin{gathered}
1 \\
\hat{\psi}\left(\mathbf{x}_{i}\right)=\sum_{\mathbf{n}} \phi_{\mathbf{n}}\left(\mathbf{x}_{i}\right) \hat{c}_{\mathbf{n}}, \quad \hat{c}_{\mathbf{n}}= \begin{cases}\hat{f}_{\mathbf{n}}, & \text { fermions } \\
\hat{b}_{\mathbf{n}}, & \text { bosons }\end{cases} \\
{\left[\hat{b}_{i}, \hat{b}_{j}^{\dagger}\right]=\delta_{i j} ; \quad\left\{\hat{f}_{i}, \hat{f}_{j}^{\dagger}\right\}=\delta_{i j} .}
\end{gathered}
$$

Indistinguishable particles

- If M is number of sites and N is number of particles, then Hilbert space dimension is:

$$
\begin{aligned}
\Omega^{(\mathrm{F})} & =\frac{M!}{N!(M-N)!} ; & \Omega^{(\mathrm{B})} & =\frac{(M+N-1)!}{N!(M-1)!} \\
& \sim\left(\frac{M}{N}\right)^{N} & & \sim\left(\frac{M}{N}+1\right)^{N}
\end{aligned}
$$

- If $M \gg N$ then the Hilbert space dimension grows exponentially in the number of particles.

Indistinguishable particles

Exponentially growing Hilbert space doesn't mean that simulating indistinguishable particles is classically inefficient.

- If particles are non-interacting, then all properties can be obtained from (time-evolution of) single-particle states:

$$
\begin{array}{r}
i \hbar \frac{\partial}{\partial t} \psi(r, t)=i \hbar \frac{\partial}{\partial t} \sum_{j} \alpha_{j} \phi_{j}(r)=H \sum_{j} \alpha_{j} \phi_{j}(r) \\
\Rightarrow \psi(r, t)=\sum_{j} \alpha_{j} e^{-i \lambda_{j} t / \hbar} \phi_{j}(r)
\end{array}
$$

- Need only know initial occupations $\left|\alpha_{j}\right|^{2}$

Indistinguishable particles

- Pretend that 3 bosons are actually distinguishable:

$H_{\mathrm{tot}}=H \otimes I \otimes I \quad+\quad I \otimes H \otimes I \quad+\quad I \otimes I \otimes H$

- Projecting into indistinguishable space requires repeating sums over identical labels: inefficient in principle.
- But don't need to in practice for bosons: all observables are simply N-fold multiples of single-particle quantities!

Indistinguishable particles

- So why is boson sampling [Aaronson and Arkhipov, STOC 2011, p. 333] classically difficult?

Given some input to an optical circuit, what is the photon distribution at the output?

[Tillman et al, Nature Photonics 7, 540-544 (2013)]

Indistinguishable particles

- Photons effectively interact! Hong-Ou-Mandel effect (photon bunching):

$$
\begin{gathered}
\hat{a}^{\dagger} \rightarrow \frac{\hat{c}^{\dagger}+\hat{d}^{\dagger}}{\sqrt{2}} ; \quad \hat{b}^{\dagger} \rightarrow \frac{\hat{c}^{\dagger}-\hat{d}^{\dagger}}{\sqrt{2}} \\
|1,1\rangle_{a, b}=\hat{a}^{\dagger} \hat{b}^{\dagger}|\mathbf{0}\rangle \rightarrow \frac{1}{2}\left(\hat{c}^{\dagger 2}-\hat{d}^{\dagger 2}\right)|\mathbf{0}\rangle
\end{gathered}
$$

Indistinguishable particles

- Photons effectively interact! Hong-Ou-Mandel effect (photon bunching):

[Hong, Ou, Mandel, PRL 59, 2044 (1987)]
- Projecting into indistinguishable space is inefficient; no short cut because observables are not N-fold multiples of singleparticle quantities: hard problem!

Indistinguishable particles

For bosons, need to evaluate 'Slater permanents', which is hard (Calculating permanents is \#P-complete [Valiant, Theor. Comp. Sci. 8, 189 (1979); also Aaronson, Proc. R. Soc. A 467, 3393 (2011)])
> NP example: Are there any subsets of a list of integers that add up to zero?
> \#P example: How many subsets of a list of integers add up to zero?

- Even though boson sampling is (likely) classically hard, can it be used to do anything interesting? Maybe not.
- But are interacting indistinguishable bosons powerful?

Indistinguishable particles

Quantum walks with interacting indistinguishable bosons can perform universal quantum computation (Childs, Gosset, and Webb, Science 339, 791 (2013); also Underwood and Feder, Phys. Rev. A 85, 052314 (2012)])

H

T

B
[Childs, Gosset, and Webb, Science 339, 791 (2013)]

Indistinguishable particles

What about fermions?

- Perhaps surprisingly, non-interacting fermions are classically efficient to simulate! Calculating determinants is in P (Using Gaussian elimination the complexity scales with d like d^{3}).

That said, interacting bosons are easy to approximate in quantum Monte Carlo, but interacting fermions are not (because of the sign problem).

- Of course, d is scaling exponentially with the number of particles $N . .$.

Indistinguishable particles

The behavior of non-interacting fermions can be simulated by matchgates acting on two spin-1/2 particles:
[Valiant, SIAM J. Comput. 31, 1229 (2002); Terhal and DiVincenzo, Phys. Rev. A 65, 032325 (2002); Brayvi, Contemp. Math. 482, 179 (2009); Jozsa, Kraus, Miyake, Watrous, Proc. R. Soc. 466, 809 (2010)]

$$
G(A, B)=\left(\begin{array}{cccc}
p & 0 & 0 & q \\
0 & w & x & 0 \\
0 & y & z & 0
\end{array}\right), A=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right), B=\left(\begin{array}{ll}
w & x \\
y & z
\end{array}\right)
$$

$$
\operatorname{det}(A)=\operatorname{det}(B) \text { and } A, B \in \mathrm{U}(2) \text { or } \mathrm{SU}(2)
$$

- If matchgates only act on nearest-neighboring spins, the behavior can be efficiently simulated classically.

Indistinguishable particles

What is the relationship between matchgates and non-interacting fermions?

- Matchgate group is generated by ($X X, Y Y, I Z, Z I, X Y$, and $Y X$), where i.e. $X X \equiv \sigma_{x} \otimes \sigma_{x}$
- Is there a relationship between fermions and spins? Fermions always anticommute (no matter what site they are on):

$$
\hat{f}_{i} \hat{f}_{j}^{\dagger}=-\hat{f}_{j}^{\dagger} \hat{f}_{i}+\delta_{i j} ; \quad \hat{f}_{i} \hat{f}_{j}=-\hat{f}_{j} \hat{f}_{i} ; \quad \hat{f}_{i}^{\dagger} \hat{f}_{j}^{\dagger}=-\hat{f}_{j}^{\dagger} \hat{f}_{i}^{\dagger}
$$

- Spins only anticommute if they are on the same site; they commute otherwise. For example:

$$
X_{i} Z_{i}=-Z_{i} X_{i} ; \quad X_{i} Z_{j}=Z_{j} X_{i}
$$

Indistinguishable particles

- In fact, spins and fermions are connected through the JordanWigner transformation:

Indistinguishable particles

- In fact, spins and fermions are connected through the JordanWigner transformation:

Indistinguishable particles

- In fact, spins and fermions are connected through the JordanWigner transformation:

$$
\begin{aligned}
& S_{i}^{+}=X_{i}+i Y_{i} \\
& Z_{i}=1-2 \hat{f}_{i}^{\dagger} \hat{f}_{i}
\end{aligned}
$$

- Note that in the spin representation, fermionic operators are strongly non-local!

Indistinguishable particles

- In fact, spins and fermions are connected through the JordanWigner transformation:

$$
\begin{aligned}
& S_{i}^{+}=X_{i}+i Y_{i} \\
& Z_{i}=1-2 \hat{f}_{i}^{\dagger} \hat{f}_{i}
\end{aligned}
$$

- So, nearest-neighbor fermions are just like nearest-neighbor Pauli matrices of the type $X X, Y Y, X Y$, and $Y X$.

Indistinguishable particles

Amazingly, adding a SWAP operation to switch positions of fermions is enough to enable universal quantum computation! [Jozsa and Miyake, Proc. R. Soc. 464, 3089 (2008)]

(b) 1

Note that $\operatorname{SWAP}=G(I, X)=$ because $\operatorname{det}(I)=-\operatorname{det}(X)$.

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

is not a matchgate,

Indistinguishable particles

Even more amazingly, universal computing is possible with only matchgates for other geometries!
[Brod and Galvão, Physical Review A 86, 052307 (2012)]

Indistinguishable particles

Important (open) question: Can the absence / presence of entanglement area laws enable us to infer the power of indistinguishable quantum systems for quantum computation?

- The entanglement entropy for non-interacting bosons is proportional to the area (entanglement area law) [Plenio, Eisert, Dreißig, and Cramer, Phys. Rev. Lett. 94, 060503 (2005)]:

$$
\text { von Neumann: } S=-\operatorname{tr} \rho \log \rho
$$

$$
\text { Rényi: } S=\frac{1}{1-\alpha} \log \operatorname{tr}\left(\rho^{\alpha}\right)
$$

$$
S \sim L^{d-1}
$$

Indistinguishable particles

Important (open) question: Can the absence / presence of entanglement area laws enable us to infer the power of indistinguishable quantum systems for quantum computation?

- Non-interacting fermions have 'more entanglement' than noninteracting bosons: the entanglement area law is violated logarithmically: [Wolf, Phys. Rev. Lett. 96, 010404 (2006)]

$$
S \sim L^{d-1} \log L
$$

- Non-interacting fermions on a lattice are in a sense 'critical:'

$$
S \sim \frac{c}{3} \log (L / a)
$$

- (critical bosons can still satisfy area laws)

Indistinguishable particles

Important (open) question: Can the absence / presence of entanglement area laws enable us to infer the power of indistinguishable quantum systems for quantum computation?

- For $d=1$ systems, the ground states of all gapped Hamiltonians satisfy entanglement area laws. [Brandão, Horodecki, Nature Physics 9, 721 (2013)]
- All such models can be efficiently represented.
- Very recently it was proven that there exists an efficient algorithm to find the ground state. [Landau, Vazirani, Vidick, Nature Physics 11, 566 (2015)]
- There are also efficient methods to approximate some $d=1$ gapless / critical models, though no formal proof exists.

These results suggest that gapped $d=1$ systems are not universal for quantum computation. Gapless case?

Indistinguishable particles

Important (open) question: Can the absence / presence of entanglement area laws enable us to infer the power of indistinguishable quantum systems for quantum computation?

- For $d=2$ or general d, much less is known / understood.
- The ground states of all gapped (gap ϵ) Hamiltonians have exponential correlation functions $\xi=O(1 / \epsilon)$: [Hastings, Phys Rev B 69, 104431 (2004)]
$\left\langle\hat{O}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)\right\rangle \sim e^{-\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right| / \xi}$

$$
\hat{O}=\left\{\hat{b}^{\dagger}\left(\mathbf{r}_{i}\right) \hat{b}\left(\mathbf{r}_{j}\right), \hat{n}\left(\mathbf{r}_{i}\right) \hat{n}\left(\mathbf{r}_{j}\right), S^{(k)}\left(\mathbf{r}_{i}\right) S^{\left(k^{\prime}\right)}\left(\mathbf{r}_{j}\right), \ldots\right\}
$$

- The ground states of all frustration-free Hamiltonians (including critical ones!) also have exponential correlation functions: [Gosset and Huang, Phys Rev Lett 116, 097202 (2016)]:
$\xi=O(1 / \sqrt{\epsilon})$

Indistinguishable particles

Important (open) question: Can the absence / presence of entanglement area laws enable us to infer the power of indistinguishable quantum systems for quantum computation?

- It is tempting to assume that systems with exponential correlations have efficient classical representations, but it isn't even known if all such systems satisfy area laws!
- In fact, it has been proven that there exist quantum states satisfying area laws that cannot be represented efficiently. [Ge and Eisert, arXiv:1411.2995]
- Cluster (stabilizer / quantum code) states are gapped spin states from local frustration-free Hamiltonians, satisfy entanglement area laws, are efficiently representable, and are universal for quantum computation via measurements*.

Cluster States

- Cluster states are highly entangled states that are resources for measurement-based quantum computation.
Suppose \bigcirc is a qubit in the state $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
- Evidently, $X_{1}|+\rangle|+\rangle=|+\rangle|+\rangle$

$$
\otimes \circ=0 \circ
$$

Cluster States

- Cluster states are highly entangled states that are resources for measurement-based quantum computation.
Suppose \bigcirc is a qubit in the state $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
- Evidently, $X_{2}|+\rangle|+\rangle=|+\rangle|+\rangle \equiv|++\rangle$

$$
\bigcirc \neq \bigcirc
$$

- The stabilizer group for $|++\rangle$ is therefore $\{X I, I X, X X, I I\}$

Cluster States

- Cluster states are highly entangled states that are resources for measurement-based quantum computation.
Suppose \bigcirc is a qubit in the state $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
- Also, $C Z|++\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle-|11\rangle)$

$$
\left.=\frac{1}{\sqrt{2}}(|0+\rangle+|1-\rangle) \quad \text { (cluster / Bell state }\right)
$$

$$
C Z=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Cluster States

- With the commutation relation

$$
C Z|++\rangle=C Z(I X)|++\rangle=(Z X) C Z|++\rangle
$$

The stabilizer group for the two-qubit cluster state is $\{X Z, Z X, Y Y, I I\}$

- All group elements commute.
- Recall matchgate / free fermion group is generated by ($X X, Y Y, I Z, Z I, X Y$, and $Y X$).

Cluster States

> 00000
> $\bigcirc \bigcirc \otimes \bigcirc$
> ○ O O O O
> ○ O O O O

Cluster States

- The stabilizer generators for the cluster state are $X_{i} \prod_{j=\mathcal{N}(i)} Z_{j}$
- Every cut through a bond \rightarrow one 'entropy unit'

Cluster States

- Choosing $H=-X_{i} \prod Z_{j}$ guarantees that the cluster $j=\mathcal{N}(i)$
state is the lowest energy eigenstate. 'Local' and gapped!
- This gives 3-body (5-body) Hamiltonian for 1D (2D) clusters.
- No (physical) two-body Hamiltonian can yield a (nondegenerate) ground state that is any cluster state [van den Nest, Luttmer, Dür, and Briegel, PRA 77, 012301 (2008)].
- It is impossible to find a physical Hamiltonian that yields a cluster state as the ground state, though one can get arbitrarily close [Darmawan and Bartlett, New Journal of Physics 16, 073013 (2014)]

Measurement-Based Quantum Computing

Why are cluster states interesting? Universal quantum computation is effected solely by making successive adaptive measurements [Raussendorf, Briegel, PRL 86, 5188 (2001)].

Measurement-Based Quantum Computing

1) Initialize all qubits in the state $|+\rangle \equiv \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
\bigcirc

Measurement-Based Quantum Computing

2) Entangle qubits: Apply $C Z$ gates between all nearest neighbours

Measurement-Based Quantum Computing

3) Remove unwanted qubits: Z-basis measurements

\longrightarrow "real-space quantum circuit"

Measurement-Based Quantum Computing

4) Computation via measurements in the X and Y bases:

horizontal chains = logical qubits.
vertical links = 2-qubit gates

Measurement-Based Quantum Computing

4) Computation via measurements in the X and Y bases:

horizontal chains = logical qubits.
vertical links $=2$-qubit gates

Measurement-Based Quantum Computing

4) Computation via measurements in the X and Y bases:

horizontal chains = logical qubits.
vertical links $=2$-qubit gates

Measurement-Based Quantum Computing

4) Computation via measurements in the X and Y bases:

horizontal chains = logical qubits.
vertical links = 2-qubit gates

Measurement-Based Quantum Computing

- The key is single-qubit gate teleportation:

Measurement-Based Quantum Computing

What about area laws?

- The quantum information always resides on the 'surface' of the state, so entanglement area laws are always strictly satisfied.
- A similar situation exists for MBQC on symmetry-protected / Haldane-phase states, which have exponential correlations.
[Verstraete, Wolf, Perez-Garcia, Cirac, PRL 96, 220601 (2006);
Wei, Affleck, Raussendorf, PRA 86, 032328 (2012); Wei, Raussendorf, PRA 92, 012310 (2015)]

Fermions in double-well arrays

- Consider (ultracold) fermions in independent double-well lattices:

[Lee et al. (Trey Porto), PRL 99, 020402 (2007)].
- Spatial qubits if there is one particle in each double-well: Left is $|0\rangle$ and right is $|1\rangle$

Fermions in double-well arrays

- Suppose we have a series of interconnected two-site lattices:

Fermions in double-well arrays

- Suppose that there is exactly one fermion in each double-well:

Fermions in double-well arrays

- Suppose that there is exactly one fermion in each double-well:

Fermions in double-well arrays

- Suppose that there is exactly one fermion in each double-well:

Fermions in double-well arrays

- Suppose that there is exactly one fermion in each double-well:

- These phases are the same as the ones you get by applying a maximally entangling $C Z$ gate on qubits!

Fermions in double-well arrays

- We have a series of interconnected two-site lattices:

$$
1234 \quad 5678 \quad 910
$$

Fermions are maximally entangled

- Consider only two interlocking links:

$$
\begin{aligned}
& |0\rangle=f_{1}^{+} f_{2}^{+}|\Phi\rangle ; \\
& |1\rangle=f_{1}^{+} f_{4}^{+}|\Phi\rangle ;
\end{aligned}
$$

$$
|2\rangle=f_{2}^{+} f_{3}^{+}|\Phi\rangle ;
$$

$$
|3\rangle=f_{3}^{+} f_{4}^{+}|\Phi\rangle .
$$

- The Hamiltonian $H=-\tau\left(f_{1}^{+} f_{3}+f_{3}^{+} f_{1}+f_{2}^{+} f_{4}+f_{4}^{+} f_{2}\right)$ is then:

$$
H=-\tau\left(\begin{array}{cccc}
0 & 1 & -1 & 0 \\
1 & 0 & 0 & 1 \\
-1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0
\end{array}\right)=-\tau(Z \otimes X-X \otimes Z) \quad \begin{aligned}
& \quad \begin{array}{l}
\text { Cluster state stabilizer! }
\end{array}
\end{aligned}
$$

Fermions are maximally entangled

- Consider only two interlocking links:

- The ground state is the superposition of occupying both sites of each link:

$$
\begin{aligned}
\mid \text { g.s. }\rangle & =\frac{1}{\sqrt{2}}\left(f_{1}^{+}+f_{3}^{+}\right) \frac{1}{\sqrt{2}}\left(f_{2}^{+}+f_{4}^{+}\right)|\Phi\rangle \\
& =\frac{1}{2}\left(f_{1}^{+} f_{2}^{+}+f_{1}^{+} f_{4}^{+}+f_{3}^{+} f_{2}^{+}+f_{3}^{+} f_{4}^{+}\right)|\Phi\rangle \\
& =\frac{1}{2}\left(f_{1}^{+} f_{2}^{+}+f_{1}^{+} f_{4}^{+}-f_{2}^{+} f_{3}^{+}+f_{3}^{+} f_{4}^{+}\right)|\Phi\rangle
\end{aligned}
$$

Fermions are maximally entangled

- This is very different from two non-interlocking links:

- The ground state is the superposition of occupying both sites of each link:

$$
\begin{aligned}
\mid \text { g.s. }\rangle & =\frac{1}{\sqrt{2}}\left(f_{1}^{+}+f_{2}^{+}\right) \frac{1}{\sqrt{2}}\left(f_{3}^{+}+f_{4}^{+}\right)|\Phi\rangle \\
& =\frac{1}{2}\left(f_{1}^{+} f_{3}^{+}+f_{1}^{+} f_{4}^{+}+f_{2}^{+} f_{3}^{+}+f_{2}^{+} f_{4}^{+}\right)|\Phi\rangle
\end{aligned}
$$

Fermions are maximally entangled

$\begin{array}{lll}1 & 23 & 4 \\ > & \\ & \\ \\ & \end{array}$

- Compare the fermion ground state:

$$
\mid \text { g.s. }\rangle=\frac{1}{2}\left(f_{1}^{+} f_{2}^{+}+f_{1}^{+} f_{4}^{+}-f_{2}^{+} f_{3}^{+}+f_{3}^{+} f_{4}^{+}\right)|\Phi\rangle
$$

to the modified two-qubit cluster state:

$$
Z_{1} C Z|++\rangle=\frac{1}{2}(|00\rangle+|01\rangle-|10\rangle+|11\rangle)
$$

- These are the same if: $f_{1}^{+} f_{2}^{+}|\Phi\rangle \Leftrightarrow|00\rangle ; f_{1}^{+} f_{4}^{+}|\Phi\rangle \Leftrightarrow|01\rangle ;$

$$
f_{2}^{+} f_{3}^{+}|\Phi\rangle \Leftrightarrow|10\rangle ; f_{3}^{+} f_{4}^{+}|\Phi\rangle \Leftrightarrow|11\rangle .
$$

Fermions are maximally entangled

- Recall that spins and fermions are connected through the Jordan-Wigner transformation:

$$
Z_{i} \equiv 1-2 f_{i}^{+} f_{i}
$$

Fermions are maximally entangled

- Recall that spins and fermions are connected through the Jordan-Wigner transformation:

$$
Z_{i} \equiv 1-2 f_{i}^{+} f_{i}
$$

Fermions are maximally entangled

- Reall that spins and fermions are connected through the JordanWigner transformation:

- Consider the hopping of a fermion in one of the double-wells:

Fermions are maximally entangled

- Recall that spins and fermions are connected through the Jordan-Wigner transformation:

Fermions are maximally entangled

- The fermion Hamiltonian in spin form becomes:

$$
H=-\frac{\tau}{2} \sum_{j=0}^{N-1} Z_{2 j+2} Z_{2 j+3}\left(X_{2 j+1} X_{2 j+4}+Y_{2 j+1} Y_{2 j+4}\right)
$$

- Introduce an encoded basis $\left|\underline{0}_{j}\right\rangle \equiv\left|1_{2 j+1} 0_{2 j+4}\right\rangle=f_{2 j+1}^{\dagger}|\mathcal{O}\rangle$;

$$
\left|\underline{1}_{j}\right\rangle \equiv\left|0_{2 j+1} 1_{2 j+4}\right\rangle=f_{2 j+4}^{\dagger}|\mathcal{O}\rangle
$$

- Define $\underline{X}_{j} \equiv \frac{1}{2}\left(X_{2 j+1} X_{2 j+4}+Y_{2 j+1} Y_{2 j+4}\right)$ and

$$
\underline{Z}_{j} \equiv I_{2 j+1} Z_{2 j+4}=-Z_{2 j+1} I_{2 j+4}
$$

Fermions are maximally entangled

- In the encoded basis the Hamiltonian becomes

$$
H=\tau \sum_{j=1}^{N-1} \underline{Z}_{j-1} \underline{X}_{j} \underline{Z}_{j+1}-\tau \underline{Z}_{N-1} \underline{X}_{N}
$$

- This is locally equivalent to the 1D cluster-state Hamiltonian! (conjugate sites 1 through $N-1$ by \underline{Z}_{j}):

$$
H=-\tau \sum_{j=1}^{N} \underline{Z}_{j-1} \underline{X}_{j} \underline{Z}_{j+1}
$$

- The fermionic ground state is therefore gapped, independent of size (excitations cost energy 2τ).

Fermions are entangled

- Likewise, a two-dimensional encoded cluster state can be constructed by non-interacting fermions hopping on this structure:

- So the ground-state of non-interacting fermions hopping on overlapping lattices is universal for measurement-based quantum computaton??

Fermions are maximally entangled, but...

- Of course, there is a catch! Return to the two-qubit case:

- Quantum teleportation requires X-basis measurements, so first one must transform the first qubit by a Hadamard:

$$
\begin{aligned}
\underline{H}_{1} & =\frac{1}{\sqrt{2}}\left[1-2 n_{1}+\left(1-2 n_{2}\right)\left(f_{3}^{\dagger} f_{1}+f_{1}^{\dagger} f_{3}\right)\right] \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right) \quad \begin{array}{l}
\begin{array}{l}
\text { Hopping amplitude (sign) } \\
\text { depends on occupation of } \\
\text { second site. Need quartic } \\
\text { term = particle interactions. }
\end{array}
\end{array}
\end{aligned}
$$

Fermions are maximally entangled, but...

- So, even though the ground state is maximally entangled, one cannot perform local operations unless the fermions interact!
- In fact, performing a local (encoded) unitary operation \underline{U}_{1} instead yields $\underline{C Z} \underline{Z}_{12} \underline{U}_{1} \underline{C Z}_{12}$ which is a matchgate (modulo local operations).
- For example, performing \underline{H} yields $G(H, H)$.
- This is the measurement-based analog of universal matchgate computing.
- In practice, we need to implement $\underline{C Z}$ to counteract the induced ones; this requires real interactions. Using this we can construct SWAP.

Review

- 'Non-interacting' bosons are computationally non-trivial
- Non-interacting fermions are efficiently simulatable
- In 1D, all ground states of gapped / frustration-free Hamiltonians are efficiently simulatable. Not so for gapless Hamiltonians
- In 2D or higher, not too much is known! Seemingly trivial extensions of non-interacting fermions are not classically simulatable.
- Relationships among frustration-free/frustrated, gapped/gapless, area law satisfied/violated, ground-state representation efficient/inefficient, ground-state finding efficient/inefficient...?

