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Motivation



Holography
AdS/CFT correspondence
Maldacena 1997

Gravity/Gauge

huge numbers of evidences but no proof

open string/closed string duality ? 

closed string = gravityD-brane

D-brane
=

gauge theory

open string



Different viewpoint
We propose a general method

Quantum Field Theory Geometry

cf. Geometry of classical gauge theories

Dµ = � + igAµcovariant derivative connection

field strength (curvature) Fµ� � [Dµ, D� ]

Apology: I am not an expert on String theory and related topics. 
(I am mainly working on lattice QCD.)
So I can not answer your questions related to these.



Summary 
of 

Proposal and Results 



Proposal
d-dim. field -> (d+1)-dim. field 

�a(x)
d dimensions d+1 dimensions

(d+1)-dim. field -> (d+1)-dim. induced metric

(d+1)-dim. induced metric-> geometry

ĝµ�(z) := h
N�

a=1

�µ�a(z)���a(z)

quantum average of 
Einstein tensor 

``geometry” of 
d+1 dimenional space  

Gµ�(z) := �Gµ�(ĝµ�(z))�

�a(t, x)

z = (t, x)



Results
In the large N limit, we show

Gµ�(z) � ��gµ�(z) (Euclidean) AdS space

UV limit

� < 0

in the following 2 limits:

� = �d(d� 1)
h(d� 2)

IR limit � = � (d� 1)
h

t��

t� 0 d � 3

d � 2



Details I. Proposal



(Gradient) Flow equation

(d+1)-dim. field d-dim. field

action for d-dim. theory

initial condition

d-dim. field -> (d+1)-dim. field 

large N index

�a(0, x) = �a(x)

z = (� =
�

t, x) � (R+, Rd)

Rd

� : energy scale

UV

IR
�(z)

�(x)Remark

�(x) is the field in the path integral (NOT the operator).

�

�t
�a(t, x) = � �Sf (�)

��a(x)

����
�a(x)��a(t,x)



What is the (gradient) flow equation ? 

Free theory �

�t
�a(t, x) =

�
��m2

�
�a(t, x)

Heat kernel

Rd

�a(t, x) =
e�m2t

(4�t)d/2

�
ddy e�(x�y)2/t�a(y)

�a(y)

�a(t, x)
tLattice QCD

introduced to smooth out UV 
fluctuations of gauge fields

Narayanan-Neuberger 2006, Luescher 2010

flow gauge field is UV finite
Luescher-Weisz 2011

cf. Ricci flow d

dt
gij = �2Rij

used to prove Poincare conjecture by Perelman 



Normalized flow field  

�a(z) :=
�a(z)�
��2(z)�

Non-Linear Sigma Model (NLSM) normalization

Quantum average

Remarks One may take different nomalization conditions instead of NLSM.

Flow equation

Normalization  
integrate out UV modes

renomalization of field

define
``Renormalization Group”

transformation

S �= Sf is allowed. If S = Sf , we call it “gradient flow”.

�O(�)� := �O(�)�S =
1
Z

�
D� O(�)e�S(�), Z :=

�
D� e�S(�)

d-dimension



(d+1)-dim. field -> (d+1)-dim. metric-> geometry

ĝµ�(z) := h
N�

a=1

�µ�a(z)���a(z)
h: constant with mass dimension �2

Induced metric on a d + 1 dim. manifold R+ � Rd from a manifold in RN ,
defined by �a(z) with ��2(z)� = 1

any correlation functions can be calculated using

PROPOSAL

We consider the generic large N field ϕa,α(x) where x is d dimensional space-time coor-

dinate, a = 1, 2, · · · , is the large N index, while α represents other indices such as spinor or

vector indices, so that hαβϕa,α(x)ϕb,β(x) becomes Lorentz invariant with the constant tensor

hαβ. We denote the action of this theory S.

We first extend the d dimensional field ϕ(x) to φ(t, x) in d + 1 dimensions, using the

gradient flow equation as[5]

d

dt
φa,α(t, x) = −gab(φ(t, x))

δS

δϕb,α(x)

∣∣∣∣
ϕ→φ

, (1)

with an initial condition that φa,α(0, x) = ϕa,α(x), where gab is the metric of the space of

the large N index. Since the length dimension of t is 2 and t ≥ 0, we introduce new variable

τ = 2
√

t. (Here a factor 2 makes some latter results simpler. ) Then we denote d + 1

dimensional coordinate as z = (τ, x) and the field as φa,α(z).

We propose to define the induced d + 1 dimensional metric as

ĝµν(z) := gab(φ(z))hαβ∂µφ
a,α(z)∂νφ

b,β(z). (2)

Using the above definition, we then calculate the expectation values of gµν and its correlations

as

〈ĝµν(z)〉 := 〈ĝµν(z)〉S, (3)

〈ĝµ1ν1(z1)ĝµ2ν2(z2)〉 := 〈ĝµ1ν1(z1)ĝµ2ν2(z2)〉S, (4)

〈ĝµ1ν1(z1) · · · ĝµnνn(zn)〉 := 〈ĝµ1ν1(z1) · · · ĝµnνn(zn)〉S, (5)

where 〈O〉S is the expectation values of O(ϕ) in d dimensions with the action S as

〈O〉S :=
1

Z

∫
DϕO(ϕ) e−S, Z :=

∫
Dϕ e−S (6)

in the large N expansion. Even though the “composite” operator ĝµν(z) contains a product

of two local operators at the same point z, 〈ĝµν(z)〉 is finite as long as τ &= 0[6]. This is the

reason why we define the induced metric in d + 1 dimensions from φ, not the d dimensional

induced metric from ϕ, which badly diverges.

Thanks to the large N factorization, quantum fluctuations of the metric ĝµν are sup-

pressed in the large N limit. For example, the two point correlation function of ĝµν behaves

3

geometry

quantum 
corrections

functional integral in d-dimensions

�a(z) : R+ � Rd �� RN



key properties

1 ĝµ�(z) � �µ�a(z)���a(z) may give finite results for � �= 0

Flow: a heat kernel type smearing � � 0 is UV while � �� is IR

Finiteness as QFT is NOT guaranteed in general but true in the large N limit.

cf. d dimensional induced metric gµ�(x) � �µ�(x)���(x) is badly divergent

2 metric becomes classical in the large N limitas

〈ĝµν(z1)ĝαβ(z2)〉 = 〈ĝµν(z1)〉〈ĝαβ(z2)〉 + O

(
1

N

)
, (7)

which shows that the induced metric ĝµν is classical in the large N limit, and quantum

fluctuations are sub-leading and can be calculated in the 1/N expansion. A use of the 1/N

expansion here seems important for a compatibility between non-zero VEV of the metric

and the general coordinate invariance in “quantum” gravity, since the metric is non-invariant

but the general coordinate invariance can not be broken spontaneously from an argument

a la Elitzur’s[7]. This inconsistency may be avoided in the large N , which corresponds to a

large degrees of freedom, necessary for the spontaneous symmetry breaking.

AN EXAMPLE: O(N) NON-LINEAR SIGMA MODEL IN TWO DIMENSION

As a concrete example of our proposal, we consider the O(N) non-linear sigma model in

two dimensions, whose action is given by

S =
1

2g2

∫
d2x

N−1∑

a,b=1

gab(ϕ)
2∑

k=1

(
∂kϕ

a(x)∂kϕb(x)
)
, (8)

where

gab(ϕ) = δab +
ϕaϕb

1 − ϕ · ϕ , gab(ϕ) = δab − ϕaϕb (9)

with ϕ ·ϕ =
∑N−1

a=1 ϕaϕa, and the N -th component of ϕ is expressed in terms of other fileds

as ϕN = ±
√

1 − ϕ · ϕ, so that the metric gab appears in the action. The three dimensional

metric gµν(z) will be extracted from this theory, according to our proposal.

Solution to the gradient flow equation in the large N

In the previous study[8], the solution of the gradient flow equation has been obtained in

the momentum space as

φa(t, p) = f(t)e−p2t
∞∑

n=0

: X2n+1(ϕ, p, t) : (10)

4

large N factorization

�Gµ�(ĝµ�)� = Gµ�(�ĝµ��) + O

�
1
N

�

classical geometry after quantum averages



d-dim. quantum field theory 

(d+1)-dim. classical metric 

large N limit

Geometry in d+1 dimensions



Details II. Results



Large N Model

S(µ2, u) = N

�
ddx

�
1
2
�k�(x) · �k�(x) +

µ2

2
�2(x) +

u

4!
�
�2(x)

�2
�

�4 model

�2(x) � �(x) · �(x) =
�N

a=1 �a(x)�a(x)

large N limit

u = 0 : free, u�� : NLSM

��a(x)�b(y)� = �ab 1
N

�
dp

eip(x�y)

p2 + m2

mass renormalization

Z(m) =
�

dp
1

p2 + m2
� 0, dp � ddp

(2�)d
,µ2 = m2 � u

6
Z(m)

Z(m)�� (d > 1)



Flow field
Flow equation

�

�t
�a(t, x) = �

�S(µ2
f , uf )

��a(x)

�����
���

=
�
�� µ2

f

�
�a(t, x)� uf

6
�a(t, x), �a(0, x) = �a(x)

Solution in the large N limit �(t, p) = f(t)e�p2t�(p).

ḟ(t) = �µ2
ff(t)� uf

6
f3(t)�0(t), �0(t) =

�
dp

e�2p2t

p2 + m2
, �0(0) = Z(m).

2-pt function

divergent !

��a(t, x)�b(s, y)� =
�ab

N

Z(mf )�
�(t)�(s)

�
dp

e�(t+s)p2
eip(x�y)

p2 + m2
.



Normalized field �a(t, x) =
�a(t, x)�
��2(t, x)�

,

2-pt function for nomalized field

��a(t, x)�b(s, y)� =
�ab

N

1�
�0(t)�0(s)

�
dp

e�(t+s)p2
eip(x�y)

p2 + m2
.

UV finite and independent bare parameters, 
depends only on the renomalized mass

�0(t) =
�

dp
e�2p2t

p2 + m2

��2(t, x)� =
Z(mf )
�(t)

�
dp

e�2tp2

p2 + m2
= Z(mf )

�0(t)
�(t)

� Z(mf )



Induced metric 
VEV of the metric

gµ�(z) := �ĝµ�(z)� =
�

g�� (�) 0
0 gij(�)

�

g�� (�) =
h�2

16
d2 log �0(t)

dt2
, gij(�) = ��ij

h

2d

d log �0(t)
dt

.

�0(t) =
md�2e2m2t

(4�)d/2
�(1� d/2, 2m2t).

incomplete gamma function



IR limit m� � 1

g�� (�) =
hd

2�2
, gij(�) =

h�ij

�2

ds2 =
hd

2u2
(du2 + dx2)u =

�
d/2�

Euclidean AdS metric



UV limit m� � 1

g�� (�) � h

�
����������

����������

�
2
�

m

4�
, d = 1

� 1
�2 log(m2�2)

, d = 2

d� 2
2

1
�2

. d � 3

, gij(�) � h�ij

�
����������

����������

�
2
�

m

�
, d = 1

� 1
�2 log(m2�2)

, d = 2

d� 2
d

1
�2

, d � 3

.

Euclidean AdS metric

log correction appears in d=2



Einstein Tensor

G�� (�) = ��� (m�)g�� (�), Gij(�) = ��d(m�)gij(�),

�� (m�) = �d(d� 1)
2h

d log Y (x)
dx

Y (x)

�������
x=m2�2/2

, Y (x) = 1 +
d
dx

log �(1� d/2, x).

Gµ�(�) = ��� (m�)gµ�(�)��(m�) = 0

�d(m�) = �� (m�) + ��(m�),
��(m�)
�� (m�)

=
2
d

�

���

d
dx

log
�

dY (x)
dx

�

d log Y (x)
dx

� 2

�

���

x=m2�2/2

�� (m�) = � = constant cosmological constant



IR limit m� � 1

�IR = �d� 1
h

Euclidean AdS metric

UV limit m� � 1

Gµ�(�) � ��IRgµ�(�)

Gµ�(�) � ��UVgµ�(�) �UV = �d(d� 1)
h(d� 2)

Euclidean AdS metric

d � 3

d = 2 Gµ�(�) � ��(m�)gµ�(�) �(m�) � log(m2�2)
h



From UV to IR 

AdS radius R2 := � 1
�

R2
UV = �h(d� 2)

d(d� 1)
=

d� 2
d

R2
IR < R2

IR

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
!7

!6

!5

!4

!3

!2

!1

arctan(m�)
IRUV

h�� (m�)

d = 3

d = 4



��(m�)
�� (m�)

0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

arctan(m�)UV IR

d = 3

d = 4



Discussions



• Proposal: d-dim. QFT -> (d+1) dim. induced metric

• using flow equation

• Properties in the large N limit

• UV finiteness

• metric becomes classical

• Results: large N scalar model

• IR -> Euclidean AdS at d>1 

• UV -> Euclidean AdS at d > 2

Summary



Questions
• this approach meaningful ?

• relation to holography ?

• higher spin theories ?

• non CFT -> geometries ?

• quantum fluctuations in the large N expansion

• Other models ?

• fermions, gauge fields -> ?

• finite Temperature -> black hole ?

�gµ1�1(z1)gµ2�2(z2)�c = O

�
1
N

�


