Yukawa Institute for Theoretical Physics, Kyoto University, Japan

June 2, 2016

Loop optimization for tensor network renormalization

Shuo Yang

Perimeter Institute for Theoretical Physics, Waterloo, Canada

Zheng-Cheng Gu (CUHK, PI)

Xiao-Gang Wen (MIT, PI)

arXiv:1512.04938

tensor network + renormalization group = tensor network renormalization

tensor network + renormalization group = tensor network renormalization

tensor network + renormalization group = tensor network renormalization

- Non-perturbative approach, suitable for strongly correlated systems
- Reproduce long-range physics

tensor network + renormalization group = tensor network renormalization

- Non-perturbative approach, suitable for strongly correlated systems
- Reproduce long-range physics

RG flow

Aim

- Remove short-range entanglement / correlations
- Generate proper RG flow & correct fixed points
- Recover scale invariance at criticality

Real space renormalization group

L.P. Kadanoff (1966)

Tensor renormalization group

Levin & Nave (2007) LN-TNR

Three steps

1. Deform tensors, make a truncation

2. Coarse graining

3. Renormalize tensors(multiply tensor by a constant factor)

Tensor renormalization group

$$\chi_{\rm keep} = \chi^2$$

 $\chi_{\rm keep} = 2\chi$

 $\chi_{\text{keep}} = \chi$

 $\chi_{\text{keep}} = \chi/4$

Off criticality

cannot remove conner-double-line (CDL) tensors cannot give the correct structures of fixed points

At criticality

cannot explicitly recover scale invariance cannot completely remove short-range entanglement

At criticality

cannot explicitly recover scale invariance cannot completely remove short-range entanglement

Example

classical Ising model

partition function

$$Z = \sum_{\{\sigma\}} \exp(\beta \sum_{\langle ij \rangle} \sigma_i \sigma_j)$$

At criticality

cannot explicitly recover scale invariance cannot completely remove short-range entanglement

Example

classical Ising model

partition function

local tensor

$$T_{1,2,1,2}^{\text{Ising}} = e^{-4\beta}, \ T_{2,1,2,1}^{\text{Ising}} = e^{-4\beta},$$
$$T_{1,1,1,1}^{\text{Ising}} = e^{4\beta}, \ T_{2,2,2,2}^{\text{Ising}} = e^{4\beta},$$
$$\text{others} = 1.$$

Ising CFT $\Delta_{\alpha}^{\mathrm{even}}$ $\Delta^{\rm odd}_\alpha$ 5 ----central charge $4\frac{1}{8}$ 4 c = 1/2 $3\frac{1}{8}$ 3 ----- $2\frac{1}{8}$ -000----- $\mathbf{2}$ ----scaling $1\frac{1}{8}$¢ 1 dimensions <u>σ</u>\$..... $\frac{1}{8}$ 0

Calculate scaling dimensions

transfer matrix

eigenvalues of the transfer matrix $\longrightarrow c, \Delta_{\alpha}$

Zheng-Cheng Gu and Xiao-Gang Wen, Phys. Rev. B **80**, 155131 (2009).

Calculate scaling dimensions

transfer matrix

eigenvalues of the transfer matrix $\longrightarrow c, \Delta_{\alpha}$

Zheng-Cheng Gu and Xiao-Gang Wen, Phys. Rev. B **80**, 155131 (2009).

scaling dimensions change with RG step cannot explicitly recover scale invariance

Calculate scaling dimensions

transfer matrix

eigenvalues of the transfer matrix $\longrightarrow c, \Delta_{\alpha}$

Zheng-Cheng Gu and Xiao-Gang Wen, Phys. Rev. B **80**, 155131 (2009).

scaling dimensions change with RG step cannot explicitly recover scale invariance

high-index parts will destroy low-index parts accuracy is fine, stability is bad

Improvements of TRG

Improvements of TRG

Momentum space

Tree level approximation — no loop

Real space

Tree level approximation — no loop

Beyond tree level — one loop

Momentum space

Tree level approximation — no loop

Beyond tree level — one loop

- Real space
- Tree level approximation no loop

Momentum space

Tree level approximation — no loop

Beyond tree level — one loop

momentum

Real space

Tree level approximation — no loop

Momentum space

Tree level approximation — no loop

Beyond tree level — one loop

momentum Λ Λ $\frac{\Lambda}{b}$ 0 \int_{fast} \int_{fast}

Real space

Tree level approximation — no loop

LN-TNR

remove short-range entanglement by a local SVD

Momentum space

Tree level approximation — no loop

Beyond tree level — one loop

Real space

Tree level approximation — no loop

LN-TNR

remove short-range entanglement by a local SVD

Beyond tree level — one loop

LN-TNR + loop optimization further remove short-range entanglement inside a loop

This work !

Part Two: Optimizing tensors on a loop

Together: Complete remove short-range entanglement

Part Two: Optimizing tensors on a loop

Part One — Entanglement filtering

How

1. Find & insert projectors 2. Define new tensors

Part One — Entanglement filtering

How

1. Find & insert projectors 2. Define new tensors

AimRemove conner double line (CDL) tensors
Generate local canonical gaugeZheng-Cheng Gu and Xiao-Gang Wen,
Phys. Rev. B 80, 155131 (2009).

$$\begin{split} f(\mathbf{T}_i) &= \||\Psi_A\rangle - |\Psi_B\rangle\| = \langle \Psi_A |\Psi_A\rangle + \langle \Psi_B |\Psi_B\rangle - \langle \Psi_A |\Psi_B\rangle - \langle \Psi_B |\Psi_A\rangle \\ &= \mathcal{C} + \mathbf{T}_i^{\dagger} \mathcal{N}_i \mathbf{T}_i - \mathcal{W}_i^{\dagger} \mathbf{T}_i - \mathbf{T}_i^{\dagger} \mathcal{W}_i, \end{split}$$

solve the linear equation $\mathcal{N}_i\mathbf{T}_i = \mathcal{W}_i.$

Loop-TNR Results

\$.....

Loop-TNR Results

scaling dimensions does not change with scale ~ scale invariance
a clear gap between high-level parts and low-level parts

Accuracy

	Exact	LN-TNR	LN-TNR	Loop-TNR	Loop-TNR	Loop-TNR	Loop-TNR	EV-TNR $[50]$
		$\chi=64$	$\chi = 64$	$\chi = 16$	$\chi = 24$	$\chi = 16$	$\chi = 24$	$\chi=24$
		L = 1	L=2	L=2	L=2	L = 4	L = 4	L=2
		2^{11} spins	2^{11} spins	2^{18} spins				
c	0.5	0.49946958	0.49970058	0.50001491	0.50000165	0.50009255	0.50008794	0.50001
σ	0.125	0.12504027	0.12500837	0.12500528	0.12500011	0.12501117	0.12499789	0.1250004
ϵ	1	1.00028269	0.99996784	1.00000566	1.00000601	0.99999403	1.00000507	1.00009
	1.125	1.12368834	1.12444247	1.12495187	1.12499400	1.12498755	1.12500559	1.12492
	1.125	1.12394625	1.12450246	1.12510600	1.12500464	1.12498755	1.12500559	1.12510
	2	1.92334948	1.99811859	2.00000743	1.99970911	1.99999517	2.00000985	1.99922
	2	1.96264143	1.99815644	2.00066117	2.00016629	1.99999517	2.00000985	1.99986
	2	1.97496787	1.99868822	2.00066117	2.00031103	2.00002744	2.00001690	2.00006
	2	2.00274974	1.99948966	2.00586886	2.00131384	2.00006203	2.00002745	2.00168

Relative error of the free energy per site

Relative error of the free energy per site

At critical point, the error of Loop-TNR decays much faster than the error of LN-TNR

almost decays exponentially with bond dimension

Relative error of the free energy per site

At critical point, the error of Loop-TNR decays much faster than the error of LN-TNR

almost decays exponentially with bond dimension

 At off-critical points, the errors almost remains a constant for all temperatures near the critical point

Loop TRG with reflection symmetry

4 axis of symmetry global C4 symmetry

fix the gauge

ideal case: explicitly invariant fixed point tensor S

(d)

Summary

Tree level: LN-TNR (Levin & Nave, 2007)

Real space TNR

One loop: GW-TNR, EV-TNR, Loop-TNR

Summary

Tree level: LN-TNR (Levin & Nave, 2007)

Real space TNR

One loop: GW-TNR, EV-TNR, Loop-TNR

1D algorithm	LN-TNR + 1D algorithm	
iTEBD	GW-TNR (Gu & Wen, 2009) Loop-TNR Part One	
DMRG Varational MPS	Loop-TNR Part Two	
MERA	EV-TNR (Evenbly & Vidal, 2014)	

Thank you!