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Density Matrix and Entanglement Entropy

e Pure state in A u B: W[pa,ps]
* Density Matrix

(pa, eBlPAUBlEA, ©B) = Y]pa, 0B]Y [V}, B

Observing only A: mixed state with a
reduced density matrix pa

(palpauB|¥ls) = trepaus

von Neumann Entanglement Entropy: Sun = —tr(palogpa)



Scaling of Entanglement

* We will consider a partition into two simply-connected regions A and B, such
that Is»la>&>a; € is the correlation length (if finite) and a is the UV cutoff

* In a massive phase in d space dimensions ¢ is finite and the entanglement
entropy obeys the Area Law
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* The prefactor of the Area Law is not universal as it depends on the
short-distance cutoff a

* Ina 1+1 dimensional CFT this law is replaced by the universal form
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* |n a 2d topological phase it has the scaling Swn=a (l/a)- y+... (Kitaev and
Preskill, Levin and Wen); y=In D (D: effective guantum dimension).



Scaling of Entanglement in General Dimension

For general odd space dimension d the entanglement entropy has an
expansion of the form Syn= a (l/ao)d-1+a’ (I/ap)d-3+...+s In (/ao)+...

This expression is verified both in free field theories (Casini and Huerta,
2008) and in the AdS/CFT correspondence using the Ryu-Takayanagi
ansatz (2000)

The first term is the Area Law. The coefficients a, a’, etc. are non-universal
The coefficient s of the logarithmic term is universal

In 3+1 dimensional CFTs, the coefficient s is expressed in terms of
integrals of the entangling surface and of the central charges a and ¢



Scaling of Entanglement in 2+1 Dimensions

Much less is known about the universal terms in the scaling of
entanglement in odd space-time dimensions at guantum criticality

For simply-connected regions with the shape of a disk in d=2 dimensions
the entanglement entropy has the form of the Ftheorem: Suwn=a (l/a)-F+...,
where the constant term Fis finite and universal (Klebanov, Pufu, Safdi
(2011); Casini, Huerta and Myers (2011))

Here we will discuss the current evidence for universal finite terms in
several d=2 quantum critical systems of interest

We will focus on the case in which the d=2 surface is a 2-torus and the
observed regions are cylindrical sections of the torus.



Quantum Dimer Models

Quantum dimer models are simple models of 2d frustrated (or large N)
antiferromagnets (Kivelson and Rokhsar, 1988)

The space of states |C ) are the dimer coverings of the lattice, each dimer
being regarded as a spin singlet (valence bond) of a pair of nearby spins

The ground states have the RVB form

o) = > e PFAC)
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For small enough B, on bipartite lattices (square,
honeycomb, etc) these states represent quantum

critical points
On non-bipartite lattices (also for small enough f)

they represent Zo topological states (deconfined Zo
gauge theories or Kitaev’s Toric Code states)
For large B they represent ordered (VBS) states
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The Quantum Lifshitz Model

 The Quantum Lifshitz Model is the effective continuum theory of the critical
Quantum Dimer Model (Ardonne, Fendley, Fradkin, 2004)

 Free compactified boson field theory (¢ ~ ¢p+ 2mR) representing the coarse-
grained configurations of dimers on a bipartite 2D lattice

e |t has dynamic critical exponent z=2

e |t describes a quantum critical point between an uniform phase and a spatially
modulated phase

* In the uniform phase it becomes a relativistic compactified scalar field, a NG
mode.

12 K2

e Hamiltonian: H = > T3 (V2¢)2, 9(x),II(y)] = 16(x —y)

5 [ o (voe)

* Ground State Wave Functional: Wy[¢(x)] = const X e

* The ground state wave functional is conformally invariant



Entanglement Scaling in the QLM

* On simply connected region A with a smooth boundary the entanglement

entropy obeys the scaling Svn=a (I/a)+y+..., where y is universal (Fradkin
and Moore, 2006)

* |f the boundary has corners (cusps), or ends at the edge of the system,
Svn has universal logarithmic terms (Zaletel, Bardarson and Moore, 2011)

* The Rényi entanglement entropy Sn is computed in terms of ratios of 2D
classical partition functions.

* Partition function on an a “book” with 2n sheets.
; ® /. partition function of n copies glued at the
trpia = o boundary or the observed region A.

e /. partition function (norm of the wave function)
for one copy.

SwN IS expressed in terms of 2D classical free energies (two with Dirichlet BCs at
dA and 0B, and one free) and of the contribution of the winding modes, W(n)

Sun[A] = FplA] + Fp[B] — FIAU B] — lim,, ., 8, W (n)
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-ntanglement on a Torus

< >
L, -~ >
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2 torus: entanglement entropy of a cylindrical region has a universal finite term
(Hsu at al; Hsu and Fradkin; Oshikawa; Stéphan, et al).

Finite term due to the winding modes of the boson: long range entanglement.

L,

Thin “slice” limit: S,y = 2a=* — Ly

(VETRR) - §)
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24
Thin torus limit: S,y = Z&L (
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—E in other geometries: Disk and Sphere

e [f Ais a disk of radius r in the plane with Dirichlet BCs (and for a
spherical cap of angle 26)

’)/:111(\/871'7}%)—%

e This result should be compared with the -In (rg2) dependence found
for a compactified relativistic scalar field (a Goldstone boson with
dimensionful coupling constant g) by Agon et al.

e Annular region of radii ri<rzin the infinite plane (and for two spherical
caps after stereographic projection)

1
Thick annulus : v =2 [ln (\/ 87T/{R) — 5]

2
Thin annulus : v = — Ml ( T ) + In (\/ 87TI£R) —

1
24 o — 1 2
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Mutual Information

* Mutual information of region A, a disk of radius r1, with B, the
complement of a disk of radius r2>r1, in the infinite plane

I(A,B) = S(A) + S(B) — S(C) = 2 <ﬁ> i + <_>2

(8

e Mutual information of two disks of radii Ra and Re separated by
a large distance r (here (= Ra Rg/r2)

I(AaB) — S(A) —I-S(B) — S(AuB) _ 2c2A1 _|_<=2A2

1

A, =
LT SrkR2

and Ay =1 scaling dimensions of the vertex operator
exp(i¢) and dxg of the QLM
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Torus with general aspect ratio

2 torus with aspect ratio Ly/Lx and a cylindrical region A with aspect ratio
u= La/Lx, the entanglement entropy is Suwn=2a (Ly/a)+f J(u) (Stéphan et al)

A n(7)? 03 (AuT)03(A(1 — u)T) 63(z): Jacobi theta-function
) =198 (35T =37 ) o

7). Dedekind eta-function

For the quantum dimer model at the RK point, 1=2 T =1—
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Scaling of Entanglement in the 2+1 dimensional
Ising Model in a Transverse Field

* Inglis and Melko (2013) studied numerically the second Rényi entropy Sq
at the quantum critical point of the 2D TFIM on a 2 torus

* This system is in the universality class of the ¢4 Wilson-Fisher fixed point
iIn 2+1 dimensions

26

* Two different scaling functions:
82=2a Ly+ :8 |Og(SIn (ﬂLx/L))
So=2a Ly+ £ J(u)+ const

24 F ,t_,:..-.

.S'J(L‘ I)

The QLM scaling works surprisingly well |
even though is not relativistic! | | -

Figure 7. The entanglement entropy of the L =28, 32,36 systems using
two cylinders (figure 1), along with fits to (orange) equation (27) and (teal)
cquation (28). Notice the lack of any even—odd cffect in the entanglement as
a function of cut length.
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Holographic Entanglement on the 2 torus

Chen, Cho, Faulkner and Fradkin (2015) used the Ryu- physical space
Takayanagi ansatz to obtain the finite term in the von Neumann ™
entanglement entropy for a cylindrical section of a 2 torus

minimal area

e

AdS space

/
A: area of the minimal AdS surface homologous
to the observed region where the QFT lives on
S N = A the boundary of AdS

Toroidal geometries: minimal surface falls on the
“AdS4 soliton” geometry (Horowitz and Myers)

* The EE is sensitive to which cycle of the torus contracts since the
cutis alongy

* Inthe thin torus Iimit, Ly Ly, the EE saturates

e This is natural for fermions with anti-periodic boundary conditions
* |In the opposite, thin slice, limit we find universal scaling

* The von Neumann EE has the scaling form Sww=a Ly+ £ j(u), where
j(u) has two different forms depending on whether the aspect ratio of

the torus is Ly/Lx>1 or Ly/Lx<1
15



Parametric form of j(u) for Ly/Lx>1

YL =) [t dee?
/o(l—XC3) P(x, ()

1

P(x,¢) =1—x¢ — (1 —x)¢*

Parametric form for j(u) for Ly/Lx<1

j0) = X3 ( / ‘f(

1/3(1 . X)1/2

Vv1-=x¢ 1) B 1)
P(x,()
Loaee? 1

0 v/1—xC P(x, ()
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FIG. 2. The subleading term for the minimal surface for var-
ious values of L,/L,. The solid curves are for j(u) when

L, < L, and the dashed curves are for 3(u) when L, > L,.



Tests of scaling in 2d free field fermionic models

We computed the entanglement entropy for cylindrical regions of a 2 torus
for free massless Dirac fermions in 2+1 dimensions and also for free

massless “Lifshitz” (QBT) fermions, in both cases with anti-periodic
boundary conditions

Dirac fermions in 2+1 dimensions are a stable phase and hence an UV
fixed point

“Lifshitz” fermions in 2+1 dimensions have z=2 and are are at the
marginal dimension (asymptotically free)

We used a lattice version of these models and used standard results for
the reduced density matrix and the entanglement entropy (Peschel, 2001)

In the Dirac case we accounted for fermionic doublers
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Scaling of entanglement for free massless Dirac fermions in
2+1 dimensions

—— numerical data
o L+ J(u) (A=4.2)
o L+p log(sin(mu)

——AdS results

The Dirac model
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Conclusions

In 2+1 dimensions we expect to find universal finite corrections to the
entanglement entropy

These finite terms are determined by the operator content (compactification
radius, scaling dimensions, etc) and have topological origin

We presented results for von Neumann EE of the QLM on different geometries
and for the mutual information

On cylindrical regions the universal finite terms are given in terms of scaling
functions of the aspect ratios of the cylinders and of the 2 torus

We presented expressions for the entanglement entropy derived from
holography on toroidal geometries which fit remarkably well even free massless
Dirac fermions (on anti-periodic boundary conditions)

The finite term derived by Stéphan et al for the QLM fits remarkably well even for
Dirac fermions which is a relativistic theory (although the holographic results is
better)

How well does the holographic result fit the 2D Ising model in a transverse field?



Scaling of entanglement for free massless
“Lifshitz” fermions in 2+1 dimensions
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The QBT model
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Figure 8. S,n for the QBT model as a function of «. The bipartition geometry
is the same as the Dirac model. The inset is the absolute deviation for the fitting

function Syn = aL + #J(u) with numerical data. The deviation is less than 1%
for the whole region of w.



