Black Hole Evaporation and Emergent Geometry from Gauge Theory

花田政範 (Masanori Hanada)

京都大学基礎物理学研究所 (YITP) & Stanford U.

Berkowitz, M.H., Maltz (1603.03055[hep-th], 1602.01473[hep-th]) + Monte Carlo String/M-theory collaboration, 1606.**** + work in progress + some old papers

Large-N, strong coupling Einstein Gravity easier

Valuable tool to study strongly coupled dynamics of gauge theory.

but this in only a half of the story...

This direction is also important!

Gauge difficult (supersymmetric gauge theory)

Large-N, strong coupling

Large-N,

finite coupling

Finite-N,

finite coupling

Gravity

(superstring/M-theory)

Einstein Gravity easier

Tree-level String (Finite string size) more difficult

Quantum String (Virtual string loops) very difficult

This direction is also important!

Gauge difficult (supersymmetric gauge theory)

Large-N, strong coupling

Large-N,

finite coupling

Finite-N,

finite coupling

Gravity

(superstring/M-theory)

Einstein Gravity easier

Tree-level String (Finite string size) more difficult

Quantum String (Virtual string loops) very difficult

This direction is also important!

Plan

• Updates on Monte Carlo study of SYM (imaginary time) (Monte Carlo String/M-theory Collaboration (MCSMC), 1606.****)

Give strong(est) evidence that gauge theory describes quantum gravity.

• Black hole evaporation from gauge theory (Berkowitz-M.H.-Maltz, 2016)

A concrete counter-example to information loss.

(Precise meaning will be explained)

• Black hole geometry from gauge theory (Berkowitz-M.H.-Maltz, 2016) (Berkowitz, Gur-Ari, M.H., Maltz, Rinaldi, Vranas, 1607.****)

Explain how BH horizon can emerge from gauge theory.

Gauge/Gravity Duality

technical jargon: "fine tuning free formulation"

(0+1)-d SUSY gauge theory

Anagnostopoulos, M.H. ,Nishimura, Takeuchi, 2007 Catterall, Wiseman, 2008 Kadoh, Kamata 2015; Filev, O'cconer 2015

black string (1+1)-d SUSY gauge theory

black hole

AdS₅

Cohen, Kaplan, Katz, Unsal; Sugino; Catterall 2002 — 2005

OK to all order in perturbation

Catterall, Giedt, 2005 — 2010 Fails at nonperturvative level?

M.H., Kanamori, 2010 OK at nonperturvative level

Further simulations: Kanamori, Sugino, Suzuki, 2010; Catterall, Joseph, Wiseman, 2010; Kadoh, Kamata, 2015—; ...

(3+1)-d SUSY gauge theory

M.H., 2010; M.H., Matsuura, Sugino, 2011

O(a)-improved action: M.H., Kadoh, Matsuura, Sugino, in preparation.

- Coding is complicated but all you need is love for string theory. (Lennon-McCartney, 1967; Bonham-Dixon-Jones-Page-Plant, 1969)
- Even if you don't have much love, you can still download a code from

https://sites.google.com/site/hanadamasanori/home/mmmm

BFSS/BMN matrix models $_{
m N=2}$ \sim 128 or 256 (maybe 512)

$2 \sim O(10^4)$ cores

10d/11d BH, M2, M5....

Codes for 2d & 4d SYM will also be available soon.

Monte Carlo String/M-theory Collaboration (MCSMC)

Main target: quantum nature of black hole

Evan Berkowitz (LLNL) M. H. (Kyoto U./Stanford U.) Goro Ishiki (U. of Tsukuba) So Matsuura (Keio U.) Enrico Rinaldi (LLNL) Shinji Shimasaki (Keio U.) Pavlos Vranas (LLNL)

4th in TOP500 (1st in 2011)

K-supercomputer (RIKEN, Kobe, Japan)

Enrico Rinaldi

Vulcan

(LLNL, Livermore, USA)

12th in TOP500

Evan Berkowitz

D0-brane quantum mechanics

$$S = \frac{N}{\lambda} \int_{0}^{\beta = 1/T} dt \ Tr \Big\{ \frac{1}{2} (D_t X_i)^2 - \frac{1}{4} [X_i, X_j]^2 \\ + \frac{1}{2} \bar{\psi} D_t \psi - \frac{1}{2} \bar{\psi} \gamma^i [X_i, \psi] \Big\}$$

(dimensional reduction of 4d N=4 SYM)

It should reproduce thermodynamics of black 0-brane.

effective dimensionless temperature $T_{eff} = \lambda^{-1/3}T$

high-T = weak coupling = stringy (large α ' correction)

Gauge theory description of a black hole (D0-brane quantum mechanics)

(Banks, Fischler, Shenker, Susskind 1996; Itzhaki, Maldacena, Sonnenschein, Yankielowicz1998)

diagonal elements = particles (D0-branes) off-diagonal elements = open strings

(Witten, 1994)

black hole = soliton in gauge theory (bound state of D-branes and strings)

 $X_{M^{ij}}$: open strings connecting i-th and j-th D0-branes. large value \rightarrow a lot of strings are excited

(Witten, 1994)

String theory prediction

BH mass = E =
$$-\frac{\partial}{\partial\beta}\log Z$$

 $E/N^2 = 7.41T^{14/5} + bT^{23/5} + cT^{29/5} + ... + O(1/N^2)$

Took $N \rightarrow \infty$, and did 3-parameter fit by

 $E/N^2 = aT^{14/5} + bT^{23/5} + cT^{29/5}$

$N = \infty$ obtained from N=16, 24, 32

MCSMC collaboration, 1606.*****

 $E/N^2 = aT^{14/5} + bT^{23/5} + cT^{29/5}$

 $E/N^2 = 7.41T^{14/5} + bT^{23/5} + cT^{29/5} + ... + O(1/N^2)$

check this part as well.

$E/N^2 = 7.41T^{2.8}-5.77T^{0.4}/N^2+...$

SU(3), SU(4) and SU(5), fit ansatz 7.4T^{2.8}+a/N²+b/N⁴

M.H.-Hyakutake-Ishiki-Nishimura, Science 2014

MCSMC collaboration, 1606.*****

Did gauge/gravity duality solve Hawking's puzzle?

- Unitary evaporation process is not known.
- NO real-time study from gauge theory side.

 Radiation rate is zero when the gauge theory description is exact. (Nothing can bring the energy away from gauge theory itself.)

- Specific heat is positive.

* Small AdS BH has negative specific heat, but has not been understood from gauge theory.

There is a remnant — zero-T, SUSY BH

Let's fix these issues.

Rules of the game

- Use only gauge theory.
- Don't assume anything from gravity.

(i.e. Don't assume the answer.)

"BH evaporation is described by SYM, if the duality between evaporating BH and SYM is correct."

Don't assume the answer!

Before going to BH evaporation...

BH formation

* We assume the 't Hooft limit for simplicity.

Formation of BH

Because of the chaotic nature of the system, almost all initial conditions end up with 'typical' matrix configurations — BH.

(N-1)²+1 N²

 $2 \times (N/2)^2 = N^2/2$

N²

 $T \sim (energy)/(\# d.o.f)$

Energy does not change
 # d.o.f. increases

<u>high-T</u> $E = 2 \times 6T (N/2)^2 = 6T'N^2$ T' = T/2

<u>Iow-T</u>

$$(\lambda^{-1/3}E) = 7.4N^2(\lambda^{-1/3}T)^{14/5}$$

Gravity result?
(1) We tested it.
(2) Used only for determining the O(1) coeff. completely. Evaporation is not assumed.

$$E = 7.4N^2 T'^{14/5} (g_{YM}^2 N)^{-3/5}$$

= 2 × 7.4 · (N/2)² · T^{14/5} (g_{YM}^2 · (N/2))^{-3/5}

$$T' = T/2^{1/7}$$

Evaporation

Gauge theory description of a black hole

(Banks, Fischler, Shenker, Susskind 1996; Itzhaki, Maldacena, Sonnenschein, Yankielowicz1998)

diagonal elements = particles (D0-branes) off-diagonal elements = open strings

(Witten, 1994)

black hole = soliton in gauge theory (bound state of D-branes and strings)

Gauge theory description of a black hole

(Banks, Fischler, Shenker, Susskind 1996; Itzhaki, Maldacena, Sonnenschein, Yankielowicz1998)

diagonal elements = particles (D0-branes) off-diagonal elements = open strings

(Witten, 1994)

metastable state (resonance)

black hole = soliton in gauge theory (bound state of D-branes and strings)

Flat direction due to supersymmetry

chaos + flat direction \rightarrow evaporation

Emission is entropically disfavored at short distance.
Beyond some point, it is entropically favored.

- Finite probability of particle emission, suppressed at $N = \infty$
- note: recurrence time $\sim \exp(N^2)$ Emission time $\sim \exp(N)$

scrambling time $\sim \log N$

- k-particle emission is suppressed; exp(kN)
- Temperature goes up!

(Berkowitz, M.H., Maltz, 2016)

Black hole heats up as it evaporates!

(Berkowitz, M.H., Maltz, 2016)

The spectrum is $exp(-E_{D0}/T)$ when $N=\infty$.

1/N correction gives a deviation from thermal distribution.

 $E = 6N^2T = 6(N-1)^2T' + E_{\rm D0}$ $\left(T \right)$ $T = \left(1 - \frac{2}{N} + \frac{1}{N^2}\right)T' + \frac{E_{\text{D0}}}{6N^2}$ $T < T' \simeq \left(1 + \frac{2}{N}\right)T$ $T < T' \simeq \left(1 + \frac{1}{2N}\right)T$ at low-T

Concrete counter-example to information loss!

- Radiation spectrum is thermal, up to 1/N correction.
- Black hole heats up.
- Evaporation speeds up.
- No remnant.
- Detailed numerical analysis with nuclear theory methods.
- Bulk interpretation still not 100% clear.

• So far we considered IIA string region, $g^2 \sim 1/N$. There are several

- differences from Schwarzschild BH.
- What about the M-theory region, $g^2 \sim N^0\,?$
- emission rate $\sim \exp(-1/g^2) \sim \exp(-N^0)$
- Massless objects can be described. (The philosophy of Matrix Theory conjecture!)
- Seen as the dynamics of eigenvalues, essentially the same. (Quantitative analysis is harder.)
- May be related to Banks-Fischler-Klebanov-Susskind?

Emergent BH geometry

Emergent Geometry

- Introduce a potential to fix the probe.
- The force can be read from the potential and the shift.

(Berkowitz, Gur-Ari, M.H., Maltz, Rinaldi, Vranas, 1607.****)

The final stage of the evaporation

Black hole becomes hotter

- Weak-coupling methods become better
- Numerical real-time calculation can be done

Summary

- Hot Black Hole can be studied. Mostly numerically, to some extent analytically.
- BH heats up as it evaporates. It is a generic property of string theory and gauge theory.
- Real-time simulation is possible for a very hot black hole.
- Black hole geometry is naturally encoded in gauge theory.
- Closed string picture of BH ask me later, if you are interested.
- All these are just generic statements for any dual gauge theory description of quantum gravity.

