YITP, June 2016

Entanglement Renormalization and Wavelets

Glen Evenbly

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Entanglement renormalization and wavelets

- real-space renormalization
- quantum circuits
- tensor networks (MERA)

 compact, orthogonal wavelets

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians

Can be formulated as:

(i) a quantum circuit

(ii) resulting from coarse-graining (entanglement renormalization)

Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians

Can be formulated as:

(i) a quantum circuit

(ii) resulting from coarse-graining (entanglement renormalization)

initial lattice

Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians

Can be formulated as:

(i) a quantum circuit

(ii) resulting from coarse-graining (entanglement renormalization)

Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians

Can be formulated as:

(i) a quantum circuit

(ii) resulting from coarse-graining (entanglement renormalization)

Key properties:

(i) **efficiently contractible** (for local observables, correlators, etc)

(ii) reproduce **logarithmic correction** to the area law (for 1D quantum systems)

 S_L : log(L)

(iii) reproduce **polynomial** decay of correlations

(iv) can capture scale-invariance

Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians

•

٠

•

٠

Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians

Multi-scale Entanglement Renormalization Ansatz (MERA):

proposed by Vidal to represent ground states of local Hamiltonians

Introduction: Wavelets

Fourier expansions are ubiquitous in math, science and engineering

- many problems are simplified by expanding in Fourier modes
- smooth functions can be approximated by only a few non-zero Fourier coefficients

Wavelets are a good compromise between realspace and Fourier-space representations

- compact in real-space and in frequency-space
- developed by math and signal processing communities in late 80's
- applications in signal and image processing, data compression (e.g. JPEG2000 image format)

Introduction: Wavelets

Wavelet basis consists of translations and dilations of the wavelet function

- is a complete, orthonormal basis
- is a multi-resolution analysis (MRA)

Wavelets are a good compromise between realspace and Fourier-space representations

- compact in real-space and in frequency-space
- developed by math and signal processing communities in late 80's
- applications in signal and image processing, data compression (e.g. JPEG2000 image format)

Daubechies wavelets

How can we construct wavelets?

 first construct scaling functions (allows recursive construction of functions at different scales)

D4 scaling sequence

$$\boldsymbol{h} = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} = \begin{bmatrix} -0.1294 \\ 0.2241 \\ 0.8365 \\ 0.4830 \end{bmatrix}$$

Daubechies wavelets

How can we construct wavelets?

 first construct scaling functions (allows recursive construction of functions at different scales)

D4 scaling sequence

$$\boldsymbol{h} = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} = \begin{bmatrix} -0.1294 \\ 0.2241 \\ 0.8365 \\ 0.4830 \end{bmatrix}$$

 wavelets then defined from scaling functions using wavelet sequence

D4 wavelet sequence

$$\boldsymbol{g} = \begin{bmatrix} -h_4 \\ h_3 \\ -h_2 \\ h_1 \end{bmatrix} = \begin{bmatrix} -0.4830 \\ 0.8365 \\ -0.2241 \\ -0.1294 \end{bmatrix}$$

Daubechies wavelets

orthogonal to **constant** + **linear** functions

orthogonal to **constant** + **linear** + **quadratic** functions

- higher-order wavelets have more vanishing moments (D2N Daubechies have N vanishing moments)
- higher order may achieve better compression ratios
- many other wavelet families (e.g. Coiflets, Symlets...)

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16). G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Real-space renormalization and wavelets have many conceptual similarities... ... but can one establish a precise connection?

Free fermion systems:

Wavelet transform of fermionic modes precisely corresponds to **Gaussian MERA**

More generally:

MERA can be interpreted as the **generalization of wavelets** from ordinary functions to many-body wavefunctions

Introduction

Introduction

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).
G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Real-space renormalization and wavelets have many conceptual similarities... ... but can one establish a precise connection?

Outline: Entanglement renormalization and Wavelets

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).

G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Introduction

Wavelet solution to free fermion model

Representation of wavelets as unitary circuits

Benchmark calculations from wavelet based MERA

Further application of wavelet – MERA connection

Can we expand the ground state of $\Lambda_{k} = \cos(2\pi k / N)$ dispersion free spinless fermions as wavelets? relation: $H_{\rm FF} = \frac{1}{2} \sum_{r} \left(\hat{a}_{r}^{\dagger} \hat{a}_{r+1} + \text{h.c.} \right)$ $H_{\rm FF} = \int^{n} \Lambda_k \hat{c}_k^{\dagger} \hat{c}_k dk$ hopping term **Fourier** $\hat{c}_{k} = \frac{1}{\sqrt{N}} \sum_{r} \hat{a}_{r} e^{-it}$ fourier modes â first consider Transform plane waves: spatial modes Fermi Λ sea ground state is given by filling in negative energy states (fermi-sea): 0 $\left\langle \boldsymbol{\psi}_{GS} \middle| \hat{c}_{k}^{\dagger} \boldsymbol{c}_{k} \middle| \boldsymbol{\psi}_{GS} \right\rangle = \begin{cases} 0 & \Lambda_{k} > 0 \\ 1 & \Lambda_{k} < 0 \end{cases}$ 0 $\frac{\pi}{2}$ $-\pi$ $-\pi$ π 2 momentum, k

Can we expand the ground state of free spinless fermions as wavelets?

Outline: Entanglement renormalization and Wavelets

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).

G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Overview

Wavelet solution to free fermion model

Representation of wavelets as unitary circuits

Benchmark calculations from wavelet based MERA

Further application of wavelet – MERA connection

Diagrammatic notation:

$$u(\theta) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

Wavelet transform maps from vector of **N scalars** to vector of **N scalars**!

Classical circuit here represents **direct sum** of unitaries (not **tensor product!**)

G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Diagrammatic notation:

 $u(\theta_2)$ $u(\theta_1)$

$$u(\theta) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

Wavelet transform maps from vector of **N scalars** to vector of **N scalars**!

G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

wavelet sequence associated to inverse transforming unit vector (odd sublattice)

scaling sequence associated to inverse transforming unit vector (even sublattice)

G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

• MERA where unitary gates map fermionic modes linearly:

$$\begin{bmatrix} \hat{b}_1 \\ \hat{b}_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \hat{a}_1 \\ \hat{a}_2 \end{bmatrix}$$

 two sites gates are parameterised by a single angle

- Take two copies of Gaussian MERA that implement the **D4 Daubechies wavelet** transform
- Combine and then symmetrise

Quantum circuit which (approximately) prepares the ground state of 1D free fermions:

gate
$$\theta_1 = \pi / 12$$

angles: $\theta_2 = -\pi / 6$

Free fermions at half-filling:

$$H_{\rm FF} = \frac{1}{2} \sum_{r} \left(\hat{a}_{r+1}^{\dagger} \hat{a}_{r} + h.c. \right) - \mu \sum_{r} \hat{a}_{r}^{\dagger} \hat{a}_{r}$$

unitary circuit offers accurate (**real-space**) approximation to the ground state $|\psi_{GS}\rangle$ in terms of:

- ground energy and local observables
- entanglement entropy

$$S_L = \frac{c}{3} \log(L) + \text{const.}$$

- conformal data (scaling dimensions, OPE coefficients, central charge)
- RG flow of the Hamiltonian (flows to gapless fixed point)

Unitary circuit then `smears out' particles on the boundary

single particle wavefunction:

gate
$$\theta_1 = \pi / 12$$

angles: $\theta_2 = -\pi / 6$

$$H_{\rm FF} = \frac{1}{2} \sum_{r} (\hat{a}_{r+1}^{\dagger} \hat{a}_{r} + h.c.) - \mu \sum_{r} \hat{a}_{r}^{\dagger} \hat{a}_{r}$$

higher-level tensors generate **longer**-ranged entanglement

> **low**-level tensors generate **short**-ranged entanglement

Is this circuit related to the standard (binary) MERA?

Yes! Just group gates together

 $-\theta_1$

 θ_{2}

|1)|0)

 θ_{1}

 $-\theta_{a}$

 θ_{γ}

Expressed in Pauli matrices:

Isometries: $W_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$

Disentanglers: $u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$

Higher order wavelet solutions can also be expressed as a MERA!

Recap:

- 1. Ground state of 1D free fermions (or critical Ising model) can be approximated as wavelets
- 2. Wavelet solution precisely corresponds to a MERA

Quantum critical Ising model
$$H_{\text{Ising}} = \sum_{r} (-X_r X_{r+1} + Z_r)$$

Outline: Entanglement renormalization and Wavelets

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).

G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Overview

Wavelet solution to free fermion model

Representation of wavelets as unitary circuits

Benchmark calculations from wavelet based MERA

Further application of wavelet – MERA connection

Expressed in Pauli matrices:

Isometries:
$$W_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

Disentanglers: $u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$

How accurate is the wavelet-based ground state MERA?

arour	hd	en	er	av
groui	ľu			9 y

Quantum critical Ising model

 $H_{\text{Ising}} = \sum \left(-X_r X_{r+1} + Z_r \right)$

exact:	-1.27323	
MERA: D4 wavelets	-1.24211	rel. err. 2.4%

Quantum critical Ising model $H_{\text{Ising}} = \sum_{r} (-X_r X_{r+1} + Z_r)$

Expressed in Pauli matrices:

Isometries:
$$W_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

Disentanglers: $u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$

Conformal data from MERA?

Consider coarse-graining local operators...

- MERA has bounded causal width (3 sites for binary MERA)
- Local operators coarse-grained through the causal cone

Scaling operators are eigen-operators of **S**

$$S(\phi_{\alpha}) = 2^{-\Delta_{\alpha}} \phi_{\alpha}$$

scaling dimensions

Local operator is coarse-grained into new local operator

Lowest order solution, $\chi = 2$ MERA

Isometries:

$$w_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

Disentanglers: $u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$

	exact	MERA D4 wavelets
Ι σ ε	$\begin{array}{c} 0\\ 0.125\\ 1\\ 1.125\\ 1.125\\ 2\\ 2\\ 2\\ 2\\ 2.125\\ 2.125\\ 2.125\\ 2.125\end{array}$	$\begin{array}{c} 0\\ 0.140\\ 1\\ 1.136\\ 1.150\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2.113\\ 2.113\\ 2.131\end{array}$

- Scaling dimensions of primary fields and some descendants are reproduced
- Integer scaling dimensions reproduced exactly

Quantum critical Ising model $H_{\text{Ising}} = \sum_{r} (-X_r X_{r+1} + Z_r)$

Expressed in Pauli matrices:

Isometries:
$$W_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

Disentanglers: $u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$

Conformal data from MERA?

Consider coarse-graining local operators...

What about **non-local** scaling operators?

 Specifically those that come with a string of Z's (correspond to fermionic operators)

 Δ_{α}

scaling dimensions

Local operator (with string) is coarse-grained into new local operator (with string)

0)

W

Lowest order solution, $\chi = 2$ MERA

Isometries:

$$w_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

MERA مط ما مد رمان

Disentanglers: $u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$

			exact	D4 wavelets			
		exact	MERA D4 wavelets		μ	0.125	0.144
	т				ψ	0.5	0.5
1	I	0	0		Ψ	0.5	0.5
	σ	0.125	0.140			1.125	1.100
	${\cal E}$	1	1			1.125	1.133
		1.125	1.136			1.5	1.5
		1.125	1.150			1.5	1.5
		2	2			2.125	2.085
		2	2			2.125	2.085
		2	2			2.125	2.127
		2	2			2.5	2.5
		2.125	2.113			2.5	2.5
		2.125	2.113			2.5	2.5
		2.125	2.131			2.5	2.5

How to extract **OPE coefficients** from MERA? Consider fusion of two scaling operators...

resolve fused operator in basis of (4-site) scaling operators

$$\eta_{\alpha\beta} = \sum_{\gamma} C_{\alpha\beta\gamma} \phi_{\gamma}$$

$$\uparrow$$
OPE coefficients

How to extract **OPE coefficients** from MERA? Consider fusion of two scaling operators...

Central charge from MERA? Many ways to do this (based on scaling of entanglement entropy)...

1. Compute entanglement entropy of different blocks length *L* and use formula:

$$S_L = \frac{c}{3}\log(L) + \text{const.}$$

2. Compute entanglement contribution (per scale) to the density matrix for half-infinite system

Quantum critical Ising model $H_{\text{Ising}} = \sum_{r} (-X_r X_{r+1} + Z_r)$

Expressed in Pauli matrices:

Isometries:
$$W_{r,r+1} = \left(\frac{\sqrt{3}+\sqrt{2}}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-\sqrt{2}}{4}\right)Z_rZ_{r+1} + i\left(\frac{1+\sqrt{2}}{4}\right)X_rY_{r+1} + i\left(\frac{1-\sqrt{2}}{4}\right)Y_rX_{r+1}$$

Disentanglers: $u_{r,r+1} = \left(\frac{\sqrt{3}+2}{4}\right)I_rI_{r+1} + \left(\frac{\sqrt{3}-2}{4}\right)Z_rZ_{r+1} + \left(\frac{i}{4}\right)X_rY_{r+1} + \left(\frac{i}{4}\right)Y_rX_{r+1}$

Wavelet based MERA does a remarkably good job of encoding the Ising CFT! (considering its simplicity...)

Higher order solutions

Is there a systematic way to generate better approximations to the ground state?

Yes! Use **higher order** wavelets (which correspond to circuits with a greater depth of unitary gates in each layer) How does MERA with many layers of unitaries relate to standard (binary) MERA?

Four free parameters in the ansatz $\left[\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right]$

Wavelets have larger support (more compact in momentum space)

Higher order solutions

group tensors:

Binary MERA of larger bond dimension

Quantum critical Ising model
$$H_{\text{Ising}} = \sum_{r} (-X_r X_{r+1} + Z_r)$$

- higher order wavelets = larger bond dimension MERA
- higher order wavelets offer systematic improvement in accuracy

How accurately can a MERA of finite bond dimension χ approximate the ground state of a CFT? Analytic bounds?

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).
G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Real-space renormalization and wavelets have many conceptual similarities...

Summary

Outline: Entanglement renormalization and Wavelets

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).

G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Overview

Wavelet solution to free fermion model

Representation of wavelets as unitary circuits and MERA

Benchmark calculations from wavelet based MERA

Further application of wavelet-MERA connection

Wavelets for image compression

Wavelets for image compression

JPEG2000

Application: wavelet design

Representation and design of wavelets using unitary circuits, G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Things learned in the context of tensor networks / MERA:

- how to construct circuits with different forms and scaling factors
- incorporation of spatial and global internal symmetries
- optimization of networks!

(i) Binary MERA

(iii) Modified Binary MERA:

Application: wavelet design

Representation and design of wavelets using unitary circuits, G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Design a family of symmetric / antisymmetric wavelets based upon ternary unitary circuits:

Wavelets for image compression

JPEG2000 wavelets

PSNR: 37.4 dB

Wavelets for image compression

G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (April `16).
G.E., Steven. R. White, arXiv: 1605.07312 (May `16).

Real-space renormalization and wavelets have many conceptual similarities...

Summary