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INTRODUCTION
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Divide the system in two subregions: 𝑅,  𝑅

𝑆𝐸𝐸 = −𝑡𝑟 𝜌𝑅log 𝜌𝑅

This provides one way of characterizing the entanglement properties of 
the region 𝑅 in a given state.  
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AdS/CFT: [Ryu-Takayanagi] proposed that if the space-time is static the 
entanglement entropy of 𝑅 is given by a simple geometric object  :

𝑆𝐸𝐸 =
𝐴𝑚𝑖𝑛

4𝐺𝑁

If time dependent , extremal surface [Hubeny-Rangamani-Takayanagi].

Simple to compute in gravity!

Geometry=entanglement? 

𝑅

 𝑅

𝜕𝑅



There are lots other quantum information quantities, do they have a 
nice bulk dual?

Modular Hamiltonian, log 𝜌 , for theories with a holographic dual.

Very complicated operator, simple expression in bulk perturbation 
theory?

log 𝜌 = 𝐼 + ∫𝑏𝑢𝑙𝑘 𝜙 + ∫𝑏𝑢𝑙𝑘𝑔 + ∫𝑏𝑢𝑙𝑘𝜙𝜙 + ⋯?



QUANTUM INFORMATION 

PRELIMINARIES



The modular Hamiltonian is just the logarithm of the density matrix:

𝐾𝜌 = − log 𝜌

The term Hamiltonian is misleading, it depends on the state. It is a complicated operator.

For certain states/subregions, it is very simple:

• For half space in the vacuum,  Rindler Hamiltonian: 𝐾𝑅 = ∫ 𝑑𝑦 ∫0

∞
𝑑𝑥 𝑥 𝑇00 .

• For spherical regions in the vacuum of CFT’s, is a simple integral of the stress tensor 
[Casini-Huerta-Myers] :

K = ∫ 𝑑Ω  
0

𝐿

𝑑𝑟 𝑔
𝐿2 − 𝑟2

2 𝐿
𝑇00

• For free theories, it is bilocal on the fields [Casini-Huerta,…].

One of our main results will be that for theories with a gravitational dual, it is also simple. 



The modular Hamiltonian generates the “modular flow”

𝑈 𝑠 = 𝑒𝑖 𝐾𝑅 𝑠, 𝑂𝑅 𝑠 = 𝑈 𝑠 𝑂𝑅𝑈(−𝑠)

It is very non-local in general, but if the modular Hamiltonian is local, 

then it is just the usual time evolution (Rindler time, for example). 

When acting on the state, 𝐾𝑅 is not smooth. 

𝐾𝑇 = 𝐾𝑅 − 𝐾  𝑅 is free of divergences  and annihilates the state. 



Consider two states, 𝜌, 𝜎, relative entropy:

𝑆𝑟𝑒𝑙 𝜌 𝜎 = 𝑡𝑟 𝜌 log
𝜎

𝜌
= Δ𝐾𝜎 − Δ𝑆

Δ𝐾𝜎 = 〈𝐾𝜎〉𝜌 − 〈𝐾𝜎〉𝜎

𝜎 is a reference state , it  provides a measure of distinguishability.

If 𝜎 = 𝑒−𝛽𝐻, then difference in free energies. 

In holography, we know what Δ𝑆 is, understand Δ𝐾𝜎. 



In field theories, relative entropy is finite and unambiguous.

It  also satisfies some interesting properties:

• Positivity: 𝑆𝑟𝑒𝑙 𝜌 𝜎 ≥ 0

• Monotonicity: 𝑆𝑟𝑒𝑙 𝜌𝑅 𝜎𝑅 > 𝑆𝑟𝑒𝑙 𝜌  𝑅 𝜎  𝑅 ,  𝑅 ⊂ 𝑅. 



Positivity of relative entropy for small perturbations implies a first law:

𝛿𝑆 = 𝛿𝐾𝜎

Can read the modular Hamiltonian if we know 𝛿𝑆 for all possible 
perturbations. 

A simple example: if 𝑆 = 𝑂 +  𝑆, then the first law guarantees that  
𝐾 = 𝑂 +  𝐾.

In this example, there won’t be a contribution from 𝑂 to the relative 
entropy!



Entanglement entropy presents a series of ambiguities, Hilbert space
doesn’t quite factorize: divergent cutoff dependence (area law,…),
gauge invariant operators are non-local,..

They are localized in 𝜕R and don’t contribute to the relative entropy
nor the mutual information.

Graviton relative entropy is well defined.



GRAVITY



If one includes bulk quantum corrections (1/N corrections), one has to 
consider bulk entanglement entropy [Faulkner,AL,Maldacena]:

𝑆𝐸𝐸 = 𝑆𝑏𝑢𝑙𝑘 𝑅𝑏 + 𝑆𝑙𝑜𝑐𝑎𝑙

Entanglement wedge , Rb, region between R and the extremal surface.

Rb is in some sense the region dual to R.



The other terms are localized in the extremal surface.

𝑆𝑙𝑜𝑐𝑎𝑙 =
𝐴𝑒𝑥𝑡(𝑔0 + 𝑔𝐺𝑁

)

4𝐺𝑁
+ 〈𝑆…〉

Backreaction of the metric due to the quantum fields, 𝑔𝐺𝑁
∼ 𝑂(𝐺𝑁).

𝑆…: expectation value of an operator integrated over the extremal surface. 

Both terms in 𝑆𝑙𝑜𝑐𝑎𝑙 are localized in the extremal surface. 

Bulk entanglement entropy is non-local.  



Modular Hamiltonian for a simple family of states?  

Reference state: (𝑔𝜓, |𝜓〉) .

Consider excitations over this state accessible in bulk perturbation 
theory. 

States “close to |𝜓〉”, small backreaction.

We will focus in 𝑂 𝐺𝑁
0 differences in the entropy: not yet clear how to 

go further. 

Fixed background with gravitons as free matter.



States where we don’t need to take into account the backreaction to 
compute the bulk entanglement entropy 𝛿𝑔 ∼ 𝑂(𝐺𝑁).

One can consider coherent states of scalars or gravitons to second 

order in 𝜆, 𝑒𝑖 𝜆 ∫ 𝑑𝑥 Π𝑐(𝑥) 𝜙(𝑥)|𝜓〉 . We can think of these as classical fields 
turned on.

One could also consider a squeezed state of gravitons or scalars, 

𝑒𝑖 𝜆 𝑎†𝑎†
|𝜓〉 , or any other multiparticle state.



We want to think of operators in this small Hilbert space.

Consider two states in this small Hilbert space, 𝜌, 𝜎.

𝐴𝑒𝑥𝑡 𝑔𝜌 = 𝑔𝜎 + 𝛿𝑔 = 𝐴𝑒𝑥𝑡 𝑔𝜎 + ∫𝑅𝑇# 𝛿𝑔 + ∫𝑅𝑇# 𝛿𝑔 𝛿𝑔 + ⋯

Extremal area: expectation value of operator in bulk perturbation theory 
𝐴𝑒𝑥𝑡 𝑔𝜌 =  𝐴𝑒𝑥𝑡 𝜌

 𝐴𝑒𝑥𝑡 = 𝐴𝑒𝑥𝑡,𝜎𝐼 + ∫𝑅𝑇#  𝑔𝜎 + ∫𝑅𝑇#  𝑔𝜎  𝑔𝜎

With 〈  𝑔𝜎〉𝜌 = 𝛿𝑔.   

Gauge where the surface stays in the same position as we change the state. 



For states in the small Hilbert space we have

𝑆𝐸𝐸(𝜌) =
 𝐴𝑒𝑥𝑡 𝜌

4𝐺𝑁
+ 〈𝑆…〉𝜌 + 𝑆𝑏𝑢𝑙𝑘,𝜌 𝑅𝑏

Apply the first law to perturbations of 𝜎 :

𝐾𝜎 =
 𝐴𝑒𝑥𝑡

4𝐺𝑁
+ 𝑆… + 𝐾𝑏𝑢𝑙𝑘,𝜎

Note: 𝐾𝑏𝑢𝑙𝑘,𝜎 is  bilocal on the (free) fields, so 𝐾𝜎 has a simple 
expression in terms of bulk quantum fields. 

𝑂 𝐺𝑁
−1 discussed in [Jafferis-Suh]



APPLICATIONS



Some  interesting consequences of the previous formula are :

• Relative entropy is bulk relative entropy 

𝑆𝑟𝑒𝑙 𝜌 𝜎 = 𝑆𝑏𝑢𝑙𝑘,𝑟𝑒𝑙(𝜌|𝜎)

• Modular flow of bulk local operators is bulk modular flow 
𝜙𝑅𝑏

, 𝐾𝑏𝑑𝑦 = 𝜙𝑅𝑏
, 𝐾𝑏𝑢𝑙𝑘

• The operator 𝐾𝑇 = 𝐾𝑇,𝑏𝑢𝑙𝑘 , it clearly annihilates the vacuum. It is non 
trivial that the difference between two simple operators localized in 
different regions annihilates the vacuum.



Sphere in the vacuum of a CFT

𝐾𝑏𝑑𝑦 = 2𝜋∫𝑅

𝐿2−𝑟2

2𝐿
𝑇00

Wald’s gravitational “first law” is linear in the metric. Can write it as an operator equation:

𝐾𝑏𝑑𝑦 =  
𝑅

𝜉𝑏𝑑𝑦 . 𝑇 = 𝐴𝑙𝑖𝑛  𝑔 +  

R𝑏

𝜉. 𝐺(  𝑔)

Integrate by parts Einstein tensor, properly integrated in the entanglement wedge: 
∫R𝑏

𝜉. 𝐺(𝛿𝑔) . 

If matter doesn’t couple with curvature, then ∫R𝑏
𝜉. 𝐺(  𝑔) = ∫R𝑏

𝜉. 𝑇𝑏𝑢𝑙𝑘 = 𝐾𝑏𝑢𝑙𝑘. 

More generally, S… + 𝐾𝑏𝑢𝑙𝑘 = ∫R𝑏
𝜉. 𝐺(  𝑔) . 



[Blanco-Casini-Hung-Myers,Lashkari-Raamsdonk, Lashkari-Raamsdonk-Rabideau-Sabella-Garnier,Lin-Marcolli-

Ooguri-Stoica] studied the relative entropy of perturbative bulk states compared 
with the vacuum to second order. Our formula might look surprising at first.

Gravitational calculation (no QFT in the bulk), coherent states in the bulk. 

In this symmetric configuration, the bulk modular Hamiltonian is the 
canonical energy.

𝑆𝑟𝑒𝑙 𝜌 𝜎 = 𝑆𝑏𝑢𝑙𝑘,𝑟𝑒𝑙 𝜌 𝜎 = Δ𝐾𝑏𝑢𝑙𝑘 = 𝐸𝑐𝑎𝑛

Which agrees with their results. 

Positivity of relative entropy = positivity of bulk relative entropy.



Bulk and boundary relative entropies are the same → perturbing  the 
bulk region 𝑅𝑏can be seen from the boundary region 𝑅 …. 

This suggests that there is a mapping between these two regions that 
one should understand (entanglement wedge reconstruction [Almheiri-

Dong-Harlow] ). 

Often called subregion-subregion duality: one wants to understand to 
what extent a bulk subregion encodes a given boundary subregion.

[Dong-Harlow-Wall] showed using the relative entropy that   𝜙 𝑅𝑏 is 
morally an operator in region 𝑅.



Can our methods help to find explicit expression for the operators in 
𝑅𝑏 in terms of operators in 𝑅? What does this really mean?

[HKLL]: In bulk perturbation theory one can think of a local bulk 
operator as a sum over boundary operators. Basically one just uses 
Green’s theorem:

𝜙 𝑋 = ∫ 𝑑𝑡 ∫𝑏𝑑𝑦𝑑𝑥 𝐺 𝑋 𝑥, 𝑡 𝑂 𝑥, 𝑡 + 𝑂(𝐺𝑁)

It is sometimes useful to think of it as a sum over Heisenberg operators. 

Can one represent 𝜙 𝑋 with support only in a boundary subregion? 



Rindler reconstruction [HKLL,Morrison,Almheiri-Harlow-Dong]: for one interval/sphere if one 
has a bulk operator in the entanglement wedge, it can be localized in 𝑅:

𝜙 𝑋𝑅𝑏
= ∫ 𝑑𝜏∫𝑅 𝑑𝑥 𝐺′ 𝑋𝑅𝑏

𝑥, 𝜏 𝑂 𝑥, 𝜏 + 𝑂(𝐺𝑁)

Where 𝜏 corresponds to Rindler time. Sum over non-local modular flowed operators at 𝑡 = 0.

𝜙 𝑋𝑅𝑏
is in causal contact with 𝑅,  it makes sense that a boundary observer  in 𝑅 can 

reconstruct this operator with simple boundary operators.  



Reconstruct bulk operators in the entanglement wedge as boundary operators in a subregion
for two intervals?

Causal wedge: Rindler wedge of the individual intervals (region in causal contact with the 
boundary region). The previous  should work there.

Part of 𝑅𝑏 not in causal contact with the boundary causal domain. 𝜙 𝑋𝑅𝑏
can’t be just a 

superposition of simple operators localized in each interval. 
Modular flow generates operators which are smeared over the two intervals. 



Simplest proposal that has enough non-locality:

𝜙 𝑋𝑅𝑏
= ∫ 𝑑𝑠∫𝑅 𝑑𝑥 𝐺′′ 𝑋𝑅𝑏

𝑥, 𝑠 𝑂 𝑥, 𝑠 + 𝑂(𝐺𝑁)

Modular flow seems important for reconstruction. It is not clear if it is enough.



CONCLUSIONS



• In gravity, given a reference state, the modular Hamiltonian is the
modular Hamiltonian in the bulk plus terms which are localized in
𝜕𝑅𝑏.

• Bulk and boundary relative entropies are equal, which has interesting
consequences.

• Bulk and boundary modular flows are equivalent.

• More entanglement=entanglement than entanglement=geometry.
However, for large superpositions of states (like the TFD) or
𝑆𝐸𝐸,𝑏𝑢𝑙𝑘 ∼ 𝑂(𝐺𝑁

−1) , separating geometry (area) and entanglement
should be more fuzzy.



• Can one do something similar for non-extremal surfaces in the bulk?
Is it meaningful to consider  𝐴 + 𝐾𝑏𝑢𝑙𝑘 for regions other than the
entanglement wedge? Boundary interpretation?

• Does the area term ever contribute (directly) to the relative entropy?
Is this entropy distillable?

• Can one understand the 𝐺𝑁 corrections perturbatively? How does one
compare different states with different geometries and
entanglement wedges…?

• Can one be explicit about reconstructing the entanglement wedge?

• ….



THANK 

YOU!!!



Consider the TFD state, |Ψ𝑇𝐹𝐷〉.  One can act with 𝑒𝑖 𝐾𝑅𝑡 in the boundary to shift the time slice.  

This state will be smooth from the bulk point of view. 

However 𝐾𝑅 =  𝐴 + 𝐾𝑅,𝑏𝑢𝑙𝑘 , each of the individual pieces is singular when acting on the state. 

It is unclear if one could act individually with each of the pieces…

In general, the action of the modular Hamiltonian should be smooth from the bulk perspective.



We can consider a coherent state of gravitons such that ℎ = √𝐺𝑁 𝜆 𝛿ℎ(𝑥)

To first order in 𝜆, there will be a linear change in the area. This can be seen as coming
from 𝑆𝑤𝑎𝑙𝑑 or  𝐴 . The relative entropy will be zero.

To second order in 𝜆, the Einstein equations will read
𝐸(𝛿𝑔) = 〈𝑇𝑔𝑟𝑎𝑣 (ℎ, ℎ)〉, 𝛿𝑔 = 𝑂(𝐺𝑁 𝜆2)

The entropy will have a contribution from 𝐴 𝛿𝑔 + 〈𝐴 ℎ, ℎ 〉.

The last term can be thought of as coming from 𝑆𝑤𝑎𝑙𝑑 or  𝐴 .

These localized entropy terms are also in the modular Hamiltonian.
∫ 𝜉. 𝑇𝑔𝑟𝑎𝑣 ℎ, ℎ − 〈𝐴 ℎ, ℎ 〉 = 𝐸𝑐𝑎𝑛

Something similar happens with a free scalar coupled with curvature
∫ 𝜉. 𝑇𝑔𝑟𝑎𝑣 − 4𝜋𝛼 ∫ 𝜙2 = ∫ 𝜉. 𝑇𝑐𝑎𝑛 = 𝐸𝑐𝑎𝑛



For conformal scalar fields and spherical EE, there is a similar
ambiguity: lattice vs CFT calculation [Casini-Mazzitelli-Teste,Lee-AL-Perlmutter-

Safdi].

Not related with factorization, but with boundary conditions.

These two ways of computing it have different modular hamiltonians:
𝐾𝐶𝐹𝑇 = ∫𝑅𝜉. 𝑇𝐶𝐹𝑇 , 𝐾𝑙𝑎𝑡 = ∫𝑅𝜉. 𝑇𝑐𝑎𝑛,

They differ by a boundary term in the entangling surface.

Same relative entropy.



Gauge fields in the lattice [Casini-Huerta-Rosabal]: multiple possibilities for
algebra associated with region 𝑅. Different choices give different
entropies, this ambiguity is localized in 𝜕𝑅.

In the continuum, for example: set boundary conditions for the electric
field in 𝜕𝑅. [CHR,Donelly-Wall] compute the entropy for each possible field
configuration and sum over all of them.

There is no unique prescription, but relative entropy is independent of
these choices.



Take home message:

Entanglement entropy ambiguities are localized in 𝜕𝑅 and they don’t
contribute to the relative entropy.

We expect the situation is similar for gravitons.

Set some gauge invariant boundary conditions in 𝜕𝑅.


