Holographic Yang-Mills-Chern-Simons Defects

Mitsutoshi Fujitaa,b1, Charles M. Melby-Thompsonc,d2, René Meyere,d3, and Shigeki Sugimotob,d4

Why (YM)-CS Holography with/without Defects?

\[S_A = -\frac{1}{4g^2_{3d}} \int d^3x \text{Tr}(F^{\mu\nu}F_{\mu\nu}) + \frac{k}{4\pi} \int \text{Tr} (A \wedge F) \]

Confinement/Topological

Level-Rank Duality

\[SU(N)_k \leftrightarrow U(k)_{-N,-N} \]

FQHE / Edge States

\[\sigma_{xy} = \frac{e^2}{h} \]
\[\nu = \frac{1}{2k+1} \quad U(1)_{2k+1} \]
\[\nu = \frac{1}{2} \quad SU(2)_2 \]

[Aharony 1512.00161]

[Fradkin-Nayak-Tsvelik-Wilczek ‘98]
Chern-Simons Level-Changing Defects

Two regions w/different level:

\[S_{CS} = \frac{k_1}{4\pi} \int_{y<0} \omega_3(A) + \frac{k_2}{4\pi} \int_{y>0} \omega_3(A) \]

Gauge transformation:

\[\delta S_{CS} = \frac{k_1 - k_2}{4\pi} \int_{y=0} Tr(\lambda F) \]

level-changing defect

For k fundamental chiral fermions trapped on defect:

\[S_F = \int d^2x \psi_i^\dagger (i\partial_+ + A_+) \psi^i \]

Gauge Anomaly

Fermion effective action:

\[\delta S_F = \frac{k}{4\pi} \int d^2x Tr(\lambda F) \]

For k = k_2 - k_1: [Laughlin '81, Callan-Harvey '85]

total action is gauge invariant
Holographic YMCS & Defect D7 Branes

\[- \frac{1}{4g_{3d}^2} \int d^3 x Tr_{SU(N)} F^2 \]

\[\frac{k}{4\pi} \int d^3 x Tr_{SU(N)} A \wedge F \]

\[g_{3d}^2 = g_s M_{KK} \]

Fujita+Li+Ryu+Takayanagi 0901.0924

Fujita, Melby-Thompson, Meyer, Sugimoto 1601.00525
Holography of Defect D7 Branes

Main focus:

\[u = u_* \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>D7</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Holography of Defect D7 Branes

Main focus:

- **U(1) × U(1)**
- **ψ**
- **N D3 branes**

Table:

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>x</th>
<th>y</th>
<th>τ</th>
<th>r</th>
<th>S_5</th>
<th>S_5</th>
<th>S_5</th>
<th>S_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>x</td>
<td>x</td>
<td>$y(r)$</td>
<td>$\tau(r)$</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>D7</td>
<td>x</td>
<td>x</td>
<td>$y(r)$</td>
<td>$\tau(r)$</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Holography of Defect D7 Branes

Main focus:

\[\mathcal{U}(1) \supset \mathcal{U}(N) \quad \sigma_{xy} = \frac{N}{k} \frac{e^2}{h} \]

Fractional (?) QH Sample

[Fujita+Li+Ryu+Takayanagi 0901.0924]
Holography of Defect D7 Branes

Single D7 wrapped on S^5, extended in $x^M = (t, x^1, u)$, S^5 singlet states only

Bosonic fields: $y(x^M), \tau(x^M), a_M(x^M)$

Fields at right-hand defect (left-hand defect has opposite chirality):

<table>
<thead>
<tr>
<th>operator J_-</th>
<th>Δ</th>
<th>source a_+</th>
<th>vev a_-</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_y \sim \psi_+ \psi_-$</td>
<td>1</td>
<td>a_+</td>
<td>a_-</td>
</tr>
<tr>
<td>$O_+ \sim \psi_+ F^+y \psi-$</td>
<td>3</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>$O_- \sim \psi_+ F^2_y \psi_-$</td>
<td>5</td>
<td>a_-</td>
<td>a_+</td>
</tr>
</tbody>
</table>

Asymptotic form ($w = u/u_0$):

- y: $y_0 - \frac{Rw^3}{4w^4} + \ldots$
- a_-: $a_-^{(4)} w^4 + (\ldots) + a_-^{(0)} + \ldots$
- a_+: $a_+^{(0)} + a_+^{(-4)} w^{-4} + \ldots$

[Harvey+Royston 0804.2854]

(F statistical SU(N) gauge field strength)

[Harvey, Melby-Thompson, Meyer, Sugimoto]
Topology vs. Confinement

Topological Wilson Loop

Level-Rank Duality

\[SU(N)_k \leftrightarrow U(k)_{-N,-N} \]

[Fujita+Li+Ryu+Takayanagi 0901.0924]
One Point Functions & Anomaly

(1) Scalar condensate:
\[\langle O_y \rangle \sim \frac{\partial S}{\partial L} \sim \langle \psi_+^\dagger F_{+y} \psi_- \rangle \]

Known?

(2) Current:
\[\langle J^+ \rangle = -\frac{N}{4\pi} a_{-}^{(0)} \]
\[\partial_+ \langle J_- \rangle = \frac{N}{2\pi} \partial_- A_+ \]

Chiral anomaly

(3) Chiral edge bosons:
\[a_{\pm}^{(0)} \sim \partial_{\pm} \phi \]
\[A_+ = 0 \quad \Rightarrow \quad \partial_+ \phi = 0 \]

(4) Dim. 5 operator:
\[\langle O_+ \rangle = \frac{\delta S_{\text{total}}^{\text{S-s.}}}{\delta C_-} = -\frac{N}{4\pi} \frac{c_+}{8\pi \alpha'} \frac{u_*^4}{R^8} e^{-\xi} \quad \Rightarrow \quad \langle O_- - O_+ \rangle \sim -\frac{N}{4\pi} \frac{u^6 e^{2c_0}}{R^{16}} e^{-(2M_{KK})^2 L} \]

Known?
Edge Chiral Symmetry Breaking

\[\langle J_+ \rangle \sim \partial_+ \phi' \quad \text{and} \quad \langle J_- \rangle \sim \partial_- \phi \]

Chiral currents: Flat part of the connection \[a^{(0)} = d\phi \]

Shift in \(\phi + \phi' \) doesn’t change \[\int_{L}^{R} a^{(0)} = \int_{L}^{R} d\phi = \phi - \phi' \]

Shift in \(\phi - \phi' \) does \(\text{NG boson} \) (“Pion”, as in [Sakai-Sugimoto])

(lifted by quantum effects)

(restored at \(T >> M_{\text{KK}} \))
Edge Chiral Symmetry Breaking

\[\langle \psi^\dagger_L \mathcal{P} e^{i \int_R^L A \psi_R} \rangle = e^{-\mathcal{S}^{F1}_{\text{ren}}} \]

[Aharony+Kutasov 0803.3547]

Known?

Edge mode

\[\text{= Nambu-Goldstone boson of broken chiral symmetry} \]
Correlations and Phase Transitions

\[l_c \sim L_{\text{KK}} \]
Correlations and Phase Transitions

Dimension 5 Correlations

Large $l > 1/\text{Gap}$: adjacent correlations

Small $l < 1/\text{Gap}$: distant correlations

Known? (vanish at $T > \text{gap}$)

(F statistical gauge field)
Correspondence between FQHE and 2D QCD

(1) Basically 2+1 dimensional holographic domain wall fermions
 = 2D holographic QCD with all its features (chiral symmetry
 breaking, Goldstone modes, anomaly)

(2) By compactifying and T-dualizing perpendicular to the defect, the
 system becomes the holographic dual to 2D QCD of [Yee-Zahed 1103.6286]

(3) LEEA of (abelian) FQH States: U(1) CS theory

 LEEA of single flavored 2D QCD:
 U(1) DBI-CS Theory on a D7 brane [Yee-Zahed 1103.6286]

• Anyonic quasiparticle (couples with unit charge to the statistical
 gauge field) \sim Fundamental quark (baryon number charge 1/N)
 \sim Fundamental string ending on D7 brane

• Electron \sim Baryon vertex (bound state of N quarks has baryon
 number charge (electric charge) 1)
Conclusions/Outlook

- YM-CS theory with level-changing defects in Holography

- Similarities to FQH samples

- Chiral Symmetry Breaking between Edges

- VEVs involving edge fermions & statistical gauge field, Transitions between samples, Dim. 5 correlations

- Edge transport, Impurity scattering, Relation to 2D QCD, Backreaction, Tunneling of anyons/electrons, …

- Non-abelian (YM)CS in strongly coupled systems

\[\sigma_{xy}^{U(1) \subset U(N)} = \frac{N}{k} \frac{e^2}{h} \]

[Fujita+Li+Ryu+Takayanagi 0901.0924]