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AdS/CFT

N = 4 SYM : g2
YM and U(N)
l

Strings in AdS5 × S5 with gs = g2
YM and R = (gsN)1/4

Classic example of emergent geometry. Graviton, strings,
branes, back-reacted geometries in the bulk side. Quantum
states expected to match. How does it work ?

Quantum states in CFT4↔ local gauge invariant operators.



Half-BPS sector : Representations of the superconformal
algebra containing states annihilated by half the Poincare
super-charges Q. Ultra-short representations.

Z = X1 + iX2.

tr Zk is in such a rep. Obeys ∆ = J = k . Generates a rep by
acting with the Q’s.

Likewise products tr Zk1 tr Zk2 .

Dimensions protected under change from g2
YM = 0 to strong

coupling. 3-point functions and extremal correlators
non-renormalized.

Detailed map between CFT4 states and gravitons, branes,
geometries (LLM) is known in the half-BPS sector.



Quarter-BPS sector: At g2
YM = 0, the quarter-BPS states are

holomorphic gauge invariant polynomials in two matrices Z ,Y .

e.g. tr Z2Y2, tr ZYZY.

Z = X1 + iX2 , Y = X3 + iX4

A subspace remains quarter-BPS beyond zero coupling. Those
annihilated by the 1-loop dilatation operator.

Open problem: Complete finite N characterization of the
ground states and matching with dual space-time.

More on this at the end of talk.



Bulk of the talk: Understanding the Hilbert space of quarter
BPS states at g2

YM = 0.

A finite N labelling of the states: Young diagrams and
Littlewood-Richardson numbers.

Measuring these labels using charges in the free theory.

Charges are constructed from enhanced symmetries in the free
theory.

A quantitative measure of the complexity of this Hilbert space.



These complexity measures are given in terms of permutation
groups.

Gauge invariant operators are constructed from adjoint fields by
contracting upper and lower indices. The order can vary and is
parametrized by permutations.

Z i1
i1

Z i2
i2

= tr Ztr Z

Z i1
i2

Z i2
i1

= tr Z2

In general σ ∈ Sn if we have n fields.

Distinct permutations do not always give distinct gauge
invariant operators. Hence we have to look at equivalence
classes of permutations.



In half-BPS sector, operators with n Z ’s, operators are built with
permutations σ ∈ Sn

σ ∼ γσγ−1

for all γ ∈ Sn. Hence we look at conjugacy classes.

In the quarter BPS sector, looking at operators with n copies of
Z and m copies of Y , we have σ ∈ Sn+m and equivalence
classes

σ ∼ γσγ−1

generated by γ ∈ Sm × Sn. Hence “subgroup conjugacy
classes”.



Outline of the talk

1. Half-BPS sector: 1-matrix invariants, Conjugacy classes of
permutations , associated commutative algebra, Young
diagrams, Enhanced symmetries in the gauge theory, Charges
for Young diagrams.

2. Quarter BPS: sector at zero coupling: 2-matrix invariants.
subgroup conjugacy classes, non-commutative algebra, Young
diagram labels, Charges, enhanced symmetries.

3. Open problems.



Half-BPS sector : Gauge invariants and permutations

Gauge invariants built from Z .

Oσ(Z ) = Z i1
iσ(1)

Z i2
iσ(2)
· · ·Z in

iσ(n)

e.g. n = 2, σ = (1)(2), then

Oσ(Z ) = Z i1
iσ(1)

Z i2
iσ(2)

= Z i1
i1

Z i2
i2

= (trZ)2

σ = (12)

Oσ(Z ) = Z i1
iσ(1)

Z i2
iσ(2)

= Z i1
i2

Z i2
i1

= trZ2



Half-BPS sector : Permutation equivalences

One proves that

Oγσγ−1(Z ) = Oσ(Z )

Index-free way to think about it :

Z : VN → VN
Z⊗n : V⊗n

N → V⊗n
N

σ|ei1 ⊗ ei2 · · · ein >= |eiσ(1) ⊗ eiσ(2) ⊗ · · · eiσ(n) >

Oσ(Z ) = trV⊗n
N

(Z⊗nσ)

Then

γZ⊗nγ−1 = Z⊗n



Summing over equivalence classes
Given this equivalence, we can form formal sums of all
elements in the class

[σ] =
∑
γ∈Sn

γσγ−1

These sums do not live in Sn but in the group algebra C(Sn).
In fact they live in the subspace of the algebra which commutes
with everything in C(Sn).

[σ]τ = τ [σ]

The [σ] span the centre Z[C(Sn)].



Z(Sn) : A physically interesting commutative algebra

Central elements form a closed commutative sub-algebra.

TiTj =
∑

k

Ck
ij Tk

Example : n = 3

T1 = (1)(2)(3)
T2 = (1,2)(3) + (1,3)(2) + (1)(2,3)
T3 = (1,2,3) + (1,3,2)

Sums of permutations with fixed cycle structure.

The multiplication is the combinatorics of splitting and joining of
cycles e.g.

T2T2 =
∑
i 6=j

(i , j)
∑
k 6=l

(k , l)

= n(n − 1)/2 + #
∑

i 6=j 6=k

(ijk) +
∑

i 6=j 6=k 6=l

(ij)(kl)



These structure constants control the 1/N expansion of
correlators in the half-BPS sector.

Also in orbifold theoiries and topological strings (e.g. 2d YM).



Z(Sn) : Projector basis - Young diagrams
The centre Z(Sn) ( in fact for any finite group) has a projector
basis. One projector for each irreducible representation R

PR =
dR

n!

∑
σ

χR(σ)σ

The R’s are labelled by Young diagrams with n boxes. dR is the
dimension of the irrep. The character χR(σ) is the trace of the
matrix representing σ in the representation R.

PRPS = δRSPS

The corresponding gauge invariant half-BPS operators are

OR(Z ) =
dR

n!

∑
σ∈Sn

χR(σ)Oσ(Z )



Young diagram basis gives orthogonal 2-point functions

It can be shown that

〈OR(Z (x1))OS(Z †(x2))〉 =
δRSfR

(x1 − x2)2n

Corley, Jevicki, Ramgoolam 2001

This orthogonality allows a systematic map - for dimensions of
order N - between gauge invariant operators and giant graviton
states - half-BPS brane configurations in the dual AdS5 × S5.

And, for dimensions of order N2, a map between gauge
invariant operators and backreacted LLM geometries which
are half-BPS and asymptotically AdS × S5

Lin, Lunin, Maldacena 2004

This system is also related to a system of N free fermions in
harmonic oscillator potential.
Corley Jevicki Ramgoolam 2001, Berenstein 2004.



Enhanced symmetries and commuting charges

Large degeneracy of states of fixed dimension - eigenstates of
the scaling operator. There should be a large number of
commuting operators.

The free theory of complex scalar∫
d4x tr (∂µZ∂µZ†)

has separate left and right U(N) global symmetry.

Z → UZV
Z † → V †Z †U†

If U = V † this is the global gauge symmetry. If V = 1 but U
general, we have a left U(N) symmetry. It has Lie algebra
generators

E i
j = Z i

k Πk
j

which can be realized as Noether charges .



Casimirs of left U(N)
Casimirs

C2 = E i
j E

j
i

C3 = E i
j E

j
kEk

i
...

The Casimirs commute with scaling operator. The Young
diagram operators are eigenstates Ck (R) are the eigenvalues.

The Casimirs are related to asymptotic multipole moments of
the LLM geometries obtained from back-reaction of the giant
graviton branes.
Balasubramanian, Cech,Larjo, Simon, 2006, “Integrability vs Information Loss: A simple example”

Not all the multipole moments are measurable to an observer
who has access to less than Planck scale energies. Only order
N1/4 as opposed to N. Hence an information loss.



The Quarter BPS sector : 2-Matrix Invariants

Gauge invariants are again constructed from permutations

Oσ(Z ,Y ) = Z i1
iσ(1)

Z i2
iσ(2)
· · ·Z in

iσ(n)
Y in+1

iσ(n+1)
· · ·Y in+m

iσ(n+m)

Now σ ∈ Sn+m. But

γZ⊗n ⊗ Y⊗mγ−1 = Z⊗n ⊗ Y⊗m

only for γ ∈ Sn × Sm.

Hence subgroup conjugation equivalences

Oσ = Oγσγ−1

for γ in the subgroup.



Algebra of equivalence classes

As before, we can construct sums over the equivalence classes

[σ] =
∑

γ∈Sn×Sm

γσγ−1

These live in C(Sn+m), commute with Sn × Sm but not with all of
Sn+m. They form a closed associative algebra A(n,m). Now
this algebra is non-commutative.

It has a sub-algebra which commutes with everything, which we
call Z(n,m).



Projector basis for the centre Z(n,m)

Just as Z(Sn) - centre of C(Sn))- has a projector basis, the
centre Z(n,m) has a projector basis.

PR,R1,R2 = PRPR1PR2

PR is labelled by irreps R of Sn+m - Young diagrams with n + m
boxes. PR1 is labelled by irreps R1 of Sn - Young diagrams with
n boxes.

Each P : a sum over permutations weighted by characters.
The product inC(Sn+m).



Matrix-Like Basis for A(n,m)

There is a matrix-like basis for the A(n,m).

QR,R1,R2
ij

which can be constructed using group theory of Sn+m and
reduction to Sn × Sm : R → R1 ⊗ R2.

The projector P and the matrix-like Q are non-zero only when
we can compose the R from R1 and R2 by the
Littlewood-Richardson rule.

The LR rule gives the number g(R1,R2,R) that the irrep
R1 ⊗ R2 appears in R when we reduce the irrep R of Sn+m to
the subgroup.

|R,M >=
∑

R1,R2,M1,M2,i

|R1,M1,R2,M2, i >< R1,M1,R2,M2, i |R,M >



Matrix Like Basis for A(n,m)

Construction of Q uses these branching coefficients and the
indices i , j range over

1 ≤ i , j ≤ g(R1,R2,R)

The R’s label matrix-blocks and the i , j matrix-entries :

Q
~R
ij Q

~S
kl = δjkδ

~R,~SQ
~R
il

Wedderburn-Artin theorem in general. Here group theory and
orthogonality relations of group theory.



Matrix-like Q’s and corresponding 2-matrix operators

These Q’s are some linear combinations of permutations in
Sn+m, which are invariant under conjugation by Sn × Sm.

Q
~R
ij =

∑
σ∈Sn+m

χ
~R
ij (σ) σ

There are corresponding operators

O~Rij (Z ,Y ) =
∑

σ∈Sn+m

χ
~R
ij (σ) Q

~R
σ (Z ,Y )



Orthogonality of operators corresponding to Q’s

It is found that

〈O~Rij (Z ,Y )(x1)(O~Skl(Z ,Y ))†(x2)〉 =
fRδ

~R,~Sδikδjl

((x1 − x2)2)m+n

The fR vanish for l(R) > N.

This is one of a class of closely related orthogonal bases for
multi-matrix systems in free field theories found in 2007-2008.

Yusuke Kimura, S. Ramgoolam, 2007
Brown, Heslop, Ramgoolam, 2007
Bhattaccharrya, Collins and de Mello Koch, 2008



Enhanced symmetries and Charges

Left action on Z :

(Ez)i
j → Casimirs → Ck (R1)

Left action on Y :

(Ey )i
j → Casimirs → Ck (R2)

Left action on Z ,Y :

((Ez)i
j + (Ey )i

j)→ Casimirs → Ck (R)

More general combinations of these e.g.

(Ex )i
j(Ey )j

k (Ey )k
i

can be used to distinguish the more subtle LR-multiplicity
indices on the

Q
~R
ij



Commutant algebras and Schur-Weyl duality

Unitary group acts on V⊗n
N as

U ⊗ U ⊗ · · · ⊗ U

This commutes with permutations γ

γ (U ⊗ U ⊗ · · · ⊗ U) γ−1 = (U ⊗ U ⊗ · · · ⊗ U)

In fact anything that commutes with U(N) in V⊗n
N comes from

the action of the C(Sn) group algebra.

One consequence is

V⊗n
N =

⊕
R`n

V U(N)
R ⊗ V Sn

R

which is why Young diagrams have a dual role : labelling irreps
of U(N) (symmetry types of tensors) and irreps of Sn.



SW duality : Casimirs of U(N) and permutation algebra actions.

Casimir operators constructed from Lie algebra generators of
U(N) - by construction - commute with U(N). When acting on
V⊗n

N , they must be expressible in terms of permutations.

Example : The Casimir operator Ĉ2 can be expressed in terms
of the sum of transpositions

T2 =
∑
i 6=j

(ij)

Another consequence The question “What is the minimal set of
Casimirs that are needed to distinguish all Young diagram
labels for n boxes ?” can be expressed in terms of how many of
these central elements of Z(C(Sn)) are needed to generate (
by adding and multiplying ) - the whole centre.



Casimirs and structure of A(m,n)

Action of the above Casimirs on O~Rij (Z ,Y ) can be mapped to
actions of the algebra A(n,m) on itself by left multplication.

Recall that the algebra has been decomposed into matrix
blocks.

Q
~R
ij

P
~R =

∑
i

QR
ii = PRPR1PR2

The projectors are 1 in the blocks and zero elsewhere. They
span Z(m,n) - the centre of the algebra. The dimension of this
algebra is the number of triples (R1,R2,R) such that
g(R1,R2,R) 6= 0.



Measuring the multiplicity indices.

To completely measure all the multiplicity indices, we need the
diagonal elements Q~R

kk . These span a commutative algebra (a
Cartan of A(m,n)) which we will denoteM(m,n)).

Q
~R
kkQ

~R
ij = δikQ

~R
kj

The dimension ofM(m,n) is equal to∑
R1`n

∑
R2`m

∑
R`m+n

g(R1,R2,R)



Minimal generating sets

The commutative algebraM(m,n) is an algebra over Z(m,n).∑
a

zama
∑

b

zbmb =
∑
a,b,c

Cc
a,bzcmamb

The elements Z(m,n) can be treated as constants. In this
treatment : Minimal size of a set of generators ofM(m,n) ?

This gives a precise definition of how many charges are
needed for the multiplicities.



Summary

We gave a characterization of the minimal number of charges
needed to distinguish the holomorphic invariants constructed
from two matrices Z ,Y . These holomorphic invariants
correspond to quarter-BPS states at zero coupling Yang Mills
theory.

Enhanced symmetries and Casimir charges played a role.

The relation of these charges to permutation algebras and the
structure of these algebras also played an important role.



Open problems.

Explicit computational results for the minimal mumbers of
charges.

Beyond zero coupling, the quarter BPS states are those which
are annihilated by the Hamiltonian of Minahan-Zarembo

H = tr [X ,Y ][X̌ , Y̌ ]



Open problems

This is understood - using permutation methods - for states
where ∆ ≤ N.
Brown, Heslop, Ramgoolam, 2008.
Brown, 2009.
Pasukonis, Ramgoolam, 2010.

For states with ∆ > N, partial results are available.

Yusuke Kimura “Quarter BPS from Brauer algebra” - 2010

A complete understanding of finite N should make contact with
quantization of moduli spaces of giant gravitons - where it is
argued that geometric quantization leads to N bosons in a 3D
harmonic oscillator.
Biswas, Gaiotto, Lahiri, Minwalla - 2006.

Perhaps new ideas from entanglement, emergence, condensed
matter physics are needed ...


