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Hydrodynamic description of conventional metals

Hydrodynamics:
—Universal low energy, long wavelength physics.
—(Conserved charges, their currents, Goldstone bosons.

- Conservation law:
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- Constitutive relation (derivative expansion):

- Conductivity (Einstein relation):
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Comment on screening by Maxwell fields

- Charge in a metal does not diffuse, it decays exponentially.

- This comes from solving Maxwell’s equations + Ohm’s law.

- The Einstein relation for the conductivity still holds.

- 0 measured with respect to total, not external, electric field:
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Superfluid hydrodynamics

- Phase ¢ of the order parameter appears in hydrodynamics.
+ Ug = — Vo s the superfluid velocity.

- ‘Josephson relation’:
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- Constitutive relation:
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- (super-)Conductivity:
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Superconductivity

+ oo cONnductivity because: diffusion = second sound mode.

In a superconductor, the U(1) symmetry is gauged, i.e.
coupled to electromagnetism.

- This gaps out the Goldstone/sound mode in the same
way the diffusive mode was previously gapped.

- However, the conductivity Is, as before, measured with
respect to the total electric field. So the unscreened
(superfluid) hydrodynamics determines the conductivities.




Vortices and supercurrent relaxation

INn two space dimensions, above picture iIncomplete.

Motion of vortices can wind and unwind the supercurrent.
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Vortices and supercurrent relaxation

- This problem is well understood in some regimes:
— Thermal BKT proliferation of vortices above Tgkr.

- Classical picture: vortices pushed across sample by

‘superfluid Magnus force’
— [he core of the vortices Is In the normal state.

— Therefore, motion of vortices creates dissipation.

[Bardeen-Stephen '69]

On

Much controversy, however, about whether (quantum)
phase-disordered superconductors exist at T = 0.

[review: Phillips-Dalidovich "03]




INn the remainder

- Lightening overview of some experiments.

- Develop a fully guantum effective field theoretic formalism
for the conductivity of phase-disordered superconductors.

- |llustrate formalism with two examples:
() ‘Check’: Elegant (re)derivation of Bardeen-Stephen result.

(i) Phase disordering by a Chern-Simons interaction
‘topologically ordered superfluid vortex liquid’].




Superfluid-insulator transitions

In two (spatial) dimensions, conventional theory suggests
that as T—0 electrons will either localize or pair up.

- That is, the phase of matter one expects to find is either
an insulator or a superconductor.

ndeed, early experiments suggested that disordered thin
films undergo superconductor-insulator transitions as a
function of magnetic field or thickness (= 1/disorder).

Destroys superconductivity v
Favors localization



Superfluid-insulator transitions
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Metallic phases in two dimensions

Problematically for ‘conventional’ understanding, in
weakly disordered films a metallic phase intervenes

(at T = Ol) between the superconductor and
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Metallic phases in two dimensions

- Often, the residual resistivity of the metallic phase is
much smaller than the “normal state” resistivity of the
material at temperatures above the “mean field”
superconducting temperature.

+ Suggests the low energy degrees of freedom of the
metallic phases are not the normal state quasiparticles.

Natural to think of as “failled superconductors” where

(quantum!) phase fluctuations have destroyed phase
coherence.




Metallic phases in two dimensions

Direct motivation for our work: observation of a Drude-
like peak in the metallic phase of INOx.
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Metallic phases in two dimensions

The width of the Drude-like peak goes to zero at the
same magnetic field where superconductivity appears.
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Memory matrix formalism

Most discussions of this physics have involved semi-
microscopic models with uncontrolled approximations.

Instead: work in a limit where a hierarchy of timescales
allows an eftective field theoretic approach.

- Small parameter will be the supercurrent relaxation rate.
l.e. want Q2 « T, etc.

+ (Approach inspired by studies in holographic systems
over past few years, where slow mode was momentum.)



[Logic goes back to:

, , Gotze and Wolfle ' 72,
Memory matrix formalism Forster '75, ...]

Suppose that H = Ho + € AH, with [AH,Jg] # O.

- Then the decay of J¢ Is slow and dominates o:

2
o(w) = L ! L
Sut now we have a formula for Q2! :
R
Q — 62 ! llm Im GZ[AH’J¢] Z[AH,J¢](w)
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Spectral density of states into which
Jo can decay. Cf. Fermi Golden rule.



Supercurrent relaxation

- Recap: it an ‘almost conserved’ operator carries current,
rate of the decay determines the conductivity.

In our case of interest today: J, = L / d*zV ¢
™m

- Need an interaction that doesn’t commute with Jo.

- Natural building block:

_or _ _9f
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..e. charge density Is canonically conjugate to the phase:

o(x), p(y)] = 10(z —y).

T



Supercurrent relaxation

- Thus a simple, generic perturbation of the superfluid state is
the short range Coulombic interaction:

A
AH = 5 /dep(a:‘)Q.

- At first glance looks like commutator is trivial total derivative:

A
i|[AH, Jy) = —— | d*xVp(z)
T
- However, the phase appearing in J¢ Is only defined outside
of vortex cores! Above integral is then also only over the
outside of vortex cores. Integral over all space vanishes:

—integral over vortex cores.



Supercurrent relaxation

- The memory matrix formula for ¢2 becomes an integral of
the two point function of p over the vortex core.

- Using the diffusive behavior of p in normal state, the
Bardeen-Stephen formula drops out exactly.

S0 we discover the quantum origin of this formula.
Charge interactions enhance phase fluctuations:

ApA¢p 2 h



Seyond Bardeen-Stephen

Real life vortices are not infinitely large. The diffusive form
of the charge density correlator is therefore not exact. For
small vortices, it will not even be approximately correct.

- Work In progress: generalize Bardeen-Stephen formula
allowing for non-diffusive dynamics of the charge density.

Part of the controversy around T=0 metallic phases is
‘where does the dissipation occur’”? From our approach it
IS manifest that Iif the phase-relaxing interacting is local,
dissipation must be due to vortex cores.



Supercurrent relaxation without parity

- With parity and time-reversal broken, a second very
natural AH exists.

+ Suppose the low energy effective theory is coupled to
an emergent Chern-sSimons gauge field:
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- Integrating out the gauge field generates
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Supercurrent relaxation without parity

- Non-locality of induced interaction leads to a nonzero
time dependence of J¢ everywhere. In fact:
. N
\AH,J,| =——€7J).
Z[ ) gb] me
- Rough physical picture:
Current = Flow of charge
— Flow of emergent magnetic flux (CS term)
— Flow of vortices

— Relaxation of supercurrent in transverse direction!

+ (2 depends on charge flow in normal component.



Supercurrent relaxation without parity

Result for conductivities:
o m? w(w + (2% + Q%))
o N2ps (—iw+ Q)2+ Q3%
1 m? W2y
T TN T N, (—iw+ Q)7+ O3,
Feature: ‘supercyclotron resonance’ at
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Conductivities of the normal component
of superfluid.



Chern-Simons superfluid hydrodynamics

-+ The expressions for the conductivities can e alternatively

derived directly from superfiu
to a Chern-Simons gauge fie

Id hydrodynamics coupled
d.

- Dissipation in this case is not due to vortex cores, but to
the normal component of the supertluid.

If the normal component only has a Hall conductivity (e.g.
a superfluid coupled to a quantum Hall state), obtain
nontrivial dissipationless frequency dependent dynamics.




Recap

[see arXiv/1602.081/71]

- Superfluid relaxation occurs If perturbations of effective
Hamiltonian do not commute with the supercurrent.

- Starting with perturbations of superfluid hydrodynamics
gives controlled entry point. This works even if the
underlying microscopic dynamics is strongly correlated.

- Gave two examples, with and without parity:

(1) Wit
(2) Wit

determ

N parity: recovered Bardeen-Stephen.
nout parity: ‘supercyclotron resonance’

ned by conductivities of normal component.



