
YKIS2016@YITP (2016/6/15)

Supersymmetry breaking and 
Nambu-Goldstone fermions 

in lattice models

Hosho Katsura
(Department of Physics, UTokyo)

 arXiv:1606.03947

Collaborators:
Yu Nakayama (IPMU  Rikkyo)
Noriaki Sannomiya (UTokyo)



Susy and me

What I’ve been working on…

My first paper (undergrad)

“Exact supersymmetry in the relativistic hydrogen 

atom in general dimensions” (arXiv:quant-ph/0410174),
H. Katsura & H. Aoki, J. Math. Phys. 47, 032301 (2006).

Condensed Matter & Statistical Physics

・ Strongly correlated systems,

・ Topological phases of matter,

・ Quantum entanglement, …

 I’m not a high-energy physicist, or a string theorist, …
(at least for the moment). But…

VBS/CFT correspondence (2d AKLT ⇔ 1d Heisenberg)

J.Lou, S.Tanaka, H.K., N.Kawashima, PRB 84 (2011). 

1/23



Today’s talk

Many-body systems with built-in supersymmetry!

• My talk contains some Information (S≠0)

• The model lives in (1+1)-dim. flat Spacetime

• Super-weird Quantum Matter, never synthesized …, cold atoms?  

• Lattice-fermion model in 1 (spatial) dimension

• Spontaneous supersymmetry breaking

• Gapless excitation with linear dispersion   
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Edge of the workshop



Outline

1. Introduction & Motivation

• Supersymmetry and lattice models

• Extended Nicolai model

2. SUSY breaking in extended Nocolai model

• Definition of SUSY breaking

• 1) Finite chain, 2) infinite chain

3.  Nambu-Goldstone fermions

• 1. Variational result, 2. Numerical result

• Bosonization & RG analysis

4.  Summary
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• Supercharges (Q & Q† ) and fermion number (F)

• Hamiltonian 

• Conserved charges 

Supersymmetry (SUSY QM) demystified

Algebraic structure

Spectrum of H

• E ≧ 0 for all states 

• E > 0 states come in pairs

• E = 0 iff a state is a singlet (cohomology)

SUSY breaking ⇔ No E=0 state

Energy

0
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Elementary examples

Boson-fermion system

• Creation & annihilation operators (b: boson, c: fermion) 

• Vacuum state

• Supercharges

Total number of B and F!
|vac> is a SUSY singlet.

 Lattice bosons and fermions

• Lattice sites: i, j = 1,2, …, N

• Creations & annihilations

(b and f are mutually commuting.) 

• Vacuum state 
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Elementary examples (contd.)

SUSY in Bose-Fermi mixtures

• Yu-Yang model (PRL 100, (‘08))

HYY commutes with Q & Q†!   ( HYY is not {Q, Q†} )

Generalization

Total number of B and F! |vac> is a SUSY singlet.

Realization in cold-atom systems?
M. Snoek et al., PRL 95 (‘05); PRA 74 (‘06); G.S.Lozano et al., PRA 75 (‘07).

Hubbard-type model with equal hopping & equal-int. for any pair of sites. 
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• Supercharge

• Hamiltonian  

1

2

2k-1

2k

2k+13

Lattice models with built-in SUSY

 Fendley-Schoutens-de Boer model

Nicolai model

Hard-core constraint

PRL 90, 120402 (‘03); PRL 95, 046403 (’05). 

“Supersymmetry and spin systems”,
H. Nicolai, JPA 9, 1497 (‘76). 

• Supercharge

# of E=0 states ~ exp (# of sites)

Both models tend to have massively degenerate E=0 states...
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• Setting

1d lattice of length N (even). PBCs are imposed (cN+1 = c1).

• New supercharge (g > 0)

• Hamiltonian

Linear term in c!

1

2

2k-1

2k

2k+13

N

Nilpotent. Comprised solely of fermions.

Definition

Symmetries

• SUSY 

• U(1)                  

• Translation

• Reflection

Extended Nicolai model

1

2

3

N
N-1

N-2
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Hamiltonian (explicit expression)

1. Hopping term

2. Charge-charge int.

3. Pair hopping

Very complicated and seems intractable…
cf) Original Nicolai model (g = 0): 

1 3 5 7 9

2 4 6 8
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• SUSY is broken (No E=0 states)

• Gapless excitations

Dirac fermions in continuum limit

Large-g limit

Results

 Free fermions

In the large-g limit,

(The (many-body) g.s. energy of Hhop) ∝ gN

Nambu-Goldstone theorem?

Also the case for finite g?

 SUSY breaking

1) Finite chain: SUSY is broken for any g > 0.

2) Infinite chain: SUSY is broken when g >  

 NG fermions

Rigorous result

Existence of low-lying states with E(p) ≦ (const.) |p|.

Analytical & numerical result

Effective field theory  ~  c=1 CFT with TL parameter close to 1. 
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SUSY breaking

Naïve definition

More precise definition

SUSY is unbroken ⇔ E=0 state exists

SUSY is broken ⇔ No E= 0 state

Energy

0
Subtle issue... (Witten, NPB 202 (’82))

“SUSY may be broken in any finite volume yet 

restored in the infinite-volume limit.”

SUSY is said to be spontaneously broken if the ground-state 

energy density (energy per site) is strictly positive. 

• (Normalized ) ground state:  

• Ground-state energy density:

V= (# of sites) for lattice systems 

Applies to both finite and infinite-volume systems!
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Suppose ψ0 is an E=0 ground state. 

Then we have

But this leads to ψ0 =0. Contradiction. No E=0 state!

• Local operator s.t.

SUSY breaking in finite Nicolai chains

 Theorem 1

Consider the extended Nicolai model on a finite chain of 

length N. If g > 0, then SUSY is spontaneously broken.

(g.s. energy/N) > 0 for any finite N.

Proof

• Proof by contradiction 

well-defined when g>0
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SUSY breaking in the infinite Nicolai chain

 Theorem 2

Consider the extended Nicolai model on the infinite chain. 

If             , then SUSY is spontaneously broken. 

• Lower bound for g.s. energy 

Proof

• G.s. energy of Hhop  (Free-fermion chain) 

Original Nicolai (g=0)

Since HNic is positive semi-definite, the g.s. energy of H

is bounded from below by

NOTE) The condition                 may not be optimal…
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• Ferromagnet (Type B)

Nambu-Goldstone (NG) fermions?

Analogy (Blaizot-Hidaka-Satow, PRA 92 (‘15))

Quadratic dispersion Quadratic dispersion?

Fermionic excitation?
Examples

• Yu-Yang model (Bose-Fermi mixture)

YES

SUSY spin-wave states 

• Extended Nicolai model

NO!         

Low-lying fermionic states with ω≦ (const.)|p| exist.

• SUSY system

NG bosons in non-relativistic systems
Effective Lagrangian approach, counting rules, …
Watanabe-Murayama, PRL 108 (‘12); Hidaka, PRL 110, (’13). 

Fermionic!
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Warm-up: Heisenberg model

 Ferromagnetic case

Ferro (J < 0) Antiferro (J > 0)

• Fully polarized ground state:        

• Spin wave                               ,  Exact eigenstate!

Antiferromagnetic case (Horsch-von der Linden, ZPB, 72 (‘88))

• Neel state: not even an eigenstate!

• Bijl-Feynman ansatz

Exact ground state: ψ0

Fourier component of spins:  

Hamiltonian

Linear around 

17/23



• Local supercharge

• Fourier components

• Ansatz (ψ0: SUSY broken g.s.)

1

2

2k-1

2k

2k+13

Variational argument

SUSY “spin waves” in extended Nicolai model 

is a sum of local operators. (                                       )  

But,                      may not be so because                    for all k, l.
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Variational argument (contd.)

Useful inequality (Pitaevskii-Stringari, JLTP 85 (‘91))

Holds for any state ψ and any operators A, B.

 Upper bound for the lowest dispersion 

fn(p):  1. Local,  2. fn(-p) = fn(p),  3. fn(0) = 0

fd(p):  1. Local,  2. fd(-p) = fd(p),  3. fd(0) = E0

For |p|<<1, 

NOTE) U(1), translation, reflection symmetries have been used.

Implicit assumption: The g.s. multiplicity is finite in the infinite-N limit.

E0 > 0 if SUSY is broken! 
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Numerical results 
 Exact diagonalization 

N= 12, 14, …, 22

4 ground states

8 first excited states
(Independent of g & N) 

• 1st excitation energy

F=N/2-2    N/2-1       N/2       N/2+1     N/2+2

ΔE

• Central charge

Finite-size scaling
Blote-Cardy-Nightingale, PRL 56 (‘86)

Gapless linear dispersion! 

Described by c=1 CFT!

g 2.0 4.0 6.0 8.0

c 0.9705 1.008 1.020 1.025
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Tomonaga-Luttinger liquid parameter

 Number fluctuation

Similar to 

Calabrese-Cardy!

Song, Rachel et al., PRB 59 (‘12)
A

L

c=1 CFTs are further specified by Tomonaga-Luttinger (TL) 

parameters K. (Or equivalently, boson compactification radius.)

K is almost independent of g and is close to 1 (free-Dirac).
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ψRψL
Bosonization and RG
• Lattice fermion  Dirac

• Dirac fermion  boson

• Sin-Gordon Hamiltonian

 Free boson!

 Cos term

Velocity TL parameter

• Scaling dim. of cos

(a: lattice spacing)

Cos term is irrelevant. Gapless!

~ Massless Thirring model
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Summary

• Introduced one-parameter extension of Nicolai’s model

Lattice model with exact supersymmetry

1. Original Nicolai (g=0), 2. Free fermions (g=∞)

• Spontaneous SUSY breaking

1. Finite chain: broken for any g >0.

2. Infinite chain: broken when g >

• Nambu-Goldstone fermions

1. Rigorous result:   E(p) ≦ (const.) |p|

2. Numerical result: E(p) = v |p|, gapless, linear

3. Field theory: gapless c=1 CFT with K close to 1
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