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Hydrodynamic description of conventional metals

• Hydrodynamics: 
 →Universal low energy, long wavelength physics.  
 →Conserved charges, their currents, Goldstone bosons. 

• Conservation law:  

• Constitutive relation (derivative expansion):  

• Conductivity (Einstein relation):
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Comment on screening by Maxwell fields

• Charge in a metal does not diffuse, it decays exponentially. 

• This comes from solving Maxwell’s equations + Ohm’s law. 

• The Einstein relation for the conductivity still holds. 

• σ measured with respect to total, not external, electric field:
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Superfluid hydrodynamics

• Phase ϕ of the order parameter appears in hydrodynamics. 

•                     is the superfluid velocity. 

• ‘Josephson relation’:  

• Constitutive relation: 

• (super-)Conductivity:
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Superconductivity

• ∞ conductivity because: diffusion → second sound mode. 

• In a superconductor, the U(1) symmetry is gauged, i.e. 
coupled to electromagnetism. 

• This gaps out the Goldstone/sound mode in the same 
way the diffusive mode was previously gapped. 

• However, the conductivity is, as before, measured with 
respect to the total electric field. So the unscreened 
(superfluid) hydrodynamics determines the conductivities.



Vortices and supercurrent relaxation

• In two space dimensions, above picture incomplete. 

• Motion of vortices can wind and unwind the supercurrent.
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Vortices and supercurrent relaxation

• This problem is well understood in some regimes:  
→ Thermal BKT proliferation of vortices above TBKT. 

• Classical picture: vortices pushed across sample by 
‘superfluid Magnus force’  
→ The core of the vortices is in the normal state. 
→ Therefore, motion of vortices creates dissipation. 
→ Get                           
                                   [Bardeen-Stephen ’65] 

• Much controversy, however, about whether (quantum) 
phase-disordered superconductors exist at T = 0.
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 [review: Phillips-Dalidovich ’03]



In the remainder

• Lightening overview of some experiments. 

• Develop a fully quantum effective field theoretic formalism 
for the conductivity of phase-disordered superconductors. 

• Illustrate formalism with two examples:  
 
(i) ‘Check’: Elegant (re)derivation of Bardeen-Stephen result.  
 
(ii) Phase disordering by a Chern-Simons interaction  
    [‘topologically ordered superfluid vortex liquid’].



Superfluid-insulator transitions

• In two (spatial) dimensions, conventional theory suggests 
that as T→0 electrons will either localize or pair up. 

• That is, the phase of matter one expects to find is either 
an insulator or a superconductor. 

• Indeed, early experiments suggested that disordered thin 
films undergo superconductor-insulator transitions as a 
function of magnetic field or thickness (≈ 1/disorder).

Destroys superconductivity
Favors localization



Superfluid-insulator transitions

[Hebard and Paalanen ’90, α-InOx]

[Jaeger et al. ’89, Pb]



Metallic phases in two dimensions

• Problematically for ‘conventional’ understanding, in 
weakly disordered films a metallic phase intervenes 
(at T = 0!) between the superconductor and insulator.

[Mason, Kapitulnik ’99, α-MoGe]



Metallic phases in two dimensions

• Often, the residual resistivity of the metallic phase is 
much smaller than the “normal state” resistivity of the 
material at temperatures above the “mean field” 
superconducting temperature. 

• Suggests the low energy degrees of freedom of the 
metallic phases are not the normal state quasiparticles. 

• Natural to think of as “failed superconductors” where 
(quantum!) phase fluctuations have destroyed phase 
coherence.



Metallic phases in two dimensions

• Direct motivation for our work: observation of a Drude-
like peak in the metallic phase of InOx.

[Liu, Pan, Wen, Kim, Sambandamurthy, Armitage ’13]



Metallic phases in two dimensions

• The width of the Drude-like peak goes to zero at the 
same magnetic field where superconductivity appears.

[Liu, Pan, Wen, Kim, Sambandamurthy, Armitage ’13]



Memory matrix formalism

• Most discussions of this physics have involved semi-
microscopic models with uncontrolled approximations. 

• Instead: work in a limit where a hierarchy of timescales 
allows an effective field theoretic approach. 

• Small parameter will be the supercurrent relaxation rate. 
I.e. want Ω ≪ T, etc. 

• (Approach inspired by studies in holographic systems 
over past few years, where slow mode was momentum.)



Memory matrix formalism

• Suppose that H = H0 + ε ΔH, with [ΔH,Jϕ] ≠ 0. 

• Then the decay of Jϕ  is slow and dominates σ: 
 

• But now we have a formula for Ω! :

[Logic goes back to: 
Götze and Wölfle ’72,  
Forster ’75, …]

Spectral density of states into which 
JΦ can decay. Cf. Fermi Golden rule. 
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Supercurrent relaxation

• Recap: if an ‘almost conserved’ operator carries current, 
rate of the decay determines the conductivity. 

• In our case of interest today: 

• Need an interaction that doesn’t commute with JΦ. 

• Natural building block: 
 
 
i.e. charge density is canonically conjugate to the phase:
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Supercurrent relaxation 

• Thus a simple, generic perturbation of the superfluid state is 
the short range Coulombic interaction: 
 

• At first glance looks like commutator is trivial total derivative: 
 

• However, the phase appearing in Jϕ is only defined outside 
of vortex cores! Above integral is then also only over the 
outside of vortex cores. Integral over all space vanishes: 
        →integral over vortex cores.
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Supercurrent relaxation 

• The memory matrix formula for Ω becomes an integral of 
the two point function of ρ over the vortex core. 

• Using the diffusive behavior of ρ in normal state, the 
Bardeen-Stephen formula drops out exactly. 
 

• So we discover the quantum origin of this formula. 
Charge interactions enhance phase fluctuations:
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Beyond Bardeen-Stephen

• Real life vortices are not infinitely large. The diffusive form 
of the charge density correlator is therefore not exact. For 
small vortices, it will not even be approximately correct. 

• Work in progress: generalize Bardeen-Stephen formula 
allowing for non-diffusive dynamics of the charge density. 

• Part of the controversy around T=0 metallic phases is 
‘where does the dissipation occur’? From our approach it 
is manifest that if the phase-relaxing interacting is local, 
dissipation must be due to vortex cores.



Supercurrent relaxation without parity

• With parity and time-reversal broken, a second very 
natural ΔH exists. 

• Suppose the low energy effective theory is coupled to 
an emergent Chern-Simons gauge field: 
 

• Integrating out the gauge field generates
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Supercurrent relaxation without parity

• Non-locality of induced interaction leads to a nonzero 
time dependence of Jϕ everywhere. In fact: 
 

• Rough physical picture: 
Current = Flow of charge 
 → Flow of emergent magnetic flux (CS term) 
 → Flow of vortices 
 → Relaxation of supercurrent in transverse direction! 

• Ω depends on charge flow in normal component.
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Supercurrent relaxation without parity

• Result for conductivities: 
 
 
 

• Feature: ‘supercyclotron resonance’ at
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Conductivities of the normal component  
of superfluid.



Chern-Simons superfluid hydrodynamics

• The expressions for the conductivities can be alternatively 
derived directly from superfluid hydrodynamics coupled 
to a Chern-Simons gauge field. 

• Dissipation in this case is not due to vortex cores, but to 
the normal component of the superfluid. 

• If the normal component only has a Hall conductivity (e.g. 
a superfluid coupled to a quantum Hall state), obtain 
nontrivial dissipationless frequency dependent dynamics.



Recap                                 [see arXiv/1602.08171]

• Superfluid relaxation occurs if perturbations of effective 
Hamiltonian do not commute with the supercurrent. 

• Starting with perturbations of superfluid hydrodynamics 
gives controlled entry point. This works even if the 
underlying microscopic dynamics is strongly correlated. 

• Gave two examples, with and without parity: 
 (1) With parity: recovered Bardeen-Stephen. 
 (2) Without parity: ‘supercyclotron resonance’       
determined by conductivities of normal component.


