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Density Matrix and Entanglement Entropy
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• Pure state in A ∪ B: Ψ[𝜑A,𝜑B] 
• Density Matrix

h'A, 'B |⇢A[B |'0
A, '0

Bi =  ['A, 'B ] ⇤['0
A, '0

B ]

Observing only A: mixed state with a 
reduced  density matrix ρA

h'A|⇢A[B |'0
Ai = trB⇢A[B

von Neumann Entanglement Entropy: SvN = �tr (⇢A log ⇢A)
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Scaling of Entanglement
• We will consider a partition into two simply-connected regions A and B, such 

that 𝑙B≫𝑙A≫𝜉≫a; 𝜉 is the correlation length (if finite) and a is the UV cutoff

• In a massive phase in d space dimensions ξ is finite  and the entanglement 
entropy obeys the Area Law 
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• The prefactor of the Area Law is not universal as it depends on the 
short-distance cutoff a 

• In a 1+1 dimensional CFT this law is replaced by the universal form

SvN = c
3 ln
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�
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• In a 2d topological phase it has the scaling SvN=𝛼 (𝑙/a)- 𝛾+… (Kitaev and 
Preskill, Levin and Wen); 𝛾= ln 𝒟  (𝒟: effective quantum dimension). 



Scaling of Entanglement in General Dimension

• For general odd space dimension d the entanglement entropy has an 
expansion of the form SvN= 𝛼 (𝑙/a0)d-1+𝛼’ (𝑙/a0)d-3+…+s ln (𝑙/a0)+…

• This expression is verified both in free field theories (Casini and Huerta, 
2008) and in the AdS/CFT correspondence using the Ryu-Takayanagi 
ansatz (2006) 

• The first term is the Area Law. The coefficients 𝛼, 𝛼’, etc. are non-universal 

• The coefficient s of the logarithmic term is universal 

• In 3+1 dimensional CFTs, the coefficient s is expressed in terms of 
integrals of the entangling surface and of the central charges a and c 
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Scaling of Entanglement in 2+1 Dimensions

• Much less is known about the universal terms in the scaling of 
entanglement in odd space-time dimensions at quantum criticality 

• For simply-connected regions with the shape of a disk in d=2 dimensions 
the entanglement entropy has the form of the F theorem: SvN=𝛼 (𝑙/a)-F+…, 
where the constant term F is finite and universal (Klebanov, Pufu, Safdi 
(2011); Casini, Huerta and Myers (2011)) 

• Here we will discuss the current evidence for universal finite terms in 
several d=2 quantum critical systems of interest 

• We will focus on the case in which the d=2 surface is a 2-torus and the 
observed regions are cylindrical sections of the torus.
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Quantum Dimer Models

• Quantum dimer models are simple models of 2d frustrated (or large N) 
antiferromagnets (Kivelson and Rokhsar, 1988) 

• The space of states |C ⟩ are the dimer coverings of the lattice, each dimer 
being regarded as a spin singlet (valence bond) of a pair of nearby spins 

• The ground states have the RVB form

| 0i =
X

{C}

e��E[C]|Ci

• For small enough 𝛽, on bipartite lattices (square, 
honeycomb, etc)  these states represent quantum 
critical points 

• On non-bipartite lattices (also for small enough 𝛽) 
they represent ℤ2 topological states (deconfined ℤ2 
gauge theories or Kitaev’s Toric Code states) 

• For large 𝛽 they represent ordered (VBS) states
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The Quantum Lifshitz Model
• The Quantum Lifshitz Model is the effective continuum theory of the critical 

Quantum Dimer Model (Ardonne, Fendley, Fradkin, 2004) 
• Free compactified boson field theory (𝜙 ~ 𝜙+ 2𝜋R)  representing the coarse-

grained configurations of dimers on a bipartite 2D lattice 
• It has dynamic critical exponent z=2 
• It describes a quantum critical point between an uniform phase and a spatially 

modulated phase 
• In the uniform phase it becomes a relativistic compactified scalar field, a NG 

mode.
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• Hamiltonian:

• Ground State Wave Functional:

• The ground state wave functional is conformally invariant

H =
⇧2

2
+

2

2
�r2�

�2
, [�(x),⇧(y)] = i�(x� y)
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Entanglement Scaling in the QLM
• On simply connected region A with a smooth boundary the entanglement 

entropy obeys the scaling SvN=𝛼 (l/a)+𝛾+…, where 𝛾 is universal (Fradkin 
and Moore, 2006) 

• If the boundary has corners (cusps), or ends at the edge of the system,  
SvN has universal logarithmic terms (Zaletel, Bardarson and Moore, 2011) 

• The Rényi entanglement entropy Sn is computed in terms of ratios of 2D 
classical partition functions. 

• Partition function on an a “book” with 2n sheets.

tr⇢n
A =

Zn

Zn

• Zn: partition function of n copies glued at the 
boundary or the observed region A. 

• Z: partition function (norm of the wave function)  
for one copy.
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SvN [A] = FD[A] + FD[B]� F [A [B]� limn!1 @nW (n)

SvN is expressed in terms of 2D classical free energies  (two with Dirichlet BCs at 
𝜕A and 𝜕B, and one free) and of the contribution of the winding modes, W(n)



Entanglement on a Torus

• 2 torus: entanglement entropy of a cylindrical region has a universal finite term 
(Hsu at al; Hsu and Fradkin; Oshikawa; Stéphan, et al). 

• Finite term due to the winding modes of the boson: long range entanglement.
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Thin “slice” limit: SvN = 2αLy

a − π
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EE in other geometries: Disk and Sphere

• If A is a disk of radius r in the plane with Dirichlet BCs (and for a 
spherical cap of angle 2𝜃)

γ = ln
(√

8πκR
)
− 1

2

• This result should be compared with the -ln (rg2) dependence found 
for a compactified relativistic scalar field (a Goldstone boson with 
dimensionful coupling constant g) by Agon et al. 

• Annular region of radii r1<r2 in the infinite plane (and for two spherical 
caps after stereographic projection) 

Thick annulus : γ =2
[
ln

(√
8πκR

)
− 1

2

]

Thin annulus : γ = − π

24

(
2πr1

r2 − r1

)
+ ln

(√
8πκR

)
− 1

2
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Mutual Information

• Mutual information of region A, a disk of radius r1, with B, the 
complement of a disk of radius r2>r1, in the infinite plane
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I(A, B) = S(A) + S(B) − S(C) = 2
(

r1

r2

)1/4πκR2

+
(

r1

r2

)2

• Mutual information of two disks of radii RA and RB separated by 
a large distance r (here ζ= RA RB/r2)

∆1 =
1

8πκR2
and ∆2 = 1

I(A, B) = S(A) + S(B) − S(A ∪ B) = 2ζ2∆1 + ζ2∆2

scaling dimensions of the vertex operator 
exp(i𝜙) and 𝜕x𝜙 of the QLM



Torus with general aspect ratio

2 torus with aspect ratio Ly/Lx and a cylindrical region A with aspect ratio 
u= LA/Lx, the entanglement entropy is SvN=2𝛼 (Ly/a)+𝛽 J(u) (Stéphan et al)

J(u) = log
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𝜃3(z): Jacobi theta-function 
𝜂(z): Dedekind eta-function

For the quantum dimer model at the RK point, 𝜆=2 ⌧ = i
L
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L
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Scaling of Entanglement in the 2+1 dimensional 
Ising Model in a Transverse Field

• Inglis and Melko (2013) studied numerically the second Rényi entropy S2 
at the quantum critical point of the 2D TFIM on a 2 torus 

• This system is in the universality class of the 𝜙4  Wilson-Fisher fixed point 
in 2+1 dimensions

• Two different scaling functions:  
• S2=2𝛼 Ly+ 𝛽 log(sin (𝜋Lx/L))
• S2=2𝛼 Ly+ 𝛽 J(u)+ const

The QLM scaling works surprisingly well  
even though is not relativistic!
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Holographic Entanglement on the 2 torus
Chen, Cho, Faulkner and Fradkin (2015) used the Ryu-
Takayanagi ansatz to obtain the finite term in the von Neumann 
entanglement entropy for a cylindrical section of a 2 torus

SvN =
A

4GN

𝒜: area of the minimal AdS surface  homologous 
to the observed region where the QFT lives on 
the boundary of AdS 
Toroidal geometries: minimal surface falls on the 
“AdS4 soliton” geometry (Horowitz and Myers)

• The EE is sensitive to which cycle of the torus contracts since the 
cut is along y 

• In the thin torus limit, Ly⟪ Lx, the EE saturates  
• This is natural for fermions with anti-periodic boundary conditions 
• In the opposite, thin slice, limit we find universal scaling 
• The von Neumann EE has the scaling form SvN=𝛼 Ly+ 𝛽 j(u), where 

j(u) has two different forms depending on whether the aspect ratio of 
the torus is Ly/Lx>1 or Ly/Lx<1

ℓ
AdS space

minimal area

physical space
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Parametric form of j(u) for Ly/Lx>1

u(�) =
3�1/3(1� �)1/2
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Parametric form for j(u) for Ly/Lx<1 
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Tests of scaling in 2d free field fermionic models 

• We computed the entanglement entropy for cylindrical regions of a 2 torus 
for free massless Dirac fermions in 2+1 dimensions  and also for free 
massless  “Lifshitz” (QBT) fermions, in both cases with anti-periodic 
boundary conditions 

• Dirac fermions in 2+1 dimensions are a stable phase and hence an UV 
fixed point 

• “Lifshitz” fermions in 2+1 dimensions have z=2 and are are at the 
marginal dimension (asymptotically free) 

• We used a lattice version of these models and used standard results for 
the reduced density matrix and the entanglement entropy (Peschel, 2001) 

• In the Dirac case we accounted for fermionic doublers
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Scaling of entanglement for free massless Dirac fermions in 
2+1 dimensions
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Conclusions

• In 2+1 dimensions we expect to find universal finite corrections to the 
entanglement entropy  

• These finite terms are determined by the operator content (compactification 
radius, scaling dimensions, etc) and have topological origin 

• We presented results for von Neumann EE of the QLM on different geometries 
and for the mutual information 

• On cylindrical regions the universal finite terms are given in terms of scaling 
functions of the aspect ratios of the cylinders and of the 2 torus 

• We presented expressions for the entanglement entropy derived from 
holography on toroidal geometries which fit remarkably well even free massless 
Dirac fermions (on anti-periodic boundary conditions) 

• The finite term derived by Stéphan et al for the QLM fits remarkably well even for 
Dirac fermions which is a relativistic theory (although the holographic results is 
better) 

• How well does the holographic result fit the 2D Ising model in a transverse field?



Scaling of entanglement for free massless 
“Lifshitz” fermions in 2+1 dimensions


