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Have been working on…

• Nonequilibrium statistical physics

• Quantum information theory

In particular, thermodynamics of information

Maxwell’s demon



Thermodynamics of Information
Information processing at the level of thermal fluctuations

Review:  J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

A related fundamental issue:

How does thermodynamics (and its connection to information) 

emerge in purely quantum systems?
Today’s topic!

Experimental realization

of Maxwell’s demon:

Toyabe, Sagawa, Ueda, 

Muneyuki, Sano, 

Nature Physics (2010)

Ito & Sagawa, 

Nature Communications (2015)

E. Coli chemotaxis
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Origin of macroscopic irreversibility

micro (Quantum mechanics)

reversible (unitary)

MACRO (Thermodynamics)

irreversible DS > 0

“How does the macroscopic irreversibility 

emerge from microscopic dynamics?”

→ Fundamental question since Boltzmann



Microscopically reversible unitary dynamics

→ Relaxes towards a macroscopic steady state
（Recurrence time is very long: almost irreversible!）

S. Trotzky et al.,  Nature physics 8, 325 (2012)

Experiment：Ultracold atoms

ex. 1d Bose-Hubbard, 87Rb

Relaxation in isolated quantum systems

Y(0)

Y(t)

Û = exp(-iĤt)

Non-steady pure state

Macroscopically steady
pure state

：Unitary

Von Neumann, 1929 (arXiv:1003.2133)

Rigorous proof for

arbitrary initial states



Information entropy Thermodynamic entropy

Sthermo = kB lnW

DS = 0 DSthermo > 0

S(t) = tr -r̂(t)ln r̂(t)[ ]

: determined by 
Hamiltonian

von Neumann entropy

: invariant under 

unitary time evolution

Increases under 

irreversible processes

Fundamental GAP between 

information/thermodynamics entropy

Macroscopically irreversible relaxation emerges from 
microscopically reversible unitary dynamics

？

W

Info. entropy vs thermo. entropy



For pure states under reversible unitary dynamics, within small errors

 2nd Law

relates von Neumann entropy 

to thermodynamic heat

→ Information-thermodynamics link

 The fluctuation theorem

characterizes fundamental symmetry of entropy production

→ Thermal fluctuation emerges from quantum fluctuation

DSS ³ b Q

PF (s )

PR (-s )
= es

s : entropy production

Our results

Mathematically rigorous proof + Numerical check

Key idea: Lieb-Robinson bound, based on locality of interactions

Iyoda, Kaneko, Sagawa, 
arXiv:1603.07857

system S

bath B
(pure state)
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s ³ 0

PF (s )

PR (-s )
= es

2nd law Entropy production is non-negative on average

Fluctuation theorem Universal relation far from equilibrium

Probabilities of Positive/negative entropy productions

Second law as an equality!

Classical Quantum (Ion-trap)

J. Liphardt et al., 

Science 296, 1832 (2002) 

A. An et al., 

Nat. phys. 11, 193 (2015) 

RNA
Theory（1990’s-）
Dissipative dynamical systems,
Classical Hamiltonian systems, 
Classical Markov (ex. Langevin),
Quantum Unitary, Quantum Markov, …

Experiment（2000’s-）
Colloidal particle, Biopolymer,
Single electron, Ion trap, NMR, …

Second law and fluctuation theorem



Total system: system S and bath B

S+B obeys unitary dynamics

 Initial state of S: arbitrary

 Initial state of B: Canonical
→ This assumption effectively breaks time reversal symmetry.

 No initial correlation between S and B.

r̂(0) = r̂S(0)Ä r̂B(0),    r̂B(0) = e-bĤB / ZB

system S

bath B
(Inv. Temp.      )b

r̂(t) =Ûr̂(0)Û†,    Û = exp(-iĤt)

Setup for previous studies
By J. Kurchan, H. Tasaki, C. Jarzynski, …



Information entropy and Heat are linked!
（if the initial state of bath B is canonical）

SS(t) = trS -r̂S(t)ln r̂S(t)[ ],    r̂S(t) = trB r̂(t)[ ]

：heat absorbed by system SQ = -trB (r̂(t)- r̂(0))ĤB
é
ë

ù
û

DSS ³ b Q

Change in the von Neumann entropy 
of system S (Information entropy)

heat absorbed by system S

Second law (Clausius inequality)

system S

bath B
(Inv. Temp.      )b



Fluctuation theorem universally characterizes the ratio between 
the probabilities of positive/negative entropy productions

PF (s )

PR (-s )
= es

TimeReverse process

Forward process

0S  QS  : entropy production on average
(non-negative)

Projection measurements of          at initial and final time
Difference of outcomes:

：stochastic entropy production (fluctuates)

BHtt ˆ)(ln)(ˆ S  



)(ˆ t



Fluctuation theorem

Let







 )()( F/RF/R   PeduG iu

GF(u) =GR(-u+ i)

Another representation with characteristic function 
(moment generating function)

: Fourier transf. of 
probability distribution

PF (s )

PR (-s )
= es

Fourier transf.

Cf. Fluctuation theorem leads to several important relations

PF(s ) = PR(-s )es exp(-s ) =1 s ³ 0
Jensen inequality (convexity)Integrate

Jarzynski identity Second lawFluctuation theorem

Also reproduces the Green-Kubo formula in the linear response regime,
and its higher order generalization

Fluctuation theorem



H. Tasaki, arXiv:0011321 (2000)

S. Goldstein, T. Hara, and H. Tasaki, arXiv:1303.6393 (2013)

T. N. Ikeda, N. Sakumichi, A. Polkovnikov, and M. Ueda,  Ann. Phys. 354, 338 (2015)

A few previous works (on the second law):

→ Assumption of “random waiting time”

：similar effect to dephasing
t t

exp -iĤt( )
V̂

t : random time

unitary

In the conventional argument, the initial canonical distribution of the bath is 
assumed, which effectively breaks the time-reversal symmetry.

Second law with pure state bath?

The origin of irreversibility was not fully understood, 

and thus we should consider pure state baths.

Information-thermodynamics link and the fluctuation theorem 

for pure state baths were open problems.
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system S

bath B
(pure state)

・ Bath B: quantum many body system on a lattice

B̂・ Initial state of B: a typical pure state

・ No initial correlation between system and bath

・ Interaction: local and translational invariant

・ Correlation in B is exponential decaying

・ System S contacts with a part of bath B

・ Temperature of bath B
is define by the temperature of the canonical distribution 
whose energy density is equal to the pure state

  ˆ)0(ˆ)0(ˆ BS  

Setup: system and bath



・ Unitary time evolution:

r̂(t) =Ûr̂(0)Û†,    Û = exp -iĤt( )

・ Relaxation after quench:

Hamiltonian of S changes quickly at 

and is time-independent for 0t

t = 0

Setup: time evolution

system S

bath B
(pure state)



• Introduction

• Review of fluctuation theorem

Our results:

• Second law 

• Fluctuation theorem

• Numerical check

• Summary

Outline



 )(ˆln)(ˆtr)( SSSS tttS 

：heat absorbed by system S BB
ˆ))0(ˆ)(ˆ(tr HtQ  

2ndS   QS

e2nd

Even though the state of B is pure, 

information and thermodynamics are linked!

：von Neumann entropy of system S

：Error term, vanishing in the large bath limit

For any , for any t, there exists a sufficiently large bath, such that 2nd law holds.

→ Mathematically rigorous 

02nd 

Second law (Clausius inequality)



S. Popescu et al., Nature physics (2006)

A. Sugita, RIMS Kokyuroku (2006)

S. Lloyd, Ph.D. Thesis

 
00 B'B tr

（When B’0 is large, the error is small）

is nearly equal to canonical distribution

→ Origin of thermodynamic entropy of B0 is the entanglement entropy

Key of the proof: typicality

Reduced density operator of
a typical pure state
(with respect to the uniform measure in the 
Hilbert space of the microcanonical energy shell)



B0 B’0

S

H. Tasaki, arXiv:1507.06479,(2015)

Almost all pure states are 

locally thermal!



    1)exp()B,dist(SexpBˆˆ ˆ),(ˆ 00
00 BSBS   tvSOOCOtO 

Lieb-Robinson bound

S is not affected by B’0 in the short time regime

→ smallt <<t º mdist(S,¶B0) / v

t Lieb-Robinson time
E. Lieb and D. Robinson, Commun. Math. Phys. 28, 251 (1972)

M. Hastings and T. Koma, Commun. Math. Phys. 265, 781 (2006)

v / m：Lieb-Robinson velocity

The velocity of “information propagation” 
in B is finite, due to locality of interaction

Key of the proof: Lieb-Robinson bound

B0 B’0

S
Effective “light-cone” like structure

boundary

∂B0
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GF/R (u) = dseiusPF/R(s )
-¥

+¥

ò

Moment generating function 
for entropy production
（F: Forward, R: Reverse）

Initial state of the reverse process: r̂S(t)Ä r̂B

Same as the initial state 
of forward process

Time
Reverse

Forward

0S  QS  : entropy production on average
(non-negative)

Projection measurements of          at initial and final time
Difference of outcomes:

：stochastic entropy production (fluctuates）

BHtt ˆ)(ln)(ˆ S  



)(ˆ t


Let

Fluctuation theorem: setup



GF(u)-GR(-u+ i) £eFT

Universal property of thermal fluctuation far from equilibrium
emerges from quantum fluctuation of pure states!

For any , for any time t, there exists a sufficiently large bath, such that…

→ Mathematically rigorous 

0FT 






e

P

P


 )(

)(

R

F

Fourier

Transf.

In addition, is assumed.
If this commutator is not zero but small, 
a small correction term is needed.

0],[ IBS  HHH

Result: Fluctuation theorem
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2nd 

FTRF )()(  iuGuG

Error estimation is mathematically rigorous 

（For any error and time, 2nd law and FT hold for sufficiently large bath.）

→ However, it is not trivial whether the errors are small in realistic situations.

Second law

Fluctuation theorem

→ We confirm that the second law and FT hold

even with a very small bath (16 sites)

Numerical check



Ĥ = eiĉi
†

i
å ĉi + -g ij( ) ĉ†i  ĉ j + ĉ

†

j  ĉi( )
i, j

å + gijĉ
†

i  ĉiĉ
†

j  ĉ j
i, j

å

Hard core bosons with n.n. repulsion on 2-dim square lattice

Hopping RepulsionPotential

Bath:               sites,  #particles=NYX 

system S

Bath B
(Pure state)

X

Y

System: 1 site

gij = g,  g ij =g      (i, j Î B)

gij = 0,  g ij = ¢g      (otherwise)

ei =e

r̂S(0) = 1 1Initial state: 

Method: Exact diagonalization (full)

← unit of energy

System and Hamiltonian



et

s

parameters: e=1, g=1, ¢g =1,  g = 0.1,  (X,Y,N) = (4, 4,5)

Average entropy production is always non-negative

→ Second law holds (even beyond the Lieb-Robinson time!)

t ~1

Second law (1)

1~

Lieb-

Robinson

time



et

s

et

¢g = 0.1 ¢g =10

parameters: e=1, g=1,  g = 0.1,  (X,Y,N) = (4, 4,5)

Bath

System

Rabi oscillation between
system S and Bath

Second law (2)

1~

Lieb-

Robinson

time



parameters: e=1, g=2, ¢g = 0.01,  g= 0.1,  (X,Y,N) = (3,5, 4)
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t = 0.01 t = 0.1

t =1

u

u

Forward

Reverse

t ~
1

2

GF(u),  GR(-u+ i)
are almost the same in the short time 
regime  (imaginary part is also the same)

Lieb-

Robinson

Time

→  Deviation comes from 
“bare” quantum fluctuation 

（Dynamical crossover between 

thermal fluctuation and bare
quantum fluctuation）

Fluctuation theorem (1)



parameters: e=1, g=2, ¢g = 0.01,  g= 0.1,  (X,Y,N) = (3,5, 4)
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1.0t

u

Forward

Reverse

 
 

0
c

,







u

n

n
n

iu

tuG


th momentn

Lower order 
moments

Higher order 
moments

→ Higher order moments deviate faster.

Fluctuation theorem (2)



parameters: e=1, g=2, g= 0.1,  (X,Y,N) = (3,5, 4)

dG º du
0

2p

ò GF u( ) -GR -u+ i( )
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1
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t 2
t ~

1

2

Agrees with t2 dependence predicted by our theory

Fluctuation theorem: error estimation

Integrated error:

t ~
1

2

Lieb-

Robinson

Time
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For pure states under reversible unitary dynamics,

 Second law

relates thermodynamic heat and the von Neumann entropy
→ Information-thermodynamics link

 Fluctuation theorem

Fundamental symmetry of entropy production far from equilibrium
→ Emergence of thermal fluctuation from quantum fluctuation

Mathematically rigorous proof＋ Numerical check (Exact disgonalization)

2ndS   QS

GF(u)-GR(-u+ i) £eFT

S
B0

B’0
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Key idea: Lieb-Robinson bound

Summary Iyoda, Kaneko, Sagawa, 
arXiv:1603.07857



Possible experiments

→ Ultracold atoms?

Possible connection to quantum gravity

→ Unruh & Hawking radiation?

→ “Fast scrambling” conjecture?

M. Cheneau et al., Nature (2012)

Perspectives

Thank you for your attention!


