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Indistinguishable particles

• All particles in the Universe come in two varieties: bosons 
(mostly mediators of forces) and fermions (mostly matter). 

• Atoms are comprised of fermions, but (viewed from a distance) 
can be either bosonic (even # of constituent fermions) or 
fermionic (odd # of constituent fermions)

• Much work on making quantum degenerate atoms: 

Ø Bosons: 1H, 4He*, 7Li, 23Na, 52Cr, 85/87Rb, 133Cs, etc

Ø Fermions: 6Li, 40K, 53Cr, etc



• One-dimensional lattice:
laser laser

• 2D lattice:

• 3D lattice:

• Approximately 100 sites/dimension.

Indistinguishable particles

• Ultracold atoms can be confined in ‘optical lattices’



Can make effective 3D, 2D, or 1D optical lattices:

(Markus Greiner)

(Immanuel Bloch)

Indistinguishable particles



Indistinguishable particles

• Represent the sites of a lattice as a graph:

1 2        3



Indistinguishable particles

• Represent the sites of a lattice as a graph:

• Suppose that there are three fermions:

1     2        3 

‘Slater determinant’ – accounts for fermionic antisymmetry



Indistinguishable particles

1     2        3       4 
• Suppose that there are four sites instead:

+

+

+

• Too many Slater determinants – unwieldy notation

• With bosons, we need to use permanents instead; one also 
has more terms because of multiple occupancy of sites.



Indistinguishable particles

• Quantum field theory makes the description more efficient. 
Generic Hamiltonian is written in terms of quantum fields:

1     2        3 
• Expand quantum fields in suitable basis:



Indistinguishable particles

• If M is number of sites and N is number of particles, then 
Hilbert space dimension is:
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M !

N !(M �N)!
; ⌦(B) =
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• If M >>N then the Hilbert space dimension grows exponentially 
in the number of particles.



Indistinguishable particles

• Exponentially growing Hilbert space doesn’t mean that 
simulating indistinguishable particles is classically inefficient.

• If particles are non-interacting, then all properties can be 
obtained from (time-evolution of) single-particle states:
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Indistinguishable particles

• Pretend that 3 bosons are actually distinguishable:

H
tot

= H ⌦ I ⌦ I + I ⌦H ⌦ I + I ⌦ I ⌦H

• Projecting into indistinguishable space requires repeating 
sums over identical labels: inefficient in principle.

• But don’t need to in practice for bosons: all observables are 
simply N-fold multiples of single-particle quantities!



Indistinguishable particles

• So why is boson sampling [Aaronson and Arkhipov, STOC 2011, p. 333]

classically difficult?

• Given some input to an optical circuit, what is the photon 
distribution at the output? 

[Tillman et al, Nature Photonics 7, 540–544 (2013)]



Indistinguishable particles

• Photons effectively interact! Hong-Ou-Mandel effect (photon 
bunching):

(reflection off the bottom gives a negative sign)

a

b

c

d



Indistinguishable particles

• Photons effectively interact! Hong-Ou-Mandel effect (photon 
bunching):

• Projecting into indistinguishable space is inefficient; no short 
cut because observables are not N-fold multiples of single-
particle quantities: hard problem! 

[Hong, Ou, Mandel, PRL 59, 2044 (1987)]



Indistinguishable particles

For bosons, need to evaluate ‘Slater permanents’, which is hard 
(Calculating permanents is #P-complete [Valiant, Theor. Comp. Sci. 8, 189 

(1979); also Aaronson, Proc. R. Soc. A 467, 3393 (2011)])

• But are interacting indistinguishable bosons powerful?

Ø NP example: Are there any subsets of a list of integers that 
add up to zero?

Ø #P example: How many subsets of a list of integers add up 
to zero?

• Even though boson sampling is (likely) classically hard, can it 
be used to do anything interesting? Maybe not.



Indistinguishable particles

Quantum walks with interacting indistinguishable bosons can 
perform universal quantum computation (Childs, Gosset, and Webb, Science 

339, 791 (2013); also Underwood and Feder, Phys. Rev. A 85, 052314 (2012)])

H T B

B2CP1,2T1

[Childs, Gosset, and Webb, Science 339, 791 (2013)]



Indistinguishable particles

What about fermions?

• Perhaps surprisingly, non-interacting fermions are classically 
efficient to simulate! Calculating determinants is in P (Using 
Gaussian elimination the complexity scales with d like d3).

• Of course, d is scaling exponentially with the number of 
particles N….

• That said, interacting bosons are easy to approximate in 
quantum Monte Carlo, but interacting fermions are not 
(because of the sign problem).



The behavior of non-interacting fermions can be simulated by 
matchgates acting on two spin-1/2 particles:
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det(A) = det(B) and A,B ∈ U(2) or SU(2)

[Valiant, SIAM J. Comput. 31, 1229 (2002); Terhal and DiVincenzo, Phys. Rev. A 65, 032325 (2002); Brayvi, 
Contemp. Math. 482, 179 (2009); Jozsa, Kraus, Miyake, Watrous, Proc. R. Soc. 466, 809 (2010)]

• If matchgates only act on nearest-neighboring spins, the 
behavior can be efficiently simulated classically.

Indistinguishable particles



What is the relationship between matchgates and non-interacting 
fermions?

Indistinguishable particles

• Matchgate group is generated by (XX, YY, IZ, ZI, XY, and YX), 
where i.e.  

• Is there a relationship between fermions and spins? Fermions 
always anticommute (no matter what site they are on):

• Spins only anticommute if they are on the same site; they 
commute otherwise. For example:

€ 

XiZi = −ZiXi;    XiZ j = Z jXi .



• In fact, spins and fermions are connected through the Jordan-
Wigner transformation:

Indistinguishable particles



• In fact, spins and fermions are connected through the Jordan-
Wigner transformation:

Indistinguishable particles



• In fact, spins and fermions are connected through the Jordan-
Wigner transformation:

Indistinguishable particles

• Note that in the spin representation, fermionic operators are 
strongly non-local!



• In fact, spins and fermions are connected through the Jordan-
Wigner transformation:

Indistinguishable particles

• So, nearest-neighbor fermions are just like nearest-neighbor 
Pauli matrices of the type XX, YY, XY, and YX.



Amazingly, adding a SWAP operation to switch positions of 
fermions is enough to enable universal quantum computation!
[Jozsa and Miyake, Proc. R. Soc. 464, 3089 (2008)]

Indistinguishable particles

Note that                                                             is not a matchgate, 
because det(I) = -det(X).



Even more amazingly, universal computing is possible with only 
matchgates for other geometries!
[Brod and Galvão, Physical Review A 86, 052307 (2012)]

Indistinguishable particles



Indistinguishable particles

Important (open) question: Can the absence / presence of 
entanglement area laws enable us to infer the power of 
indistinguishable quantum systems for quantum computation?

• The entanglement entropy for non-interacting bosons is 
proportional to the area (entanglement area law)
[Plenio, Eisert, Dreißig, and Cramer, Phys. Rev. Lett. 94, 060503 (2005)]:

S ⇠ Ld�1

von Neumann:

Rényi:



Indistinguishable particles

• Non-interacting fermions have ‘more entanglement’ than non-
interacting bosons: the entanglement area law is violated 
logarithmically: [Wolf, Phys. Rev. Lett. 96, 010404 (2006)]

S ⇠ Ld�1
logL

Important (open) question: Can the absence / presence of 
entanglement area laws enable us to infer the power of 
indistinguishable quantum systems for quantum computation?

• Non-interacting fermions on a lattice are in a sense ‘critical:’ 

• (critical bosons can still satisfy area laws)



Indistinguishable particles

• For d=1 systems, the ground states of all gapped Hamiltonians 
satisfy entanglement area laws.                                                               
[Brandão, Horodecki, Nature Physics 9, 721 (2013)]

• All such models can be efficiently represented.

• Very recently it was proven that there exists an efficient 
algorithm to find the ground state.                                      
[Landau, Vazirani, Vidick, Nature Physics 11, 566 (2015)]

• There are also efficient methods to approximate some d=1 
gapless / critical models, though no formal proof exists.

Important (open) question: Can the absence / presence of 
entanglement area laws enable us to infer the power of 
indistinguishable quantum systems for quantum computation?

These results suggest that gapped d=1 systems are not universal 
for quantum computation. Gapless case?



Indistinguishable particles

• For d=2 or general d, much less is known / understood.

• The ground states of all gapped (gap   ) Hamiltonians have 
exponential correlation functions                    :                  
[Hastings, Phys Rev B 69, 104431 (2004)]

• The ground states of all frustration-free Hamiltonians (including 
critical ones!) also have exponential correlation functions: 
[Gosset and Huang, Phys Rev Lett 116, 097202 (2016)]:

Important (open) question: Can the absence / presence of 
entanglement area laws enable us to infer the power of 
indistinguishable quantum systems for quantum computation?



Indistinguishable particles

• It is tempting to assume that systems with exponential 
correlations have efficient classical representations, but it isn’t 
even known if all such systems satisfy area laws!

• In fact, it has been proven that there exist quantum states 
satisfying area laws that cannot be represented efficiently.     
[Ge and Eisert, arXiv:1411.2995]

• Cluster (stabilizer / quantum code) states are gapped spin 
states from local frustration-free Hamiltonians, satisfy 
entanglement area laws, are efficiently representable, and are 
universal for quantum computation via measurements*.

Important (open) question: Can the absence / presence of 
entanglement area laws enable us to infer the power of 
indistinguishable quantum systems for quantum computation?



X

• Evidently,

Suppose      is a qubit in the state

=

Cluster States

• Cluster states are highly entangled states that are resources 
for measurement-based quantum computation.



• The stabilizer group for             is therefore

X

• Evidently,

Suppose      is a qubit in the state

=

Cluster States

• Cluster states are highly entangled states that are resources 
for measurement-based quantum computation.



• Also,

Suppose      is a qubit in the state

=

Cluster States

• Cluster states are highly entangled states that are resources 
for measurement-based quantum computation.

(cluster / Bell state)



• With the commutation relation

Cluster States

• The stabilizer group for the two-qubit cluster state is

• All group elements commute.

• Recall matchgate / free fermion group is generated by            
(XX, YY, IZ, ZI, XY, and YX).



Cluster States

X



Cluster States

XZ
Z

Z
Z

• The stabilizer generators for the cluster state are

• Every cut through a bond → one ‘entropy unit’



• Choosing                                      guarantees that the cluster 

state is the lowest energy eigenstate. ‘Local’ and gapped!

• This gives 3-body (5-body) Hamiltonian for 1D (2D) clusters.

• No (physical) two-body Hamiltonian can yield a 
(nondegenerate) ground state that is any cluster state           
[van den Nest, Luttmer, Dür, and Briegel, PRA 77, 012301 (2008)].

• It is impossible to find a physical Hamiltonian that yields a 
cluster state as the ground state, though one can get arbitrarily 
close [Darmawan and Bartlett, New Journal of Physics 16, 073013 (2014)]

Cluster States



Measurement-Based Quantum Computing

• Why are cluster states interesting? Universal quantum 
computation is effected solely by making successive adaptive 
measurements [Raussendorf, Briegel, PRL 86, 5188 (2001)].



1) Initialize all qubits in the state

€ 

+ ≡
1
2
0 + 1( )

Measurement-Based Quantum Computing



2) Entangle qubits: Apply CZ gates between all nearest 
neighbours

Measurement-Based Quantum Computing



3) Remove unwanted qubits: Z-basis measurements

“real-space quantum circuit”

Measurement-Based Quantum Computing



horizontal chains = logical qubits.

4) Computation via measurements in the X and Y bases:

vertical links = 2-qubit gates

Measurement-Based Quantum Computing



4) Computation via measurements in the X and Y bases:

€ 

ψout

Measurement-Based Quantum Computing

horizontal chains = logical qubits.
vertical links = 2-qubit gates



4) Computation via measurements in the X and Y bases:

€ 

ψout

Measurement-Based Quantum Computing

horizontal chains = logical qubits.
vertical links = 2-qubit gates



4) Computation via measurements in the X and Y bases:

€ 

ψout

Measurement-Based Quantum Computing

horizontal chains = logical qubits.
vertical links = 2-qubit gates



• The key is single-qubit gate teleportation:

ξ =
+

mHRZ(ξ)

€ 

ψin +

€ 

ψoutm

€ 

ψout = XmHRZ ξ( )ψin

By-product operator

“Classical feedforward”

Z-rotation, X
measurement

€ 

1
2 { 0 ± e−iξ 1 }

Measurement-Based Quantum Computing

+

€ 

ψin+

€ 

ψin+

Sufficient for arbitrary 
single-qubit rotations



• The quantum information always resides on the ‘surface’ of the 
state, so entanglement area laws are always strictly satisfied.

Measurement-Based Quantum Computing

What about area laws?

• A similar situation exists for MBQC on symmetry-protected / 
Haldane-phase states, which have exponential correlations. 
[Verstraete, Wolf, Perez-Garcia, Cirac, PRL 96, 220601 (2006);                                             
Wei, Affleck, Raussendorf, PRA 86, 032328 (2012); Wei, Raussendorf, PRA 92, 012310 (2015)] 



• Consider (ultracold) fermions in independent double-well lattices:

[Lee et al. (Trey Porto), PRL 99, 020402 (2007)].

Fermions in double-well arrays

• Spatial qubits if there is one particle in each double-well: Left is      
and right is   

|0i
|1i



• Suppose we have a series of interconnected two-site lattices:

Fermions in double-well arrays



• Suppose that there is exactly one fermion in each double-well:

Fermions in double-well arrays



• Suppose that there is exactly one fermion in each double-well:

Fermions in double-well arrays



• Suppose that there is exactly one fermion in each double-well:

Fermions in double-well arrays



• Suppose that there is exactly one fermion in each double-well:

-1 +1 -1 +1

• These phases are the same as the ones you get by applying a 
maximally entangling CZ gate on qubits!

Fermions in double-well arrays



1 2 3 4 5 6 7 8 9 10 

Fermions in double-well arrays

• We have a series of interconnected two-site lattices:



1     2  3               4

Fermions are maximally entangled

• Consider only two interlocking links:

• The basis corresponds to the states:

€ 

0 = f1
+ f2

+ Φ ;

1 = f1
+ f4

+ Φ ;

2 = f2
+ f3

+ Φ ;

3 = f3
+ f4

+ Φ .

• The Hamiltonian                                                         is then:

€ 

H = −τ f1
+ f3 + f3

+ f1 + f2
+ f4 + f4

+ f2( )

H = �⌧

0

BB@

0 1 �1 0
1 0 0 1
�1 0 0 �1
0 1 �1 0

1

CCA = �⌧ (Z ⌦X �X ⌦ Z)

Cluster state stabilizer!



1     2  3               4

Fermions are maximally entangled

• Consider only two interlocking links:

• The ground state is the superposition of occupying both sites of 
each link:

€ 

g.s. =
1
2

f1
+ + f3

+( ) 1
2

f2
+ + f4

+( )Φ

       = 1
2
f1

+ f2
+ + f1

+ f4
+ + f3

+ f2
+ + f3

+ f4
+( )Φ

       = 1
2
f1

+ f2
+ + f1

+ f4
+ − f2

+ f3
+ + f3

+ f4
+( )Φ



1         2    3        4

Fermions are maximally entangled

• This is very different from two non-interlocking links:

• The ground state is the superposition of occupying both sites of 
each link:

g.s. = 1
2

f1
+ + f2

+( ) 1
2

f3
+ + f4

+( ) Φ

       = 1
2
f1
+ f3

+ + f1
+ f4

+ + f2
+ f3

+ + f2
+ f4

+( ) Φ



1     2  3               4

Fermions are maximally entangled

• Compare the fermion ground state:

€ 

g.s. = 1
2
f1

+ f2
+ + f1

+ f4
+ − f2

+ f3
+ + f3

+ f4
+( )Φ

to the modified two-qubit cluster state:

€ 

Z1CZ ++ =
1
2
00 + 01 − 10 + 11( ).

• These are the same if:

€ 

f1
+ f2

+ Φ ⇔ 00 ;   f1
+ f4

+ Φ ⇔ 01 ;   

f2
+ f3

+ Φ ⇔ 10 ;   f3
+ f4

+ Φ ⇔ 11 .



Fermions are maximally entangled

• Recall that spins and fermions are connected through the 
Jordan-Wigner transformation:
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Si+
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Z

€ 

Z

€ 

Z

non-local Z-‘strings’ Xi + iYi
Zi ≡1− 2 fi+ fi



Fermions are maximally entangled

• Recall that spins and fermions are connected through the 
Jordan-Wigner transformation: f

i
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Si−
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Zi ≡1− 2 fi+ fi



Fermions are maximally entangled

• Reall that spins and fermions are connected through the Jordan-
Wigner transformation:

• Consider the hopping of a fermion in one of the double-wells:

fi+3

Si+

€ 

=

€ 

Z

€ 

Z

€ 

Z 2

€ 

fi
+

€ 

Z 2
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Z 2
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Z 2
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Fermions are maximally entangled

• Recall that spins and fermions are connected through the 
Jordan-Wigner transformation:

Si−
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=
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• This term involves four spin operators – Hamiltonian has 
effective four-body interactions.

• Consider the hopping of a fermion in one of the double-wells:

fi+3

Si+

€ 

=

€ 

Z

€ 

Z

€ 

fi
+

Si−



Fermions are maximally entangled

• The fermion Hamiltonian in spin form becomes:

• Introduce an encoded basis

H = �⌧

2

N�1X

j=0

Z2j+2Z2j+3 (X2j+1X2j+4 + Y2j+1Y2j+4) .

��0j
↵ ⌘ |12j+102j+4i = f†

2j+1|Oi;
��1j

↵ ⌘ |02j+112j+4i = f†
2j+4|Oi

• Define                                                              andXj ⌘
1

2
(X2j+1X2j+4 + Y2j+1Y2j+4)

Zj ⌘ I2j+1Z2j+4 = �Z2j+1I2j+4



Fermions are maximally entangled

• In the encoded basis the Hamiltonian becomes

H = ⌧

N�1X

j=1

Zj�1XjZj+1 � ⌧ZN�1XN

• This is locally equivalent to the 1D cluster-state Hamiltonian! 
(conjugate sites 1 through N-1 by      ):Zj

H = �⌧

NX

j=1

Zj�1XjZj+1

• The fermionic ground state is therefore gapped, independent of 
size (excitations cost energy 2τ).  



• Likewise, a two-dimensional encoded cluster state can be 
constructed by non-interacting fermions hopping on this structure:

• So the ground-state of non-interacting fermions hopping on 
overlapping lattices is universal for measurement-based quantum 
computaton??

Fermions are entangled



• Quantum teleportation requires X-basis measurements, so first 
one must transform the first qubit by a Hadamard:

Hopping amplitude (sign) 
depends on occupation of 
second site. Need quartic
term = particle interactions.

• Of course, there is a catch! Return to the two-qubit case:
1     2  3               4

H1 =
1p
2

h
1� 2n1 + (1� 2n2)

⇣
f†
3f1 + f†

1f3

⌘i

=
1p
2

0

BB@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CCA

Fermions are maximally entangled, but…



• So, even though the ground state is maximally entangled, one 
cannot perform local operations unless the fermions interact!

• In fact, performing a local (encoded) unitary operation      instead 
yields                            which is a matchgate (modulo local 
operations).   

U1
CZ12U1CZ12

• For example, performing      yields G(H,H). H

• In practice, we need to implement        to counteract the induced 
ones; this requires real interactions. Using this we can construct 
SWAP. 

CZ

• This is the measurement-based analog of universal matchgate
computing.

Fermions are maximally entangled, but…



Review

• ‘Non-interacting’ bosons are computationally non-trivial

• Non-interacting fermions are efficiently simulatable

• In 1D, all ground states of gapped / frustration-free Hamiltonians 
are efficiently simulatable. Not so for gapless Hamiltonians

• In 2D or higher, not too much is known! Seemingly trivial 
extensions of non-interacting fermions are not classically 
simulatable. 

• Relationships among frustration-free/frustrated, gapped/gapless, 
area law satisfied/violated, ground-state representation 
efficient/inefficient, ground-state finding efficient/inefficient…?


