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AdS3/CFT2 correspondence
A new window to study AdS/CFT without resorting to string theory

I =
1

16πG

∫
d3x
√
−g(R +

2

l2
)

I 3D AdS3 Einstein gravity is special: No locally dynamical d.o.f

I In 1986, Brown and Heanneaux: there exists boundary d.o.f.

I More precisely they found that under appropriate boundary
conditions the asymptotic symmetry group (ASG) of AdS3 Einstein
gravity is generated by two copies of Virasoro algebra with central
charges

cL = cR =
3l

2G

I In modern understanding: quantum gravity in AdS3 is dual to a 2D
CFT at AdS boundary
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AdS3/CFT2: a perfect platform

I AdS3 gravity is solvable: all classical solutions are quotients of AdS3

such that a path-integral is possible in principleE. Witten (1988) ...

I 2D conformal symmetry is infinitely dimensional so that 2D CFT has
been very well studiedBelavin et.al. (1984) ..., even though the explicit
construction of dual 2D CFT is unknown
⇒ Universal properties

I However, it is not clear

1. how to define the quantum AdS3 gravity?
2. what is the dual CFT?
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Semiclassical AdS3 gravity

Let us focus on the semiclassical gravity, which corresponds to the CFT
at the large central charge limit

c =
3l

2G

I The partition function gets contributions from the saddle points

I For each classical solution, its regularized on-shell action ∝ 1/G ∼ c

I The 1-loop correction comes from the 1-loop determinant of the
fluctuations around the solution ∝ O(1)

I Possibly there are higher loop correction ∝ O(1/c l−1)



Semi-classical AdS3
Gravity



Semiclassical solutions

Rµν = − 2

l2
gµν ,

I All solutions are locally AdS3

I More precisely, all classical solutions could be obtained as the
quotients of global AdS3 by the Kleinian group, a discrete subgroup
of PSL(2,C )

M = AdS3/Γ

I It is often convenient to work in Euclideanized signature, in which
AdS3 ⇒ H3 with the metric

ds2 =
l2

r2
(dzdz̄ + dr2)

I At the boundary r → 0, we have the Riemann sphere Ω
I The action of PSL(2,C ) on Ω is a Mobius transformation

z → az + b

cz + d
, a, b, c , d ∈ C , ad − bc = 1
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Handle-body solutions

I Among all the solutions, the so-called handle-body solutions are of
particular importance, and have been better understood

I The handlebody solution is homeomorphic to a domain enclosed by
the closed surface

I The non-handlebody solutions are much less understood (unstable?)

I For the handlebody solutions, the subgroup Γ is a Schottky group, a
finitely generated free group, such that all nontrivial elements are
loxodromic(

a b
c d

)
∼
(

p1/2 0
0 p−1/2

)
, 0 < |p| < 1

I On the boundary, there is a compact Riemann surface, which could
be determined by the Schottky uniformization. Loosely speaking for
a genus-g Riemann surface Mg

Mg = Ω/Γ
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Schottky group

I The loxodromic element Li (L−1
i ) maps Ci to C ′i such that the

outer(inner) part of Ci is mapped to the inner(outer) part of C
′

i .

I The elements {Li} freely generate the Schottky group



Schottky uniformization

I Every compact Riemann surface could be obtained by the Schottky
uniformization”Retrosection theorem” by Koebe (1914)

I The Schottky uniformization is determined by a differential equation

ψ′′(z) +
1

2
Tzzψ(z) = 0, (1.1)

I Two independent solutions: ψ1 and ψ2

I Their ratio w = ψ1

ψ2
gives the quotient map

I More importantly, Tzz is the stress tensor of Liouville CFT. Its
explicit form depends on (3g − 3) complex accessory parameters
with respect to the holomorphic quadratic differentials on the
Riemann surface.



On-shell regularized action

I The essential point is that the on-shell regularized bulk action of
gravitational configuration in pure AdS3 gravity is a Liouville type
action defined on the fundamental regionK. Krasnov (2000),Zograf and Takhtadzhyan (1988)

I More importantly, the dependence of this so-called
Zograf-Takhtadzhyan action on the accessory parameters is
determined by the differential equationZograf and Takhtadzhyan (1988)

∂Sn
∂zi

= − cn

6(n − 1)
γi . (1.2)

I γi are the accessory parameters, being fixed by the monodromy
problem of the ordinary differential equation (1.1)

I For a general Riemann surface of high genus, it is a difficult problem
to determine this regularized action, even perturbatively

I Nevertheless, for the Riemann surface in computing the Rényi
entropy, the problem is simplified due to the replica symmetry

1. Two-interval case: one cross ratio
2. Single interval in a torus (finite temperature, finite size)



Rényi entropy in 2D CFT

S
(n)
A = − ln trAρ

n
A

n − 1

I The partition function on a n-sheeted Riemann surface

I Double-interval case: ⇒ genus (n − 1) RS

I Single-interval on torus: ⇒ genus n RS

I Partition function on a higher genus RS: usually hard to compute

Let’s try holographic computation...
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HRE in AdS3: A sketchT. Faulkner 1303.7221

I Find the bulk gravity solutions Bγ such that ∂Bγ = Σn

I Assumption: Consider only the handlebody solution, Γγ is the Schottky
group

I For a fixed Riemann surface Σn, find its Schottky uniformization

I Extend the uniformization to the bulk to find the gravitational solution

I From AdS3/CFT2 correspondence, the classical regularized bulk action
should reproduces the leading order partition function on Σn.

I Subtlety: For the same Σn, there could be more than one Bγ

I In the classical gravity limit, keep only the solution of least action
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Two-interval case

I In this case

Tzz =
∑
i

∆

(z − zi )2
+

γi
z − zi

,

where

∆ =
1

2
(1− 1

n2
),

I There is only one accessory parameter

I The accessory parameters are determined by requiring trivial
monodromy at infinity and on one of two cycles (red one)



Single interval on a torus

Tzz =
∑
i

(∆℘(z − zi ) + γiζ(z − zi )) + δ,

where ℘, ζ are the doubly periodic Weierstrass elliptic function and zeta
function respectively. Barrella et.al. 1306.4682,BC and J.-q. Wu1604.03644

I Torus: z ∼ z + mL + inβ ⇒ thermal circle and spatial circle

I We can set trivial monodromy along one circle and the cycle
enclosing two branch points, so that the identification of the other
circle gives the generator of Schottky group

I At high temperature above the Hawking-Page transition, the bulk
spacetime is actually a black hole, so the thermal circle is of trivial
monodromy.

I At low temperature, the dual bulk is the thermal AdS spacetime, so
the spatial circle is of trivial monodromy.
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Finite size effectBC and J.q. Wu 1405.6254

For the torus at high temperature, we have to consider the effect of its
finite size. The regularized action depends not only on the accessory
parameter,

∂Sn
∂zi

= − cn

6(n − 1)
γi ,

but also on the size of the torus

∂Sn
∂L

=
c

12π

n

n − 1
β(δ̃ − δ̃n=1). (1.3)

where δ̃ includes all the constant contribution in T (z).



Beyond classical action

I Simply speaking, the holographic Renyi entropy(HRE) is given by
the classical action of the corresponding gravitational configurations

I The n→ 1 limit reproduces the RT formulaT. Hartman 1303.6955, T. Faulkner 1303.7221

I It captures only the leading order Rényi entropy in CFT

I The subleading corrections in 2D CFT being independent of c should
correspond to the 1-loop partition function around the configurations

I There are good reasons to consider the quantum correction: mutual
information, thermal correction, ...
e.g. the mutual information satisfies M. Wolf et.al. 0704.3906

I (A,B) ≥ | < OA · OB > − < OA >< OB > |2

2|OA|2|OB |2
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1-loop correction
For a fixed handle-body solution obtained from the Schottky group, its
1-loop partition functionGiombi et.al. 0804.1773, X.Yin 0710.2129

Z 1−loop =
∏
γ∈P

∏
s

∞∏
m=s

1

|1− qmγ |
. (1.4)

Here the product over s is with respect to the spins of massless
fluctuations and P is a set of representatives of primitive conjugacy
classes of the Schottky group Γ. qγ is defined by writing the two

eigenvalues of γ ∈ Γ as q
±1/2
γ with |qγ | < 1.

I Find the Schottky group Γ corresponding to Mn

I Generate P = {non-repeated words up to conjugation}, e.g.

P = {L1, L2, L
−1
1 , L−1

2 , L1L2 ∼ L2L1, ...}

I Compute eigenvalues of these words and sum over their contributions
I Difficulty: infinite number of words
I For two intervals with small cross ratio x , only finitely many words

contribute to each order in xBarrella et.al. 1306.4682,BC et.al. 1312.5510

I For the single interval on a torus, similar thing happensBarrella et.al. 1306.4682,

BC et.al. 1405.6254
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CFT computation



Large c CFT

The semiclassical AdS3 gravity is dual to a large c CFT. The large c CFT
has a few attractive features

I Dual to the pure gravity, the vacuum module dominates the
contribution

1. gµν ↔ Tµν

2. The study on the conformal block T. Hartman 1303.6955,...

I Conformal block techniques: heavy-heavy-light-light one

We only focus on the Virasoro vacuum module, or sometimes the W
vacuum module
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General prescriptionM. Headrick 1006.0047, P. Calabrese et.al. 1011.5482, BC and J-j Zhang 1309.5453

The replica trick requires us to study a orbifold CFT: (CFT)n/Zn. When
the intervals are short, we have the OPE of the twist operators

σ(z , z̄)σ̃(0, 0) = cn
∑
K

dK
∑

m,r≥0

amK
m!

ārK
r !

1

z2h−hK−mz̄2h̄−h̄K−r
∂m∂̄rΦK (0, 0),

with the summation K being over all the independent quasiprimary
operators of CFTn.



Short interval expansion

We are interested in the two-interval case, then

TrρnA = 〈σ(1 + y , 1 + y)σ̃(1, 1)σ(y , y)σ̃(0, 0)〉C

= c2
nx
− c

6 (n− 1
n )

(∑
K

αKd
2
Kx

hKF (hK , hK ; 2hK ; x)

)2

where x is the cross ratio and F (hK , hK ; 2hK ; x) is the hypergeometric
function. αK is the normalization factor of ΦK , and dK is the OPE
coefficients.

I For a concrete CFT model, the summation should be over all the
conformal blocks

I For pure AdS3 gravity, it is enough to consider the vacuum Verma
module

I In the small x limit, to each order only finite number of the
quasi-primary operators contribute
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Rényi mutual information

I We are interested in the mutual Renyi entropy

I
(n)
A1,A2

= S
(n)
A1

+ S
(n)
A2
− S

(n)
A1+A2

In the following, we write In for I
(n)
A1,A2

.

I The Rényi mutual information can be classified according to the
order of the inverse of central charge 1

c in the large c limit

In =
c

3
(1 +

1

n
) log

y

ε
+

1

n − 1
logTrρnA,

= I LOn + INLOn + INNLOn + · · · .

1. I LOn ∼ O(c) terms
2. INLOn ∼ O(c0) terms
3. INNLOn ∼ O(1/c) terms

I After some highly nontrivial summations...



Mutual information: leading order

The leading part, being proportional to the central charge c ,

I treen = c(n−1)(n+1)2x2

144n3 + c(n−1)(n+1)2x3

144n3

+
c(n−1)(n+1)2(1309n4−2n2−11)x4

207360n7

+
c(n−1)(n+1)2(589n4−2n2−11)x5

103680n7

+ c(n−1)(n+1)2(805139n8−4244n6−23397n4−86n2+188)x6

156764160n11

+ (the terms proportional to x7 and x8) +O
(
x9
)

It matches exactly with the holographic result up to order x8.M. Headrick

1006.0047, T. Hartman 1303.6955, T. Faulkner 1303.7221

The classical mutual information (n = 1) is vanishing when the two
intervals are far apart.



Mutual information: next-to-leading order

The NLO part from the vacuum module, being proportional to c0, is

INLOn =
(n+1)(n2+11)(3n4+10n2+227)x4

3628800n7

+
(n+1)(109n8+1495n6+11307n4+81905n2−8416)x5

59875200n9

+
(n+1)(1444050n10+19112974n8+140565305n6+1000527837n4−167731255n2−14142911)x6

523069747200n11

+ (the terms proportional to x7 and x8) +O
(
x9
)
.

It matches exactly the holographic 1-loop result up to order x8.T. Barrella et.al.

1306.4682,B.C. and J.-J Zhang 1309.5453

The mutual information is not really vanishing due to the quantum
correction
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Mutual information: NNLO

Remarkably there is also the NNLO contribution, being proportional to
1/c ,

INNLOn =
(n+1)(n2−4)(19n8+875n6+22317n4+505625n2+5691964)x6

70053984000n11c

(n+1)(n2−4)(276n10+12571n8+317643n6+7151253n4+79361381n2−9428724)x7

326918592000n13c

+(the terms proportional to x8) +O
(
x9
)
,

This is novel, expected to be confirmed by 2-loop computation in gravity

I When n = 2, the two-loop correction is vanishing, as S (2) being
genus 1 partition function is 1-loop exactA. Maloney and E. Witten 0712.0155

I When n > 2, there are nonvanishing 2-loop correctionsXi Yin, 0710.2129

I Actually there is nonvanishing quantum 3-loop contribution, being
proportional to 1/c2, for S (n), n > 3.



Our computation weakly indicate (to order x8) that the m-loop correction
(m ≥ 3) to nth (n = 2, 3, · · · ,m) mutual information is vanishing, say

I 3−loop
n ∝ (n2 − 4)(n2 − 9) (2.1)

If this were true, it suggests that the genus-(n − 1) RS partition function
could be (n − 1)-loop exact.

However, the recent study by using sewing construction to compute the
partition function of genus-2 RS shows that this can’t be true. The
nonvanishing terms appear at x12. M. Headrick et.al. 1503.07111
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Single interval on a torus

I When the interval is not very large, the Rényi entropy could be
computed perturbatively for both high and low temperatures

I At a low temperature T in units of 1/L, the thermal density matrix
could be expanded level by level

ρ =
e−βH

Tre−βH
=

1

Tre−βH

∑
| φ〉〈φ | e−βEφ

I The expansion is respect to e−2π∆/TL, ∆ being the dimension of the
excitation

I The expansion could be understood in the following way: cut open
the torus and insert the complete basis at the cut

I At the low levels, the computations change to multi-point function
on a cylinder, via state-operator correspondence



The leading order

On the CFT side, the dominant contribution comes from the vacuum module
in the large c limit.T. Hartman (1303.6955),...

The leading order terms are proportional to the central charge

SLO
n =

c(1 + n)

n

{
1

12
log sin2 πl

L
+ const

−1

9

(n2 − 1)

n2

(
sin4(

πl

L
)e−

4π
TL + 4 sin4(

πl

L
) cos2(

πl

nL
)e−

6π
TL

+

(
−11− 2n2 + 1309n4

11520n4
cos(

8πl

L
)− −11 + 28n2 + 119n4

1440n4
cos(

6πl

L
)

−77− 346n2 + 197n4

2880n4
cos(

4πl

L
)− −77 + 436n2 + 433n4

1440n4
cos(

2πl

L
)

+
−77 + 466n2 + 907n4

1152n4

)
e−

8π
TL

)
+ O(e−

10π
TL )

}
It is in perfect agreement with the HRE. BC and J-q. Wu,1405.6254
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Next-to-leading order

In the CFT side, the next-to-leading terms are independent of c

S 1-loop

n = − 2n

n − 1

(
1

n4

sin4(πlL )

sin4 πl
nL

− 1

)
e−

4π
TL

− 2n

n − 1

(
4

n4
(

sin πl
L

sin πl
nL

)4 cos2 πl

L
− 8

n5
(

sin πl
L

sin πl
nL

)5 cos
πl

nL
cos

πl

L

− 4

n6
(

sin πl
L

sin πl
nL

)4 sin2 πl

L
+

5

n6
(

sin πl
L

sin πl
nL

)6 − 1

)
e−

6π
TL

+(order e−
8π
TL terms) + O(e−

10π
TL ). (2.2)

It is in perfect match with the 1-loop correction to HRE. BC and J-q. Wu,1405.6254,

BC, J.-q. Wu and Z.-c. Zheng 1507.00183

The NNLO result is hard to compute, but it could be read in the short
interval limitBC, J-b. Wu and J.-j Zhang, 1606.05444



Entanglement entropy

The entanglement entropy could be read easily

SEE = c

(
1

6
log sin2 πl

L
+ const

)
+8(1− πl

L
cot(

πl

L
))e−

4π
TL + 12(1− πl

L
cot(

πl

L
))e−

6π
TL + O(e−

8π
TL )

I Due to the thermal correction, the symmetry l → L− l is broken

SEE (l) 6= SEE (L− l)

I The thermal corrections to EE are independent of c

I Correspondingly, they are captured by the quantum corrections in
the bulk

I This is not true for RE, in which the thermal corrections appear even
in the leading order



Entanglement entropy

The entanglement entropy could be read easily

SEE = c

(
1

6
log sin2 πl

L
+ const

)
+8(1− πl

L
cot(

πl

L
))e−

4π
TL + 12(1− πl

L
cot(

πl

L
))e−

6π
TL + O(e−

8π
TL )

I Due to the thermal correction, the symmetry l → L− l is broken

SEE (l) 6= SEE (L− l)

I The thermal corrections to EE are independent of c

I Correspondingly, they are captured by the quantum corrections in
the bulk

I This is not true for RE, in which the thermal corrections appear even
in the leading order



Entanglement entropy

The entanglement entropy could be read easily

SEE = c

(
1

6
log sin2 πl

L
+ const

)
+8(1− πl

L
cot(

πl

L
))e−

4π
TL + 12(1− πl

L
cot(

πl

L
))e−

6π
TL + O(e−

8π
TL )

I Due to the thermal correction, the symmetry l → L− l is broken

SEE (l) 6= SEE (L− l)

I The thermal corrections to EE are independent of c

I Correspondingly, they are captured by the quantum corrections in
the bulk

I This is not true for RE, in which the thermal corrections appear even
in the leading order



High temperature case

I In the high temperature case, one may ”quantize” the theory along
the spacial direction rather than the thermal direction

I In other words, the spacial direction and the thermal direction
exchange the role and there is a modular transformation

L→ iβ, β → iL,

relating the two cases

I As a result, we have the density matrix

ρ ∝ e−LH = e−2π(L/β)(L0+L̃0− c
12 )

I This is in accord with the holographic computation



Large interval limit

SEE = c

(
1

6
log sin2 πl

L
+ const

)
+8(1− πl

L
cot(

πl

L
))e−

4π
TL + 12(1− πl

L
cot(

πl

L
))e−

6π
TL + O(e−

8π
TL )

The large interval limit l → L is singular

Such singular behavior exists for other CFT. For example, the thermal
correction of a primary operator to EE takes a universal formJ. Cardy and C.P.

Herzog 1403.0578

δSn =
g

1− n

(
1

n2∆−1

sin2∆
(
πl
L

)
sin2∆

(
πl
nL

) − n

)
e−2π∆/TL + o(e−2π∆/TL)

δSEE = 2g∆

(
1− πl

L
cot

(
πl

L

))
e−2π∆/TL + o(e−2π∆/TL), (2.3)

It is singular in the limit l → L.

We needs a different way to compute the

Rényi entropy in the large interval limit.
We got inspiration from the holographic computation
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Large interval: holographic result
I The entanglement entropy of single interval at high temperature is

SEE =
c

3
log sinh(πTl) (2.4)

I From holographic point of view, it is given by the geodesic in the
BTZ background ending on the interval

I However, it is only true when the interval is not very large

I When the interval is very large, the disconnected curve gives smaller
lengthT. Azeyanagi et.al. 0710.2956
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Our proposal in CFTBC and J.-q. Wu 1412.0763

I Quantize the theory along the spacial direction

I Insert a complete basis at Ã(1) cycle

I This requires us to study the twist sector of the CFT carefully

I We tested our proposal in the case of free boson, after correcting
some errors in the literatureBC and J.-q. Wu, 1412.0763,1501.00373

I We also used this expansion to prove the relation between the
entanglement entropy and thermal entropyBC and J.-q. Wu, 1412.0761

Sthermal = SEE (L− ε)− SEE (ε)

I Next, we studied the large interval Rényi entropy at high
temperature in the context of AdS3/CFT2 correspondence
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HRE: large interval limitBC and J.-q. Wu, 1506.03206

I Different gravitational
configurations

I Different set of monodromy
conditions

I Among n cycles of trivial
monodromy

1. One cycle which goes across
the branch cut for n times

2. The other n − 1
independent cycles
enclosing the
complementary interval

I Both the classical and 1-loop
contributions are in good
agreements with CFT results



Semi-classical picture

I Rényi entropy opens a new window to study the AdS3/CFT2

correspondence

I AdS3/CFT2 correspondence at semi-classical level: the leading order
partition function on a general (higher genus) RS is captured by the
on-shell regularized gravity action, which reduces to the ZT action

I Compelling evidence from the holographic computation of Rényi
entropy suggests that this is true

I Moreover, the next-to-leading order partition function is given by the
1-loop partition function in the bulk, this can be proved
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Goal

Prove the 1-loop correction from dual CFT:

Z 1−loop =
∏
γ∈P

∏
s

∞∏
m=s

1

|1− qmγ |
.

Not only for the configurations appearing in the computation of HRE,
but for any handle-body solutions.



Sewing prescription
It can be computed using the sewing construction, following Segal’s
approach to CFT. It is defined to be the summation of 2g -point
functions on the Riemann sphereM.R. Gaberdiel et.al. 1002.3371

Zg =
∑

φi ,ψi∈H

g∏
i=1

G−1
φiψi
〈

g∏
i=1

φi [Ci ]ψi [C
′
i ]〉D ,

φi , ψi are the states in the Hilbert space H, and φi [Ci ] denote the states
associated with the boundary circle Ci . Gφψ is the metric on the space of
the states



Partition funciton on Σg

Via state-operator correspondence, the states can be transformed to the
vertex operators inserted at the fixed points. With the vertex operators,
the partition function is changed to the summation over 2g -point
functions of the vertex operators inserted at 2g fixed points

Zg =
∑

φi ,ψi∈H

g∏
i=1

G−1
φiψi
〈

g∏
i=1

V (U(γi )p
L0

i φi , ai )V (U(γi γ̂)ψi , ri )〉,

This prescription could be applied to any CFT, but is most effective to
read the next-to-leading terms in the large c CFT. The large c limit
brings simplifications and make the graviton effectively ”free” at this
level. The details can be found in 1509.02062.



Large c CFT

I For pure AdS3 quantum gravity, it is the vacuum conformal module
in the dual CFT which dominate the contribution

I The other modules in the dual CFT?

I What’s the CFT dual of quantum AdS3 gravity?E. Witten 1988, S. Carlip 050302, A.

Maloney and E. Witten 0712.0155,H. Verlinde et.al. 1412.5205,...

I ...
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Thanks for your attention!
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