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holographic quenches:  H # Ho

compare the parameter space for revivals
and osclllating geometries

typical versus fine-tuned inrtial state and
ts holographic representation

compare with results from other approaches:
tensor networks
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Solitonic solutions

Dirichlet bc at the wall :
static solutions with a non-trivial scalar profile

—— M:total ass

NS solitons up to a threshold @o (Mo) Do - scalar field

stable and unstable branches at the wall

stable solitons with M> |

boundary conditions can not be
changed by bulk dynamics

{ Mo, Do} =couplings
solitons =vacua
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[/owest pole of 2-point function j — normal modes of @

Mo ,@o # O break Lorentz invariance _
causality

field theory in a non-trivial homogeneous medium

[mgap — w|k=0 for the lowest normal modej

the gap increases with negative Mo,
closes up with growing @o
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Area law | +1 gapped theory

S(A)x dA l

e : correlation length

holographic entanglement entropy

l

U (S(@)OC Iength(y)) ¢ homologous to y
14

(Ryu, Takayanagi, 2006) homology relative to IR wall

IR wall

pure state . .
S(A)=S(B) in the absence of horizons: puUre States
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4
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e length(con)=length(dis) v

IR wall

S(¢)ex<log(l) S(¢)=const

€ decreases with negative Mo, increases with @o

(w
7& Mo=-00

expected: Mgp § = O(1)

except close to soliton threshold:
large N effect
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amplitude

M<1: ever houncing
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parameters of the wall action: & (time span), € (amplitude)

o

X =40t X

o >1: adiabatic change

X <I|: radial localization
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Periodicity

X = |: periodicity of lowest
normal mode

o < |: different periodicity

larger far from stability threshold

— travelling pulse

—— standing wave
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Schwinger model ground state, low I)’Ing Spectrum (Banuls,CichyJansen,Cirac, 2013; Rico et al, 2013)

real time simulations: Schwinger mechanism, quenches
(Pichler et al 2015; Buyens et al, 2014,2016)
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On the holographic interpretation

holographic model: # fields >> | energy density
| BUT revivals depend on
Schwinger model: # fields ~ | # fields

simple picture of massive to massless quench

pairs of entangled quasiparticles

stronger correlations when emitted at close points

entangled pairs stream away at c=|

(Cardy,Calabrese, 2005)

(Abajo,Aparicio Lopez, 2010;
Balasubramanian et al, 201 I)

shell infall q—[> drift away of entangled excitations
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Increasing the quench energy

resulting state should contain finite
momentum modes

oscillating pulse must involve radial
displacement

check@ O=Qs0 + & lowest normal mode

radial localization increases
with energy
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quench: sudden action abrupt time variation of boundary conditions

2
varying bc at AdS3 boundary shell mass o< —& shell thickness o< ot

ot >

log(|Mo) (Bt — 0: singular conﬁguration)

10 (Buchel, Myers, van Niekerk, 201 3;
Das, Galante, Myers, 2014, 2015)

different dynamics of
thin and broad shells

[ﬁnite energy quench — radial localization ~ energyj

rising energy ~ increasing radial localization revivals ~ standing waves
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what bulk configurations can represent “typical” QFT out of equilibrium states?

\—P no fine tuning involved

thin shells of small
mass are not typical

able to resolve scales smaller than IR gap -
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