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Motivation

Hydrodynamics is the effective long-wavelength description of
an underlying finite temperature quantum field theory.

The effective description is provided in terms of a few
universal degrees of freedom such as {uµ,T , µ}.
Information regarding the microscopics is present in the
parameters of the effective theory called transport coefficients.

There has been a lot of recent development on the structural
aspects of equations governing the effective theory.
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Motivation

Most of the focus so far, has been to construct the effective
theory of the states which describes space-filling
configurations on non-compact manifolds.

We will discuss the necessary modifications of the effective
theory, when we also incorporate the states describing finite
lumps of matter, in the fluid description: fluids with a surface.

The situation is similar to describing the fluids on a manifold
with a boundary, which itself is dynamical.

The plasma-balls of N = 4 SYM are a concrete example for
which our effective description would be applicable.

[Aharony, Minwalla, Wisemen]
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Introduction

The dynamics of the fluid are determined by symmetry
principles, besides thermodynamics

∇µTµν = 0, ∇µJµ = 0.

These are insufficient conditions to determine all the
independent component of the currents.
So we need to express the currents in terms of the fluid
variables {uµ,T , µ}, through the constitutive relations
This is performed in a derivative expansion

Tµν = T (0)
µν + T (1)

µν + . . . , Jµ = J(0)
µ + J(1)

µ + . . .

For example

Tµν = E uµuν + P Pµν + η σµν + ζ Θ Pµν + . . .

Fluid variables have an ambiguity of definition → fixed by the
choice of frame

Landau frame : uµTµν = −Euν
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Equilibrium partition function

[Banerjee,JB,Bhattacharyya,Jain,Minwalla,Sharma]

All fluid equations must admit a stationary solutions when
studied on slowly varying stationary background.

One should be able to generate the stress tensor (evaluated
on this stationary solution) from a partition function written
purely in terms of sources.

Let us consider system in thermal equilibrium on the most
general stationary background geometry

ds2 = Gµνdxmudxν = −e2σ(~x)
(
dt + ai (~x)dx i

)2
+gij(~x)dx idx j .

Here {σ, ai , gij ,T0,A0,Ai} constitutes the set of background
data.

Fluid limit ⇒ Background fields are slowly varying compared
to length scale set by T0.
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Procedure

The partition function written in terms of the sources

W = lnZ =

∫
dx3S(σ, ai , gij ,T0)

S is again expanded in a derivative expansion

S = S0 + S1 + S2 + . . .

We need the most general Sk so that it is invariant under all
transformations that keeps the metric time independent.

Sk must be invariant under ~x diffeomorphism.
Sk must be invariant under KK gauge transformation

t → t + Λ(~x)⇒ ai → ai + ∂iΛ

which means the dependence on ai is only through the
combination fij = ∂iaj − ∂jai .

Let pk be the total number of terms that can be written down
at any order k.
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Procedure

Let T F
µν be the most general symmetry-allowed fluid stress

tensor, evaluated on general stationary fluid solutions, in a
given frame.

This has tk number of transport coefficients that survives time
independent limit.

We demand this stress tensor is same as that obtained from
the partition function TWµν

TWµν = T F
µν

Using this we can do two things

Determine tk transport coefficients in terms of pk arbitrary
functions of the partition function reducing the number of
independent transport coefficients to pk .
Determine the fluid variables (the equilibrium solution),in the
chosen frame , order by order in terms of the background
sources.
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Ideal fluids

The ideal fluid stress tensor is

T F µν = ε(T )uµuν + p(T )Pµν .

The partition function at this order following our prescription

W = lnZ =

∫
ddx
√

g
eσ

T0
P(T0e−σ) + . . .

The stress tensor from the partition function is

[TW ]
i
0 = 0, [TW ]00 = T0eσP ′ − e2σP, [TW ]

ij
= Pg ij

Comparing we find

uµ = eσ{1, 0, 0, . . . }, and T = T0e−σ

ε = T dP/dT − P, p = P ⇒ ε+ p = T (dp/dT )
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Subleading stationary corrections

For uncharged fluids there are no terms that one can write
down in the partition function at first order.
At second order we can write 3 terms

W = logZ =

∫
Ms

d3x
√

g

(
eσ

T0

P
(
T0e−σ

)
−

1

2

[
P1(σ)R + T 2

0 P2(σ)fij f
ij + P3(σ)(∂σ)2

])
.

Purely on symmetry grounds, we can write 8 stationary terms
in the stress tensor at second order in the Landau frame.

Tµν =T
(
κ1R〈µν〉 + κ2R〈µν〉 + λ3 ω

α
〈µωαν〉 + λ4 a〈µaν〉

+Pµν(ζ2R + ζ3Rµνuµuν + ξ3ω
2 + ξ4a

2)
)
.

Comparing we get 5 relations among transport coefficients in
addition to the second order corrections to the fluid fields in
the Landau frame.

These relations are precisely coincide with those implied by
the second law of thermodynamics, when we perform a
complete entropy current analysis including dissipation.
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Introducing the surface

The stress tensor and the currents take the form

T µν = θ(f )T µν
blk + δ̃(f )T µν

sur + . . . , Jµ = θ(f )Jµ
blk + δ̃(f )Jµ

sur + . . .

The bulk currents are conserved as usual, while at the surface

∇µT µν
sur − nµT µν

sur = 0, ∇µJµ
sur − nµJµ

sur = 0

The location of the
surface is given by f = 0.

In general θ(f ) and δ(f )
also depends on the
dimensionless ratio τ/T .

f

Θ H f L
∆H f LFluid Bulk

f =0

Fluid
Surface

The partition function should take the general form

logZ =

∫
θ(f ) Sblk + δ̃(f ) Ssur
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Fluid variables and frames choice

We would like to have continuous fluid variables near the
surface and we must also have uµnµ|f =0 = 0.

We should view the surface fluid variables as dynamical
boundary conditions on the bulk fluid variables

(uµ
blk)nµ|f =0 = 0, and {eµ

a uµ,T}blk|f =0 = {us
a ,T

s}sur,

Since the stress tensor and the current is discontinuous at the
surface, choosing a Landau frame would also make the fluid
variables discontinuous.

Choose the same frame on the surface as in the bulk.

Some natural choices are

The fluid velocity is identified with the time-like killing vector
everywhere and with nµ being orthogonal to this killing vector
on the surface uµnµ|f =0 automatically vanishes.
A modified Orthogonal Landau frame.
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Leading order at the surface: Surface tension

At the leading order, we just have one term, same in the fluid
bulk

W = logZ =

∫
Ns

d3x
√

g

(
θ(f )

eσ

T0
P
(
T0e−σ

)
+ δ̃(f )

eσ

T0
C
(
T0e−σ

))
The surface stress tensor takes the form

T µν
sur = χE (T ) uµuν−χ(T ) Pµν+. . . ,where χ = −C, χE = −C+T

∂C
∂T

.

We immediately have a surface thermodynamics with

χE = χ+ TχS
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Laplace-Young equation

The normal component of the stress tensor conservation
equation at the surface is non-trivial

P(T )|f =0 = χK + (χE − χ) nµa
µ|f =0,

This equation is identical to the equation of motion of the
function f (~x), if we were to consider it as a dynamical field.

If χE = χ or equivalently χs ≡ ∂χ/∂T = 0 then this reduces
to the familiar Laplace-Young equation.

The new term in the modified Laplace-Young equation can be
explained as a centripetal acceleration arising out of
non-negligible surface degrees of freedom.
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Subleading order at the surface

At first order on the surface, we can write 3 new terms in the
partition function

W = logZ =

∫
Ms

d3x
√

g

(
eσ

T0

P
(
T0e−σ

)
−

1

2

[
P1(σ)R + T 2

0 P2(σ)fij f
ij + P3(σ)(∂σ)2

])

+

∫
∂Ms

d2x
√
γ

eσ

T0

(
C
(
T0e−σ

)
+B1

(
T0e−σ

)
ni
∂iσ + B2

(
T0e−σ

)
ε
ijkni fjk + B3

(
T0e−σ

)
K
) ∣∣∣∣

f =0
.

Stress tensor is straightforwardly obtained by varying the
partition function.

There are 31 symmetry allowed terms that can be written
down in the stress tensor ⇒ 31 transport coefficients.

Comparison with the stress tensor from the partition function
gives us 28 relations among the transport coefficients.

The bulk second order transport coefficients enter these
relations non-trivially.
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A close look at the parity odd term

We have a parity odd surface term in the partition function

W ⊃
∫
∂Ms

B2

(
T0e−σ

)
εijkni fjk

This gives rise to two terms in the surface stress tensor

Tµν
sur = · · ·+ s uµuν nν`

ν + v u(µ
(
εν)σρλuσnρaλ

)
+ . . .

The two transport coefficients are related s + v = 0, since
both are determined by B2.
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Superfluids

In case of superfluids the partition function can also depend
on the superfluid velocity ξµ [Jensen, Kaminski, Kovtun, Meyer, Ritz, Yarom]

[Bhattacharyya,Jain,Minwalla,Sharma]

W = logZ =

∫
M

d3x
√

g
eσ

T0

P
(
T0e−σ, A0e−σ, ξ

)
+

∫
∂M

d2x
√
γ

eσ

T0

C
(
T0e−σ, A0e−σ, ξ

) ∣∣∣∣
f =0

,

The bulk and surface currents both take the form

T µν = ε uµuν + P Pµν + λ ξµξν , Jµ = q uµ − λ ξµ.

The Laplace-Young equation now has another new
contribution

P(T )|f =0 = −χK + (χE + χ) nµa
µ|f =0 +λ nµ ξν ∇νξµ|f =0 .
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Zeroth order parity odd effects for superfluids

At the first order, in the bulk of a superfluid we can write two
parity odd terms in the partition function

W ⊃ Sodd =

∫ √
gd3x

(
g1ε

ijkζi∂jAk + T0g2ε
ijkζi∂jak

)
+ . . .

This gives rise to zeroth order parity odd terms in the surface
currents

Tµν
sur = εuµuν + PPµν + λξµξν + γ1 u(µεν)σλρuσnλξρ,

Jµsur = q uµ − λ ξµ + γ2 ε
µνλρuνnλξρ.
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The ‘inflow’ of anomaly

Transformation of the measure of the path integral
⇒ anomaly in the current conservation equation.

∇µJµ = c (? F ∧ F ) .

It can also be understood by considering the system

W =

∫
M5

A ∧ F ∧ F +

∫
N4

S

The conservation
equation for W

∇µJµ
cov = J⊥H

The Bardeen-Zumino shift

is automatic when we vary

W to obtain the current.
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Anomalous fluids

For anomalous fluids the currents also contain a contribution
from the anomaly.

This effect may be captured by writing down a partition
function

W =

∫
M5

u

2ω
∧
(
P − P̂

)
=

∫
M5

I− Î +

∫
N4

u

2ω
∧
(

I− Î
)

u

2ω
∧
(
P − P̂

)
= −µ u∧

(
3B3 + 6µωB + 4µ2

ω
2
)
,

u

2ω
∧
(

I− Î
)

= u∧
(
−2µA ∧ B− 2µ2A ∧ ω

)
[Haehl,Loganayagam,Rangamani; Jensen,Loganayagam,Yarom]

This gives a fluid current

JµN4
= · · ·+ ξB Bµ + ξ` `

µ + . . .

The conservation of this current is violated by the current due
to the term in M5 flowing into N4, which precisely accounts
for the anomaly.
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Surface of Anomalous fluids

When anomalous fluids form a surface there are two questions

What happens to the LHS of the conservation equation

∇µJµ = 0,

{
∇µJ

µ
blk

= 0

∇µJµsur − nµJ
µ
blk

= 0
, ∇µJµ = c (? F ∧ F ) ,

{
∇µJ

µ
blk

=?

∇µJµsur − nµJ
µ
blk

=?

How are the anomalous terms within Jµ
blk balanced at the

surface.

No anomalies in odd dimensions so perhaps

∇µJµ = c (? F ∧ F ) ,


∇µJµblk = c (? F ∧ F )

∇µJµsur − nµJµblk = 0
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Surface extended to higher dimension

We may extend the surface ∂N into M as a surface B and
study the inflow of anomaly in this set up.

Gauge invariance will
require us to write down
some additional terms on
B, in the partition
function.

We may now consider a system

W =

∫
M5

I− Î +

∫
B

u

2ω
∧
(

I− Î
)

+

∫
N4

u

2ω
∧
(

I− Î
)
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Conservation equations in presence of the surface

The conservation equation in N4 splits up into bulk and
surface pieces

∇µJµ = J⊥H,


∇µJµblk = J

(b)
H
⊥

∇µJµsur − nµJµblk = J
(s)
H
⊥

,

The covariant surface current vanishes although the consistent
surface current is non-trivial.

Similarly for the stress tensor

∇µTµν = FµνJµ + T⊥νH ,


∇µTµν

blk = FµνJµ(b)

∇µTµν
sur − nµTµν

blk = T
(s)
H
⊥ν

,
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Discussion

Our Partition function may pave way to understand how
surfaces may effectively emerge from an underlying
microscopics.

Derive the surface transport coefficients from microscopics
with Kubo-like formulae.

Parity-odd transport coefficients may serve as simple ways to
detect parity violation. Parity-odd effects may arise from some
effective breaking of the parity-symmetry.

It would be interesting to analyze the small fluctuations of the
surface and try to understand dissipative effects in that
context.

A non-relativistic limit of our setup may provide interesting
predictions for the surface behaviour of laboratory fluids.
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