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Entropy and area

In semiclassical gravity, entropies are related to surface areas

• General surface:
S ≤ area

4GN

• Special surfaces (horizon, minimal surface, extremal surface):

S =
area

4GN

Ryu-Takayanagi [’06]:

S(A) =
1

4GN
area(m(A))

m(A) = minimal surface homologous to A

(From now on, we set 4GN = ln 2 = 1)

A

m(A)



Interpretation

Why?

Naive answer:

Microstate bits of ρA “live” on
m(A), one bit per 4 Planck areas

Confusions:

• Under continuous changes in boundary region, minimal surface can jump, for example:

A B B

m(AB) = m(A) [ m(B)
m(AB) 6= m(A) [ m(B)

A

(Note: ρAB does not jump; not a conventional exchange-of-dominance phase transition [Headrick ’13])

• Important quantities, like condiitonal entropy

H(A|B) = S(AB)− S(B) ,

mutual information
I(A : B) = S(A) + S(B)− S(AB) ,

conditional mutual information

I(A : B|C) = S(AB) + S(BC)− S(ABC)− S(C) ,

are given by differences of areas of surfaces passing through different regions of bulk

Let’s recall their information-theoretic meaning

Classical:

H(A|B) = # of (independent) bits belonging purely to A

I(A : B) = # shared with B
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Quantum: Entangled pair of bits contributes 2 to I(A : B), −1 to H(A|B)
Can lead to H(A|B) < 0
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What do differences between areas of surfaces, passing through different parts of bulk, have to do with
redundancy, entanglement, etc. between bits of A and B?

What does holographic proof of strong subadditivity have to do
with monotonicity of correlations?

BA C

+

+

�
�

.

To answer these questions, I will present a new formulation of RT

• Does not refer to minimal surfaces; these are demoted to a calculational device

• Suggests a new way to think about the connection between spacetime geometry and information

Max flow-min cut

(Originally on graphs, in context of network theory; continuous version [Federer ’74, Strang ’83, Nozawa ’90])

Consider a Riemannian manifold with boundary

Define a flow as a vector field v s.t. ∇ · v = 0, |v| ≤ 1
Let A be a subset of boundary

For any surface m homologous to A, ∫
A
v =

∫
m
v ≤ area(m)

Strongest bound is min cut:

max
v

∫
A
v ≤ min

m∼A
area(m)
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Max flow-min cut theorem says there are no
other obstructions to increasing flux:

max
v

∫
A
v = min

m∼A
area(m)

v(A) := maximizer

A

v(A)

m(A)

.
Notes:

• On m(A), v(A) = unit normal vector; elsewhere, v(A) is highly non-unique

• Unlike min cut, max flow is a linear programming problem

• A flow can be thought of as a set of oriented threads (flow lines) with transverse density = |v| ≤ 1

RT version 2.0:

S(A) = max
v

∫
A
v

= max # of threads coming out of A

Each thread has cross section of 4 Planck areas

A

m(A) v(A)

.
Automatically incorporates homology condition & global minimization

Threads can end on Ac or horizon
Each thread carries one independent bit of ρA, either entangled with Ac or in a mixed state

Threads can also return to A, but those don’t count

Minimal surface does not play a fundamental role, but acts as bottleneck limiting number of threads

Naturally implements holographic principle: entropy is area because bits are carried by one-dimensional objects

Threads & information

Now we address conceptual puzzles with RT raised before

First, it can be shown that v(A) changes continuously with A, even when m(A) jumps

Now consider two regions A, B

We can maximize flux through A or B
If S(AB) < S(A) + S(B), then we cannot simultaneously maximize
through both
But we can always maximize through A and AB (nesting property)
Call such a flow v(A,B)

v(A) v(AB)v(A, B)

.
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Example 1: S(A) = S(B) = 2, S(AB) = 3⇒ I(A : B) = 1, H(A|B) = 1

Maximizing on AB, we can also maximize on either A or B

BA

v(A, B)

BA

v(B, A)

A
B

Lesson 1:

• Threads that are stuck on A represent bits unique to A

• Threads that can be moved between A & B represent correlated pairs of bits

Example 2: S(A) = S(B) = 2, S(AB) = 1⇒ I(A : B) = 3, H(A|B) = −1⇒ entanglement!

One thread leaving A must go to B, and vice versa

BA

v(A, B)

BA

v(B, A)

A
B

Lesson 2:

• Threads connecting A & B (and switch orientation) represent entangled pairs of bits

Conditional entropy: H(A|B) = S(AB)− S(B)

=

∫
AB

v(B,A)−
∫
B
v(B,A)

=

∫
A
v(B,A)

Mutual information: I(A : B) = S(A)−H(A|B)

=

∫
A
v(A,B)−

∫
A
v(B,A)

Subadditivity is clear

Max flows can be defined without regulator, as flows that cannot be augmented
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Regulator-free definition of mutual information:

I(A : B) =

∫
A
(v(A,B)− v(B,A))

Define flow

v(A : B) =
1

2
(v(A,B)− v(B,A))

which goes from A to B through entanglement wedge r(AB)
Implies

1

2
I(A : B) ≤ area (r(AB) bottleneck)

BA

v(A : B)

.
.

Given lessons above, freedom to move threads around on A indicates correlations with A; freedom to add loops
that begin and end on A indicates entanglement within A.

Conditional mutual information:

BA C

I(A : B|C) = H(A|C)−H(A|BC)

=

∫
A
v(C,A,B)−

∫
A
v(C,B,A)

= (max on A)− (min on A), while maximizing on C & ABC

= moveable between A & B, while maximizing on C & ABC

= (moveable between A & BC)− (moveable between A & C)

= I(A : BC)− I(A : C) .

Strong subadditivity is clear .

Exercise for reader: Find flow-based proof of “monogamy of mutual information” inequality [Hayden-Hedarick-

Maloney ’11],
I(A : BC) ≥ I(A : B) + I(A : C)

and higher inequalities [Bao et al. ’15]

Cannot be proved using just nesting property (see e.g. 4-party GHZ); indicates some new property of flows

Do bit threads indicate that bipartite entanglement is privileged?
Possible to represent 3-party GHZ state B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A
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Covariant flows

To appear (with Veronika Hubeny)

Flow version of Hubeny-Rangamani-Takayanagi [’07] covariant entanglement entropy formula:

Define a flow as a vector field v (in the full spacetime) s.t. ∇ · v = 0 and integrated norm bound:
∀ timelike curve C and unit normal vector field u on it,∫

C
ds u · v ≤ 1

In other words, any observer sees over their lifetime a total of at most 1 thread per 4 Planck areas

HRT version 2.0:

S(A) = max
v

∫
D(A)

v (D(A) = boundary causal domain of A)

Max flow v(A) stays inside entanglement wedge, squeezes out through extremal surface

Bit threads can lie on a common Cauchy slice (equivalent to maximin [Wall ’12]), or spread out in time
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