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The Entanglement Hamiltonian and others in
 one-dimensional critical and gapped systems

Outline:

- Part I: 
 Entanglement spectrum in 1+1d a conformal field theories (CFTs)
 and the sine-square deformation (SSD)
        [with Xueda Wen and Andreas Ludwig]

- Part II (optional): 
 Entanglement spectrum in 1+1 d gapped (SPT) phases 
 and boundary conformal field theories (BCFTs)
        [with Gil Cho, Ken Shiozaki, Andreas Ludwig] 



Hamiltonians in CFT

- Let's start from a Hamiltonian of (1+1)d CFTs; 
   On a lattice (chain), it would look like: 

- Deformed evolution operator: 

- E.g. Entanglement Hamiltonian:  

- E.g. Sine-square deformation (SSD): 
   [Gendiar-Krcmar-Nishino (2009) ... ]

- Other applications: inhomogenous systems, 
                                      quantum energy inequalities, etc. 

envelope function



- What it does is to introduce an "optimal" or "infinitely smooth" cutoff.

- This may be of interest as a numerical technique.
   Reducing finite-size error, etc. 

- Eearly numerical observations:

   - Correlation functions

   -

   - Entanglement scaling    

What is the sine-square deformation (SSD)?

[Hikihara-Nishino (11)]



- The ground state of SSD = ground state of periodic chain
     Numerics:    Hikihara-Nishino (11); 
     Exactly solvable models:  Katsura (11), Maruyama-Katsura-Hikihara (11),
                                                 Okunishi-Katsura (15)
     Proof within CFT:   Katsura (12)

- 1/L^2 finite fize scaling of energy levels 
   was observed numerically.

                    [Gendiar-Krcmar-Nishino (09), Hotta-Nishimoto-Shibata (13), 
                      LSM type analysis by Katsura ... ]

Key properties of SSD ?



- Grand canonical numerical analysis -- efficient extraction of physical
quantities in the presence of an applied field.

   Shibata and Hotta (11)
   Hotta, Nishimoto and Shibata (13)

- SSD and string theory:

   Tada, arXiv:1404.6346[hep‐th]

-   Dipolar quantization:

    Ishibashi and Tada, arXiv:1504.00138[hep‐th]
    Ishibashi andTada, arXiv: 1602.01190[hep‐th]

- Mobius quantization:

   Okunishi  arXiv:1603.09543

References:



Strategy

- We will disscuss types of "deformations" 
   generated by various conformal maps. 

- Put differently, we are interested in deformations which we can "undo"
   by conformal maps. 

- Will discuss spectral properties (finite size scaling) of  



-

- CFT on the plane    <-->  CFT on a cylinder  (quantum lattice model on a circle)

- Radial evolution         <-->    Hamiltonian (1/L scaling) 
  (Dilatation)   

- Angular evolution                       <-->   Hamiltonian with boundary 
  ("Rindler" or "Modular" 
    or "Entanglement" Hamiltonian)

Warm-up



- CFT on a cylinder of circumference L:

- Conformal map: cylinder --> plane

Finite size scaling of CFT [Cardy]



-- For a given tower of states, 
   all levels are equally spaced 
   (with degenearcy, which depends 
    on details of the theory) 

                                                                                          -- Level spacing scales as 1/L

c =1 compactified free boson

at R= sqrt(2)



-

- Entanglement Hamiltonian on finite interval [-R, R]  
   <--> Hamiltonian with boundaries

- Transforming from strip to plane:

- Entanglement spec: 1/Log(R) scaling. 

[See, e.g: Casini-Huerta-Myers (11), Cardy @ 2015 KITP conference]



What is the evolution orthogonal to the evolution by Entanglement H ?

- Let's take a circle as a Cauchy surf 

   We have chosen:

   Circumference: 

- Evolution operator

- "Regularized" version of the SSD:



"Regularized" SSD

- By construction, this operator has the spectrum of CFT on a circle 
with level spacing of order one. 

- Define:

- The envelope function: 

- "Regularized" version of the SSD: 
   R, the distance between vortices, is the regularziation parameter.

- Scalilng: 
   (i) fix u0, change R  --> 1/L scaling

   (ii) fix R, change u_0 --> 1/L^2 scaling



- Can take the dipolar limit                        rSSD --> SSD:

- In the dipolar limit, the w-plane (u-v plane) is an infinit plane
           -->   Infinite system length limit, continuum spectrum     [Ishibashi-Tada (15,16)]

- The prefactor L^2 is indicative of the 1/L^2 scaling seen in numerics.

The dipolar limit



Physical spectrum (PBC)Regularized SSD spectrum

Numerics (rSSD) 

(numerical)

(analytical)



SSD 
Physical spectrum (PBC)

Numerics (SSD) 

SSD spectrum does not much physical spectrum, 
1/L^2 scaling 



Other examples

- 

- Engineering conformal map and evolution operator

- "square root deformation"    

- Known in the context of "perfect state transfer"
   (Thanks: Hosho Katsura)

infinite stripe



"Square root" deformation

Physical spectrum (OBC)



- Setup a general discusion of "deformed" Hamiltonians in CFTs

- Proposed a "regularized" version of SSD (rSSD).

- Original SSD can be viewed as a "singular" limit of rSSD

- Spectrum of rSSD is easy to understand.
   Shed light on 1/L^2 scaling of SSD.

- Issues:

Exciations?
Relation to the classification of conformal vacua [Candelas-Dowker (1979)] 

Summary (Part I)



(Part II) Going away from CFTs

- Add a relevant deformation --> go into a massive phase

- Consider the entanglement Hamiltonian for the half space; 
   The entanglement spectrum?

 - Repeat the conformal map analysis

- Massive perturbation creates an 
  exponentially growing potential



- Massive perturbation creates an artificial boundary 
   in the entanglement Hamiltonian

- To a good approximation, the entanglement Hamiltonian is the Hamiltonian of 
a CFT with boundaries; Boundary CFT.

- Comment: this argument shows the low-energy part of the entanglement spec. 
   of a massive theory is given by BCFT. 
  There are integrable massive models, whose corner transfer matrices are 
  given exactly by Virasoro characters (BCFT).



-ES for gapped phases is given by nearby boundary conformal field thoery 

- Q:  Which boundary condition ?   <----> Which gapped phase?

- Let's focus on the case when the massive phase is a SPT phase
   I.e.: (i) unique ground state 
          (ii) topologically distinct in the presence of some symmetry

- Result: 
   For a given symmetry G, and a given boundary state |B>, 
   found a method to compute the topoogical invariant
    of the corresponding SPT phase.

- Related to symmetry-protected degeneracy of ES

- Relation to physics of fractional branes  

Question and result



SPT Trivial

- E.g.  1d lattice fermion model ("SSH" model)

        Symmetry:

        Phase diagram: 

- Symmetry-protected contribution to EE  [SR-Hatsugai (06)]

Symmetry-protected degeneracy



- (1+1)d SPT phase: 
E.g. the Haldane phase, the Kitaev chain

- Symmetry-protected degenearcy in ES: [Pollmann-Berg-Turner-Oshikawa (10)]

Symmetry-protected degenerac



- Symmetry-protected degeneracy  --> Vanishing of part. function:

- Exchange time and space:

- Act with a symmetry on |B>

- Symmetry-enforced vanishing of partition function



Anomalous boundary states 

- Ideal lead obeys B.C. set by SPT

- Symmetry G acts on fundamental fields

- B.C. is invariant under G:

- But boundary state may not be:  

- Z8  classification of TRS Kitaev chain, Haldane phase

SPT

lead (CFT)



Analysis and result: Fidkowski-Kitaev problem 

- Ideal lead

- Symmetry group:  

- Boundary states

- Symmetry action on fermion number parity:                                                      

      Anomalous relative sign goes away for 2N copies --> Z2

- Time reversal: 

SPT

lead (CFT)


