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For a nonlocal, nonobservable, ultraviolet cut-off dependent
| quantity, entanglement entropy has become surprisingly
important in theoretical physics today.

A Unifying Theme




Why 1s It Important?

+ Quantum information, communication and computation — measure of
entanglement in quantum systems

+ Condensed matter physics — order parameter for exotic phase transitions
(Osborne-Nielsen 2002, Vidal et al. 2003)

+ Quantum field theory (QFT) — measure of renormalization group flow (a
and ¢ theorems) (Casini-Huerta 2006, 2012)

+ Gravity — relations to black hole entropy Bombelii et al. 1986, Srednicki 1993);
Bekenstein bound (casini 2008)

+ String theory — Ryu-Takayanagi (2006) formula and AdS/CFT ties QFT
and gravity aspects together.



Iwolales from the Edge

For conformal field theories (CFTs)

+ Thermal corrections to entanglement entropy (work with
M. Spillane, J. Nian, R. Vaz, and J. Cardy).

+ Universal contributions to entanglement entropy at
zero temperature (work with K.-W. Huang and K. Jensen).

Moral: The importance of boundary terms.



Irick for Calculating EE of ClI'l's

A

Has T —72/el

conformal
transformation

For caps on spheres and balls in flat space,
“A” gets mapped to all of hyperbolic space.



Riemannian

infinite u

Euclidean cut-off surface




Map to Hyperbolic Space

+ Density matrix on hyperbolic space is thermal: g = 2x/

—BH
p = g H called the modular Hamiltonian
tre—BH

# pa=U"'pU for some unitary operator U.

+ EE invariant under Uimplies thermal entropy of
hyperbolic space is EE. (sece.g. Casini-Huerta-Myers 2011)



A'lale from the Edge




Thermal Corrections?

The initial density matrix is e~ H/T

not that of a pure state!

A e

Entanglement entropy measures some combination
of thermal entropy and quantum entanglement.

Why bother with thermal effects?

<+ Nice to be able to remove them.
<+ Lessons to be learned from EE in non-traditional contexts.
+ Connection to black hole physics.



A Universal Result

In the ¢T < 1 limit, for a cap A
of opening angle 26 on the S?,

B
Sg(A,T) — Sg(B,T) = 2rgml cot(8)e™™' T + o(e=™/T)
(Herzog 2014)

m is the mass gap, ~ 1/4
¢ is the degeneracy of the 1st excited state

+ Turns out to be true for any CFT in any dimension!
+ Subleading in a large N expansion.
+ The exp(-m/T) Boltzmann suppression should

be true of any gapped QFT (Herzog-Spillane 2012).



Where does it come from?

o—H/T

ait filce

Start with a thermal density matrix

(That p is mixed means we’re not really
measuring quantum entanglement.)

Make a small T perturbative expansion

Need to calculate (¢ (x)¥(y)logpa(0))

where ¥ (x) creates the first excited state.






A Special Trick tor CEF'T's

For CFTs and “A” a cap on a sphere, —log pa(0)

is unitarily related to the Hamiltonian on hyperbolic space.

H is the integral of the t# component
of the stress-energy tensor Ty.

W(2)P(y) log pa(0)) = () (y)T,.(0))

Three point functions involving the stress tensor in CFTs are
constrained by symmetry to take relatively simple forms.



Related Result Not Quite Right

From the modular Hamiltonian method

Se(A,T) — Sg(A,0) = gmbl;(0)e ™ T + ...

where B
Vol(Se=2 ) i o= Gos\0y s o)
=2 0 do
a(0) = 27 G5 /O STV

But for a scalar field, it turns out other methods match 1,;.,(9).

WHAT’S GOING ON!?!



A Resolution

Claim: The modular Hamiltonian should be defined with nonsingular
Robin or Neumann boundary conditions.

+ Sometime the naive modular Hamiltonian may be self-adjoint with
bad (singular) boundary conditions.

+ Sometimes the naive modular Hamiltonian can be improved by a
boundary term to a modular Hamiltonian with good (non-singular)
boundary conditions

+ This problem and resolution occurs for both the conformally coupled
scalar and for 4d gauge fields.



Half Space Entanglement

Stress tensor for a conformally coupled scalar field

1

T,uu e u¢au¢ I 5‘%”(6@2 o f(a,uau % guvaz)¢2

Naively, the modular Hamiltonian is

e — 27?/ S L il i) — JEh = 27T§/ d% %z ¢%(z)
x>0 D=0

Zero modes of H have boundary behavior
W= =l T s

The Robin condition for He means b will be nonzero!

The Neumann condition for Hy allows b = 0.

Lee, Lewkowycz, Perlmutter, Safdi (2014);
Casini, Mazitelli, Teste (2014)



T'he boundary term

Claim: This boundary counter-term appears in the hyperbolic space
computation as

AVEE Thite d 2 Ao
OHI-1

and it is precisely what the doctor ordered to fix the discrepancy
in the thermal correction story and send

Ig 2(0) — 14(0)



Boundary Terms i AdS/CEF'T

Holo RG for a scalar ¢ generically requires at least the boundary term

Valcs

0AdS

and often also VyeUe
OAdS

Holo RG for the metric requires a host of boundary terms

0AdS

K / o R / ﬁRQ etc.
/8Adsﬁ ? BAdS\/_' vl HAdS /



Boundary Terms i AdS/CEF'T

Holo RG for a scalar ¢ generically requires at least the boundary term

Vol

5AdS \

S e 7600 crucial for und.erstandmg
dAdS an apparent discrepancy

for the thermal corrections story

Holo RG for the metric requires a host of boundary terms

0AdS

K / o R / ﬁRQ etc.
/8Adsﬁ ? BAdS\/_' vl HAdS /



Boundary Terms i AdS/CEF'T

Holo RG for a scalar ¢ generically requires at least the boundary term

Valcs

Og Think about it as the boundary
b oftenalse o0 term for the 2d Euler character.

A higher dimensional analog
will be key for the zero
temperature story




Boundary Terms i AdS/CEF'T

Holo RG for a scalar ¢ generically requires at least the boundary term

s S
and often also VY9e

0AdS

Holo RG for the metric requires a host of botindary terms

0AdS

K / o R / ﬁRQ etc.
/8Adsﬁ ? BAdS\/_' vl HAdS /



A Second lale from the Edge




Universal contributions to EE at
zero [

There is a “universal” contribution to EE that

is proportional to “a” anomaly coefficient in (I}, ).

4a
TR e e Vol(59) ¢ T S

e

Weyl curvature Euler density
invariants UV cutoff
Area(0A) 0

-+ 4&(—1)d/2 In z A
/ (Solodukhin 2008;
2 xEuler character of sphere. Cosihi i e 20i0)



First Take

Map the ball to a manifold with a single scale ¢,
say Hy_1 x S'of the previous story or dS.

For such a manifold

d

—_— Y T,LL d 4
ZOMW / alste 0
= W ~ axlog({/e)

iSEN(ﬁ%—l)W

Works for dS (Casini-Huerta-Myers (2011)), but not for Hg_1 X S L

One problem CHM ran into is that E; vanishes for Hy 1 x S,




Can we Succeed where CHM failed:
2D Case

We want to deduce an effective action W|g,,| from the trace anomaly

G
et s

< “’> 247TR

According to Polchinski, in the presence of a boundary, the most general

form for the anomalous variation is

C

O W = / d2:1:\/§R 00 + 2/ dy/vK o0
247 M OM

K here is the trace of the extrinsic curvature.

The Euler characteristic for a 2d manifold with boundary!



The 2d effective action.

We want to integrate o, W.
In fact the best I can do is determine a difference:

W[g,uw 6_27-9“”] — W[g,uv] o W[6_2Tg,uu]

The answer is

W= | [ oy (Rlgulr - @) +2 | duv/iKlgulr

oM

Various methods: 1) guess work
2) dimensional regularization
3) integral formula




Dimensional Regularization

Define W[QW] in n = 2+ ¢ dimensions.

S C

Then
WGy, €27 gr] = lim (Wlg] — We g,

n—2

Trick employed by Brown and Cassidy (1977).
Relies on nice transformation properties of R under
Weyl scaling.

under g,, — e_QTgW, VIR — 6(2_”)T\/§R + total derivative



Entanglement of an Interval

+ Consider an interval with endpoints u and v on the z plane
along with the following map to the cylinder with
coordinate w:

2rw/B _ i

e
N 1 1 1
SR — el ﬁ + c.c.
2 20 \v — Z U — z

+ The cylinder has a periodic Euclidean time coordinate.

+ The reduced density matrix on the interval is mapped to the
thermal density matrix on the cylinder with inverse
temperature f3.



Plan of Attack

Can be obtained from

: FEN Think of this term as
Schwarzian derivative Y
which in turn can be AU 6_2T5W] —
derived from varying

W:g,um 6_27-g,uu]

with respect to the metric.



Assembling the Pieces

v — uf

) v\ Comes from regulating

infinite volume of

BLH) ~ gln

—27 C |?) s U‘ 3
Widpw, e ; Opuw] [bulk ~ G In 5 / the cylinder
o e T multiplying K
Wiouv, € 0 boundary 3 i 5 = in the effective action
—~ c. |v—ul g
—W 10, ~ 3 In g D1m. reg of
extrinsic curvature
c. |v—ul

Sg ~ —~In Holzhey, Larsen, Wilczek (1994)

3 0



Remarks about 2d

+ Two ways of picking apart the answer.
+ EE comes from bulk terms on the cylinder.
+ EE comes purely from W[5 e

+ One can use W|d,,,e *76,,] for three purposes:
+ to derive Schwarzian derivative

+ to compute the EE

. : 1 A
+ to compute the Rényi entropies S,, ~ % (n 2 _> o v 5 U,
n



Anomaly Action in General

£ __J)

a” contribution to trace anomaly comes from the Euler character x

5. W = (—1)¥22ax (M) + ...

= (—1)%2 = Vila(Sd) (/M/Eddg P Q\ﬁa) s

Euler density CS like term

Then for dim reg, define
7! v = (—1 die / n _/ n
g = ) e = vl (57) ( L ’d)

and W[g,ﬂ/, g,UJ/] = iy (W[g,uu] LG /W[e_QTgMV])

n—d




4d effective action

Euler density Einstein tensor

N

Wlguv, e 2 gu] = ( 4%2 /M disr TEs + 4E" (8,7)(0,7) + 8(D,0,7)(8%7) (8" T) + 2(87)4}

a

/aM A3y /v [TQ4 + 4(K~y*P — K*P)(0,7)(057) + §7‘3]

(47)? T 3
CS like term: only place t appears noImal
w/out a derivative in the bry derivative of T

Bulk term figured in Komargodski-Schwimmer proof of the “a”-theorem

Boundary term is a new result.



6d effective action (bulk]

W[g,uw 6_2Tguu](Bu1k) e
/ d6aj\/§ {—TE6 + SElSZV)@“T@VT 6@ - (B0 emilicie R 05w
M

3(4m)3

RO lGEm)d D, 0 o) dam(dm Bl s 6R(0T)*
—24(07)*(DOT)? 4 24(87)*(O7)? — 36(07)(07)* + 24(07)°} .
where

E@W = gt By + 8RHRP — AR*™ R + 8R,c R*"7 — 4R* ;5. RVP°T |
Cuvpo = Ruvpoe — JupBue + Guo Ry

Reproduces a result from Flvang, Freedman, Hung, Kiermaier, Myers,
Theisen (2012).



bd effective action (conformally flat)

Wl e8] = — =2 / d82\/5 {2(07)%(9,0,7)% — 2(9r)2(Or)? + 30r(97)* — 2(87)°)

a

i | 4| {7Quldun) + 485 (07)(077) + 3Qul8, (D7)

IS 48K045(|i7-> (f)Oé@BT) —— 24K(f)a857')2 et 48Ka,7 (f)ﬁaaT)(f)’yaﬂT)
— 24K (07)? — 32K (D7)207 — 16K (0%7)(8%7) (D0 d57)

only T +16K,5(0%7)(8°7)0r + 32K ,3(D*8°7) (D)% + 12K 7
in the bry + 12K (D7) + 24K (D7)%72 + 48(Ur)(D7)%(72) + 16(07)(72)
i 24([0)7')27'3 = 367n(f)7)4 = 35—67',2}
where

P = (e — tr( K2 K = KR S K o 206 ST

The boundary term is a new result.



EE of the Ball @ _\

ﬂat space
/

b el el
— [—dT2 + ¢2(du® + sinh® v dO2_ )}

where \

e 7 = coshu + coshT/¢

ds?

SE S 5<H> s W[5uua 6_205,u,u] ¥V W[(S/u/]



Assembling the Pieces:

4d

3

14
5<H> L _ialn g
3 4

e ¢
W[éuya € : 5,ul/“bounda,ry ~ 4aln g

= 14
_W[5,L”/] ~ —4aln g

l
SE o —4aln5



Assembling the Pieces: 6d

B(H) ~ Zalng

5 /

WMW/? 6_205,u1/] ‘bulk ~|—=4+4)aln-

4 0

—20 K

W[5MV7 € 5,u1/] ’boundary ~ —4aln g
e 14

SE ~ 4aln§



Technmecal Problem

Why can’t I give you the story in general dimension?

Order of limits issue
(fixing the metric before or after
taking the n to d limit)

I have not been able to evaluate /W\?[gw,]

fort S o< Himelially:

. 95 : ; :
Computing W|g,..,e” “? g becomes harder as dimension increases.



Point of View #1

We can make an invariant distinction between W|J,,,, C D ot

By s o]

Then B{H) + W0y, e *"6u]lbuic computes the EE

N

while W[, e *",0][boundary — W[0uw] comes purely from
flat space and vanishes

Somewhat nicer — clean separation:
Maps a problem in flat space to a problem in hyperbolic space.



Point of View #2

—W/[%y] computes the EE and all the other terms cancel.

Consistent with Solodukhin’s result in 4d
that the “a” contribution to the EE is proportional

to x of the entangling surface.

9
So o) lnz =

Somewhat discouraging:
We tried to map the problem to hyperbolic space
but somehow never got away from flat space.



A Failed lIdea




Try to use W1d,,] to calculate other central charges in the EE.

Deduce EE associated to >

0 from boundary part of W([é =
/ evaluated on OM .

Only works for the “a”
central charge.



Fimal Remarks

+ For certain types of entanglement entropy, mapping to
hyperbolic space is a useful tool.

+ Hyperbolic space has a boundary, and the boundary
has important effects.

<+ Thermal corrections.

+ Log contribution to the zero T EE.
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