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The c-theorem 

• A deep problem in QFT is how to define a 
quantity which decreases along RG flows and 
is stationary at fixed points. 

• In two dimensions this problem was 
beautifully solved by Alexander 
Zamolodchikov who, using the two-point 
function of the stress-energy tensor, found the 
c-function which satisfies these properties. 

 



• At RG fixed points the c-function coincides with the 
Virasoro central charge, which is also the Weyl 
anomaly  

 

• Determines the thermal free energy. 

• Determines the EE of a segment of size r Holzhey, Larsen, Wilczek 

 

 

• cIR < cUV follows from boost invariance and SSA Casini, Huerta 

 

 

• The central charge can also be found using the 2-d CFT 
on the sphere of radius R: 

                                   F=-log Z = -c/3 log R 

 

 

 



  The a-theorem 

• In d=4 there are two Weyl anomaly coefficients 

 

• One of them, called a, is proportional to the 4-d 
Euler density. It can be extracted from the 
Euclidean path integral on the 4-d sphere: 

                            F=-log Z = a log R 

• Cardy conjectured that the a-coefficient 
decreases along any RG flow.  

• A proof was  provided a few years ago. Komargodski, 

Schwimmer 

 



The F-theorem 
• How do we extend these successes to odd 

dimensions, where there are no anomalies? 

• In d=3 there are many CFTs, some of them 
describing critical points in statistical 
mechanics and condensed matter physics.  

• The free energy on the 3-sphere 

• In a CFT, F is a well-defined, regulator 
independent quantity (there are no Weyl 
invariant counter terms). 

• F-theorem: FIR < FUV  Jafferis, IK, Pufu, Safdi 

 

 

 



The Entanglement Connection 
• -F is the universal entanglement entropy 

across a circle of radius R in any (2+1)-d CFT. 
Casini, Huerta, Myers 

 

 

• Can be tested with Ryu-Takayanagi method. 

• Using the language of EE, the F-theorem was 
formulated and its proof was found. Myers, Sinha; 

Casini, Huerta 

• The interpolating function used in the proof is 
the Renormalized Entanglement Entropy (REE) 
Liu, Mezei 



Calculating F                 

• The simplest CFT’s involve free conformal 
scalar and fermion fields. Adding mass terms 
makes such a theory flow to a theory with no 
massless degrees of freedom in the IR where 
F=0.  

• For consistency with the F-theorem, the F-
values for free massless fields should be 
positive. 



     Conformal Scalar on Sd 

• In any dimension 

 

• The eigenvalues and degeneracies are 

 

 

 

• Using zeta-function regularization in d=3, 



• An integral representation valid in continuous 
dimension d: 

 

 

 

• Near even d, it has simple poles whose 
coefficients are the a-anomalies. 

• For example, in 



Sphere free energy in continuous d 

• A natural quantity to consider is Giombi, IK  

 

• In odd d, this reduces to  IK, Pufu, Safdi                                                  

 

• In even d, -log Z has a pole in  dimensional 
regularization whose  coefficient is the Weyl a-
anomaly. The multiplication by                   removes it. 

•       smoothly interpolates between a-anomaly 
coefficients in even and ``F-values” in odd d.  



Free conformal scalar in continuous d 

• For a free conformal scalar on Sd  

 

 

 

• This is positive for all d and smoothly interpolates between a 
and F 



Generalized F-theorem in continuous d?  
• Based on the known F- and a-theorems, it is natural to 

ask whether  

 

 

     holds in continuous dimension d.  

• We have calculated      in various examples of CFTs that 
can be defined in continuous dimension, including 
double-trace flows in large N CFTs and perturbative 
Wilson-Fisher fixed points in the epsilon-expansion.  

• In all unitary examples that we considered, we find 
that       indeed decreases under RG flow. For non-
unitary fixed points, the inequality                     does not 
have to hold.  

  



Weakly Relevant Flows 

• A special class of RG flows is obtained by perturbing a CFT 
by a slightly relevant operator O(x) with dimension D=d-e 

(e<<1) 

 

 

• Working in conformal perturbation theory, one finds the   
b-function 

 

 

• Here                   , where 

 

 



• There is a perturbative IR fixed point,                  , at 

 

 

• To compute the change in F from UV to IR, we conformally 
map to the sphere Sd and obtain  

 

 

• I2 and I3 are the 2-point and 3-point integrals on Sd  (Cardy) 



• The  final result for the change of                                  is: 

 

 

 

• Setting g=g* ,  

 

 

 

• In a unitary CFT,        is positive and C is real, so we find 
agreement with the generalized F-theorem in all d: 

 

• This generalizes to all d previous computations in odd d 
(Klebanov, Pufu, Safdi) and even d (Komargodski) 

 

 

 

 

 



eE of EE 

• The fact that       is a smooth function of dimension suggests 
that, in the spirit of the Wilson-Fisher e expansion, it is a 
useful tool to estimate the value of F for interacting CFTs.   

• Consider the 3d Ising model, and more generally the O(N) 
Wilson-Fisher CFTs in d=3.  

• They are strongly coupled CFTs in d=3, but they have a 
perturbative description in d=4-e.   

• We will compute the sphere free energy perturbatively and 
extrapolate the result to e=1 to estimate the value of F.  

• This gives an e expansion of the universal Entanglement 
Entropy across a circle. 



The O(N) models in d=4-e 

 

 

 

 

 

• The e-expansion works well for operator dimensions: 

 

 

 

• The 1/N expansion is worse for the small N models, 
such as Ising. Wilson, Kogut 

 

 

 

 



The Wilson-Fisher fixed points in curved space 

• To renormalize the theory in curved space in d=4-e, one 
starts with the bare action (Brown-Collins ’80; Hathrell ‘82) 

 

 

 

 

 

• Divergences in the free energy are removed by expressing 
all bare couplings in terms of renormalized ones  



• Each renormalized coupling l, a, b,… then acquires a non-
trivial beta function bl, ba, bb,…  

• The renormalized free energy is a finite function of the 
renormalized couplings and renormalization scale m that 
satisfies the Callan-Symanzik equation 

 

 

• The conformally invariant IR fixed point is obtained by setting 
to zero all beta functions in d=4-e 

 

• The sphere free-energy at the IR fixed point in d=4-e 

 

     is then a R-independent quantity which is a function of e only 



F for the O(N) scalar theory in d=4-e 

• We performed a perturbative calculation of F to order l5 

(Fei, Giombi, IK, Tarnopolsky) 
 

 

 

 

 

 

• The poles in the above diagrams fix the curvature beta 
functions to the needed order. At the IR fixed point, we get 
the final result for                                 :  

 

 

 

 

 

 



F for the 3d Ising model 

• Extracting precise estimates from the e-expansion requires 
some resummation technique. A simple approach is to use 
Pade approximants  

 

 

• For the Ising model (N=1), we expect      to be a smooth 
function of d, such that near d=4 it reproduces the 
perturbative e-expansion we computed, and in d=2 it 
reproduces the exact central charge of the 2d Ising CFT: 
c=1/2. 

• The accuracy of the Pade approximants can be improved if 
we impose the exact value c=1/2 (which in terms of      
corresponds to     = p/12) as a boundary condition at d=2  

 

      





• Using the constrained Pade approximant method, we get 

 

 

• Consistent with the F-theorem. 
• The value of F for 3d Ising is very close to the free field   

value!  

• A similar result was found for cT in the conformal 
bootstrap approach El-Showk et al. 

 

• The dimension of       is 0.518… which is only 3.6% above 
the free field value.  

 

 

 

 

 



• The large N expansion for the d=3 O(N) model is Pufu, Safdi, IK 

 

 

  

      The first correction to Fcrit/Ffree is 24% for N=1. 

• In the e expansion the first correction is only 1% for e=1:  

 

                                                                                                    

 

• The e expansion gives a much more accurate approximation method 
for small N than the large N expansion.        

• We have also used our results and Pade approximants to find F for the 
critical O(N) models in d=3 for N>1. 

     They are also slightly below the corresponding free field values. 

 

     



QED3 

• Consider QED in d=3 with massless fermions 

 

 

 

• Here        are Nf  4-component spinors, and      are (three of) 
the usual 4x4 Dirac matrices.  

• Writing                        , the action can be stated equivalently 
in terms of 2Nf two-component spinors      ,      .  

• The model has SU(2Nf) global symmetry. 

• This is often called a “chiral” symmetry. A parity invariant 
mass term                     would explicitly break SU(2Nf) down 
to SU(Nf)xSU(Nf)xU(1). 



• In d=4 the electric charge is dimensionless and has positive 
beta function, i.e. QED is free in the IR 

• In d=3, e2  has dimension of mass, so the theory is free in the 
UV, but it can have non-trivial behavior in the IR.  

• In the UV we have the free Maxwell theory and a collection 
of free fermions. This free UV theory is not conformally 
invariant. Its sphere free energy has an explicit radius 
dependence due to the Maxwell term IK, Pufu, Safdi, Sachdev 

 

 

• In the IR, it is believed that theory flows to an interacting 
conformal phase for Nf > Ncrit  



QED3 at large Nf 
• Integrating out the fermions, the one-loop vacuum 

polarization diagram 

 

 

    yields an induced kinetic term Appelquist, Pisarski  

 

 

• At low momenta, this induced term dominates over the 
Maxwell term, and one gets an interacting CFT where         
has dimension 2 instead of the UV dimension 3/2. 

• Scaling dimensions and correlation functions of other 
operators can be computed in 1/Nf expansion. 



 F at large Nf 

• At large Nf, the free energy on S3 in the IR CFT can also be 
computed in the 1/Nf expansion. The first non-trivial 
correction comes from the determinant of the induced 
kinetic operator for the gauge field IK, Pufu, Sachdev, Safdi 

 

 

 

 

• In the UV limit, the free energy FUV diverges due to the 
log(R) dependence of the Maxwell term 

• Thus, there is no contradiction with F-theorem FUV>FIR, 
despite the fact that the log(Nf) term in Fconf can grow 
without bound for large Nf  
 

 

 

 

 

 

 

 

 

 



QED3 at finite Nf and symmetry breaking 

• For sufficiently large Nf, this interacting fixed point is expected 
to be stable, because there are no relevant operators 
preserving SU(2Nf) and parity. 

• As we lower Nf, a widely discussed scenario is that for Nf less 
or equal than some critical value Ncrit , the model displays 
spontaneous symmetry breaking according to the pattern 

 

 

• This symmetry breaking is due to the condensation of the 
fermion bilinear 

     which breaks SU(2Nf) but preserves parity Pisarski; Appelquist et al 

• If SSB occurs, then the IR theory consists of the 2Nf
2 Nambu-

Goldstone bosons and an extra massless scalar (dual photon)  



QED3 
 

• At Nf = Ncrit a quartic fermion operator (invariant under 
SU(2Nf) and parity) can become relevant in the IR, and 
render the IR fixed point unstable towards the symmetry 
breaking Di Pietro et al; Kaveh, Herbut; Braun et al  

• We would like to use the F-theorem to provide a constraint 
on the value of Ncrit (a similar F-theorem approach to Ncrit 
was considered earlier by Grover) 

• Since we are interested in finite Nf physics, we use the 
epsilon expansion and the dimensional continuation of                                        

 

     to estimate the value of F in QED3  



QEDd in the epsilon expansion 
 
 

 
 
 
 
 

 
 
• The dimensional continuation of the model is defined in such 

a way that       are 4-component spinors in all d, i.e. the 
gamma matrices      are a formal set of 4x4 matrices where 
the vector index is continued to d-dimensions 

• In this way, the usual QED in 4d with Nf massless Dirac 
fermions is connected to QED3 with 2Nf two-component 
fermions.  

• The even number of 3-d Dirac flavors avoids the “parity 
anomaly.” A. N. Redlich 
 
 

 
 

     



QEDd in the epsilon expansion 

• In d=4-e , the coupling e has dimension (4-d)/2=e/2. So 
one finds the beta function 
 

 

 

 

• Thus, similarly to the Wilson-Fisher fixed point of the 
O(N) scalar field theory, we get a perturbative IR stable 
fixed point at  

 

• This fixed point can be studied by usual perturbative 
methods for any Nf , for instance scaling dimensions of 
some local operators can be determined as series 
expansions in e 



F of QEDd in the e-expansion 

• As in the O(N) model discussed earlier, the calculation 
requires careful renormalization of the model in curved 
space in d=4-e  

 

 

• Building on previous results for the renormalization of QED 
on Sd (Adler; Drummond, Shore; Hathrell; Jack, Osborn;…) we have performed 
the calculation of F at the IR fixed point working to order       
e4 ~ e2 in perturbation theory 
 

 

 

 

 

 

 

 

 

 



• At the IR fixed point Giombi, IK, Tarnopolsky 

 

 

 

 

• The term 31p/90 is from the a-anomaly coefficient of the d=4 
Maxwell field. 

• A new feature is the non-analytic term ~ log(Nf/e). This 
originates from the free Maxwell contribution, which 
contains the term log(e2R4-d) 

• The R dependence drops out at e=e* as a result of delicate 
cancellations between the free Maxwell term and terms due 
to  interactions. Consistent with the expected conformal 
invariance in the IR. 



Schwinger Model 

 

• In d=2, the IR behavior of QED with 2Nf two-component 
fermions is that of the multi-flavor Schwinger model, which 
has a description in terms of the level 1 SU(2Nf) WZW 
model. This has c=2Nf-1, or      =p(2Nf-1)/6. This expectation 
is also supported by a large Nf calculation of F in 

• Therefore we use a “two-sided” Pade approximant with this 
d=2 boundary condition in order to better estimate the 
value in d=3.  



 

 

 
 

 

 

• The plot of the Pade resummed e-expansion evaluated at 
e=1, compared to the d=3 large Nf expansion result shows 
that they are very close already at Nf  ~ 3 



F-theorem and Ncrit 

• Assume that the mechanism for SSB is that of a quartic 
fermion operator becoming relevant at some Nf=Ncrit  

• For Nf slightly above Ncrit, we have a slightly irrelevant 
operator, and by conformal perturbation theory we expect 
a nearby UV fixed point, which we may call QED3*  

• A commonly discussed scenario is that as Nf approaches 
Ncrit, the two fixed points QED3 and QED3* merge and 
annihilate at Nf=Ncrit Herbut, Kaveh; Braun et al; Kaplan et al. 



F-theorem and Ncrit 

 

 

 

 

 

• For                       , the conformal phase no longer exists, but the 
RG flow originating in the UV can “hover” near the complex 
fixed points before running away to large quartic coupling and 
presumably towards SSB. During this “hovering” F can be made 
parametrically close to Fconf(Ncrit) 

• The F-theorem then requires Fconf(Ncrit) > FSB, where FSB is that of 
2Nf

2 +1 massless scalars  

 



F-theorem and Ncrit 

 
 

 

 

 

 

 

 

 

• QED3 is in the SU(2Nf) invariant conformal phase for 
Nf>4.4 

• For Nf=1 the SB seems to be disallowed again (just 
barely!). QED3 is conformal? What about Nf=1/2? 

 

 

 
 

 

 

 



CJ and CT 

 

 

 

 

• CJ determines the universal charge or spin 
conductivity. 

• CT enters in many contexts including the 
entanglement entropy. It is one of the natural 
measures of degrees of freedom in a CFT.  

• In d=2 satisfies the Zamolodchikov C-theorem, 
but there are counterexamples in d>2. 

 



CJ and CT in Conformal QED 

• Here the 1/N corrections are calculated using 
the induced photon propagator. 

• To find CJ we calculated Giombi, Tarnopolsky, IK 

 

 

 

 

• The electron mass anomalous dimension is 



• The calculation of CT requires more diagrams 
because                   Huh and Strack 

 

 

 

 

 

• With an analytic regulator we find 

 

 

 

 

 

 



• Agrees with the 4-e expansion for QED. 

• In d=2 agrees with the exact result for multi-
flavor Schwinger model 

 

 

 

 

• In d=3 we find 



Another Estimate for SB? 
• The far UV theory of free fermions and 

decoupled Maxwell field is not conformal. 
Define CT via the 2-point function of  

 

• Then 

• For the SB phase with Nambu-Goldstone 
bosons 

• IF we assume                  then   



Conclusion and Discussion 

• We studied the dimensional continuation of the sphere free 
energy and provided some evidence for a “generalized F-
theorem” in continuous d, interpolating between F-theorems 
in odd d and a-theorems in even d.  

• The quantity that appears to decrease under RG flow is 

 

 

•      a smooth function of d, and its e-expansion is a useful tool 
for finding F of CFTs in the physical integer dimension. 

 



Conclusion and Discussion 

• For the critical 3d Ising model, using the e-expansion we 
found that F is only 2-3% below that of the free conformal 
scalar.  

• Can this be compared with a direct numerical calculation 
of F, or of the disk Entanglement Entropy, for the 3d Ising 
CFT?  

• For the QED3 with Nf massless fermions, we have 
computed F using the e-expansion.  

• Used F-theorem to argue that the theory is conformal for 
Nf>4.4. 

• Is QED3 conformal again for Nf=1? 

• What about Nf=1/2 (a single charged 2-component 
fermion)? 

 


