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Have been working on...

* Nonequilibrium statistical physics

 Quantum information theory

In particular, thermodynamics of information
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Maxwell’s demon



Thermodynamics of Information

Information processing at the level of thermal fluctuations

E. Coli chemotaxis

Experimental realization ?}% % oo o

of Maxwell’s demon: ==

Toyabe, Sagawa, Ueda, ;Aﬁ%

Muneyuki, Sano, Ito & Sagawa,

Nature Physics (2010) Nature Communications (2015)

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

A related fundamental issue:

How does thermodynamics (and its connection to information)

emerge in purely quantum systems?
Today’s topic!
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Origin of macroscopic irreversibility

/micro (Quantum mechanics)\ /MACRO (Thermodynamics)\

reversible (unitary) irreversible DS >0
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“How does the macroscopic irreversibility

emerge from microscopic dynamics?”
—> Fundamental question since Boltzmann




Relaxation in isolated quantum systems

Microscopically reversible unitary dynamics

- Relaxes towards a macroscopic steady state
(Recurrence time is very long: almost irreversible!)

Experiment : Ultracold atoms
‘Y(O)> Non-steady pure state ex. 1d Bose-Hubbard, ’Rb

l U= exp(—iﬁt) . Unitary

‘Y(t)> Macroscopically steady

pure state
Rigorous prOOf for :zc 0.5 '...'. -"'w-qm B TP TYYY T ¥ Y ¥ -
arbitrary initial states
Von Neumann, 1929 (arXiv:1003.2133) 0 o : ' 2| | ; ' Igl | 1IO | 1; | ]; | 1; | ‘||g | 2|o

t (ms)

S. Trotzky et al., Nature physics 8, 325 (2012)



Info. entropy vs thermo. entropy

Macroscopically irreversible relaxation emerges from
microscopically reversible unitary dynamics

-

Information entropy

DS=0

von Neumann entropy
: invariant under

unitary time evolution

\_

\
5 Thermodynamic entropy
< > DSthermo O
Sthermo = kB In W

S(t) =tr[-F(#)In F(¢)]

v

Increases under
irreversible processes

W : determined by
Hamiltonian
\

~

Fundamental GAP between

information/thermodynamics entropy



lyoda, Kaneko, Sagawa,

Our results arXiv:1603.07857

For pure states under reversible unitary dynamics, within small errors

v’ 2nd Law DSS > b<Q>
bath B

relates von Neumann entropy (pure state)

to thermodynamic heat

- Information-thermodynamics link AN

system S
v The fluctuation theorem  1£(S) _ oS
P.(-s) S : entropy production

characterizes fundamental symmetry of entropy production
- Thermal fluctuation emerges from quantum fluctuation

Mathematically rigorous proof + Numerical check

Key idea: Lieb-Robinson bound, based on locality of interactions
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Second law and fluctuation theorem

2nd law Entropy production is non-negative on average
()30
Fluctuation theorem Universal relation far from equilibrium

PF (S) — es Probabilities of Positive/negative entropy productions

P (—S) Second law as an equality!
R
Classical uantum (lon-tra
Theory (1990’s-) R Q ( P)
o : S RNA |
Dissipative dynamical systems, . ...
Classical Hamiltonian systems, 2
Classical Markov (ex. Langevin), sl
Quantum Unitary, Quantum Markov, ... 1 i
g £% § Ak { /
: ’ g 5
Experiment (2000’s-) i J /\L
Colloidal particle, Biopolymer, ‘

J. Liphardtetal., A.Anetal,

Single electron, lon trap, NMR, ...
Science 296, 1832 (2002) Nat. phys. 11, 193 (2015)



Setup for previous studies

By J. Kurchan, H. Tasaki, C. Jarzynski, ...

Total system: system S and bath B
S+B obeys unitary dynamics

bath B
(Inv. Temp. b)

H)=URO)U', U =exp(-iHr) O
systemS

® |nitial state of S: arbitrary
@® Initial state of B: Canonical

-» This assumption effectively breaks time reversal symmetry.

® No initial correlation between S and B.

H0)= iL(0)A 7,(0), F(0)=¢""/Z,




Second law (Clausius inequality)

SS 2 b< 2 bath B
heat absorbed by system S (Inv. Temp. )

Change in the von Neumann entropy N\
of system S (Information entropy)
system S

Ss() =t [- ()N 7)), Fs(0) =t [ FO)]

<Q> = -1y 8(f(t) = i’(O))ﬁBB . heat absorbed by system S

Information entropy and Heat are linked!
(if the initial state of bath B is canonical)



Fluctuation theorem

<O'> = ASS — IB<Q> > () :entropy production on average

(non-negative)
O . stochastic entropy production (fluctuates)

Let 6(t) =—In pg(t)+ BH,
Projection measurements of ¢ (t) at initial and final time
Difference of outcomes: o

Fluctuation theorem universally characterizes the ratio between
the probabilities of positive/negative entropy productions

R(S) _ s

PR (_S) Reverse process Time




Fluctuation theorem

Another representation with characteristic function
(moment generating function)

[GF(M):GR(—M'H')] < , B(S) _ s

Fourier transf. PR (—S)

Gr(U) = f:daei““ (o) :Fourier transf. of
probability distribution

Cf. Fluctuation theorem leads to several important relations

Fluctuation theorem Jarzynski identity Second law
_ s — 3

P(S)=Py(-S)e" => (exp(-5))=1—>(5)30
Integrate Jensen inequality (convexity)

Also reproduces the Green-Kubo formula in the linear response regime,
and its higher order generalization



Second law with pure state bath?

In the conventional argument, the initial canonical distribution of the bath is
assumed, which effectively breaks the time-reversal symmetry.

» The origin of irreversibility was not fully understood,
and thus we should consider pure state baths.

unitary I}
A few previous works (on the second law): A
exp(—lHt
- Assumption of “random waiting time”
. similar effect to dephasing %_>t
H. Tasaki, arXiv:0011321 (2000) [ : random time

S. Goldstein, T. Hara, and H. Tasaki, arXiv:1303.6393 (2013)
T. N. Ikeda, N. Sakumichi, A. Polkovnikov, and M. Ueda, Ann. Phys. 354, 338 (2015)

Information-thermodynamics link and the fluctuation theorem
for pure state baths were open problems.
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Setup: system and bath

Bath B: guantum many body system on a lattice
bath B

Interaction: local and translational invariant (pure state)

Correlation in B is exponential decaying O
System S contacts with a part of bath B system S

Initial state of B: a typical pure state { Pg = ‘\P><‘P‘ 1

No initial correlation between system and bath ,5(0) — ,53 (O) ® le

Temperature of bath B

is define by the temperature of the canonical distribution
whose energy density is equal to the pure state



Setup: time evolution

Unitary time evolution:

bath B

) =UHO)U', U= exp(—iﬁt)
(pure state)

AN
system S

Hamiltonian of S changes quicklyat # =0

Relaxation after quench:

and is time-independent for t > 0
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Second law (Clausius inequality)

AS /8<Q> ~&ond

Sq (1) =trg [— s () In pg ('[)] : von Neumann entropy of system S

= —tr, {([)(t) — ,[)(O))I-AI BJ : heat absorbed by system S

é’an : Error term, vanishing in the large bath limit

Forany &,,4 >0, for any t, there exists a sufficiently large bath, such that 2" law holds.

- Mathematically rigorous

Even though the state of B is pure,
information and thermodynamics are linked!



Key of the proof: typicality

Reduced density operator of
a typical pure state |¥)

(with respect to the uniform measure in the

Hilbert space of the microcanonical energy shell) ?
N BO B 0
Pa. = 1, [ #)(7] S
is nearly equal to canonical distribution S. Popescu et al., Nature physics (2006)

A. Sugita, RIMS Kokyuroku (2006)

(When B’ is large, the error is small) _
S. Lloyd, Ph.D. Thesis

Almost all pure states are
locally thermal!

A /A
A
./ /
T

H. Tasaki, arXiv:1507.06479,(2015)

—> Origin of thermodynamic entropy of B is the entanglement entropy



Key of the proof: Lieb-Robinson bound

The velocity of “information propagation”
in B is finite, due to locality of interaction

)
Effective “light-cone” like structure AN BO B 0
S OB,

boundary

» S is not affected by B’ in the short time regime

Lieb-Robinson bound

64(t). 6., 15|04 - exp[— sdist(S, 3B2) [exp(vit) —1)

<C[0] O,

<< rte° /77dist(S,ﬂBo)/v - small
v/[ M : Lieb-Robinson velocity

t Lieb-Robinson time
E. Lieb and D. Robinson, Commun. Math. Phys. 28, 251 (1972)

M. Hastings and T. Koma, Commun. Math. Phys. 265, 781 (2006)
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Fluctuation theorem: setup

<O'> = ASS — IB<Q> > () :entropy production on average

(non-negative)
O . stochastic entropy production (fluctuates)

Let 6(t) =—In pg(t)+ BH,
Projection measurements of g (t) at initial and final time
Difference of outcomes: O

Moment generating function
for entropy production
(F: Forward, R: Reverse)

\ ¥ us
Ge (u) = 0., dse™ Fr(S)

Initial state of the reverse process: f’s(l‘) A i’B

Reverse
> Time

Same as the initial state
of forward process



Result: Fluctuation theorem

Ge(u) - Gp(-u+i) ez | . P
Fourier PR (_U)

Transf.

112

eG

Forany &g > 0, for any time t, there exists a sufficiently large bath, such that...
- Mathematically rigorous

In addition, [H; + Hg,H,]=0 is assumed.
If this commutator is not zero but small,
a small correction term is needed.

Universal property of thermal fluctuation far from equilibrium
emerges from quantum fluctuation of pure states!
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Numerical check

Second law <(7> 2 —Eong

Fluctuation theorem ‘GF (u) -G (-u+ |)‘ S €y

Error estimation is mathematically rigorous
(For any error and time, 2" law and FT hold for sufficiently large bath.)

= Howevery, it is not trivial whether the errors are small in realistic situations.

— We confirm that the second law and FT hold
even with a very small bath (16 sites)



System and Hamiltonian

Hard core bosons with n.n. repulsion on 2-dim square lattice

H=Qeéé +2 ¢l e+ + alera
=aéccta -9, C; c c agyc cc] f

I (i) (i)
Potential Hopping Repulsion
=g 9,=9 (i,j1B) X
=0, g,=g¢ (otherwise)
€ =€ < unit of energy Y Bath B

Bath: X xY sites, #particles=N

(Pure state)

System: 1 site

Initial state: i"s (O) — ‘1> <1‘

Method: Exact diagonalization (full)

system S



Second law (1)

(S)

0.9+

0.8 -

0.7 -

0.6 |-

-1

vl 1 n n L n n | n n | n n n
0.001 0.01 0.1 1 10 100 1000

et

parameters: e=1, 9=1, ¢=1, ¢=0.1, (X, Y,N)=(4,4,5)

Average entropy production is always non-negative

/Lieb-

Robinson
time

7~1

~

—> Second law holds (even beyond the Lieb-Robinson time!)



Second law (2)

1

o g¢=0.1
<5>
an I
Lieb- Bath Rabi oscillation between
Robinson p ) system S and Bath
time System
T~1

\ / parameters: e=1, g=1, g=0.1, (X,Y,N)=(4,4,5)



Fluctuation theorem (1)

f\ 00000000 T 1.000000
. 'r-.)h ..00000000 ﬁ ) orward 1.000000 1 ﬁ / I_| eb_ \
-3|_ ;i99999999 r!l' ﬁ & everse Oi999999 II I\ A RObinson
I 199999999 ‘ “Ay ¢ N WW 0.999999 1 ‘ H I * [\/WWM _I_,
v 199999999 * ul g 0.999999 ‘ *r [ V Ime
Qm 1.99999999 ﬁ !: v } 0.999999 ; g t g
2 =001 et =011 2
o] U
SNl . Ge(u), Gg(-u+i)
S el A /@w are almost the same in the short time
b”* xjf %é v regime (imaginary part is also the same)
D e
o ot 211 5 peviation comes from
u “bare” quantum fluctuation

(Dynamical crossover between

thermal fluctuation and bare
parameters: e=1, g=2, g¢=0.01, g=0.1, (X,Y,N)=(354) quantum fluctuation)



Fluctuation theorem (2)

= ’fo&;oa)- ______ \‘ -7 = \\
_..I.:'" :1_oooooo E : { Forwa rd :
? :1.000000 ﬁ : : Reverse :
p—
S AI I |
0999999 [ |- T4 T3 f1 fll &
2 |t AP Rom00m0me
¢, lo.999999 w‘ 1
[ if I
é 10.999999 V I : l
P | |
5 10.999999 I : I
% 10.999999 : I : t = O.1+ nth moment
- 10.999998 —1 " nG
\ ° . 2 ‘BQ 4 5 6 7 < n> 0 Glu,t
\ / \ ’ O =
—————————— i —-—— e - - C = n
Lower order Higher order a(IU) 4=0
moments moments

-> Higher order moments deviate faster.

parameters: e=1, g=2, 9¢=0.01, g=0.1, (X,Y,N)=(354)



Fluctuation theorem: error estimation

Integrated error:  gG © (\)Ozp du‘GF (u) -Gy (—u + l)‘

10—

a I
107 Lieb-
Robinson
10 X
Time
| // ) 1
aG 1 // / t~ >
108 // //j/ \ /
/4
ool At - 1
7 |2
10-1(;001. . 6.01 . . .0.%.0.1 _'_ .1 0..1 _’;_.10 1 . iOO . . 1.000. .1600C
time ¢ parameters: =1, g=2, g=0.1, (X,Y,N)=(354)

Agrees with t2 dependence predicted by our theory
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Su m m a ry IyO(.JIa, Kaneko, Sagawa,

arXiv:1603.07857

For pure states under reversible unitary dynamics,

AN Bg B’O
v' Second law AS, ,B<Q> —&, SQ

relates thermodynamic heat and the von Neumann entropy

- Information-thermodynamics link T

v" Fluctuation theorem ‘GF (u) - Gy (-ut l)‘ £ € | i ’é

Fundamental symmetry of entropy production far from equilibrium
- Emergence of thermal fluctuation from quantum fluctuation

Mathematically rigorous proof+ Numerical check (Exact disgonalization)

Key idea: Lieb-Robinson bound



Perspectives

Possible experiments Possible connection to quantum gravity
- Ultracold atoms?

SRS

< d=vt

- Unruh & Hawking radiation?
-> “Fast scrambling” conjecture?

time

Y

M. Cheneau et al., Nature (2012)

Thank you for your attention!



