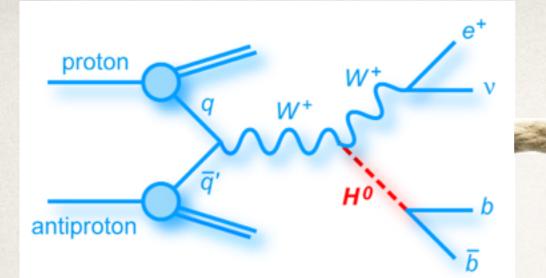
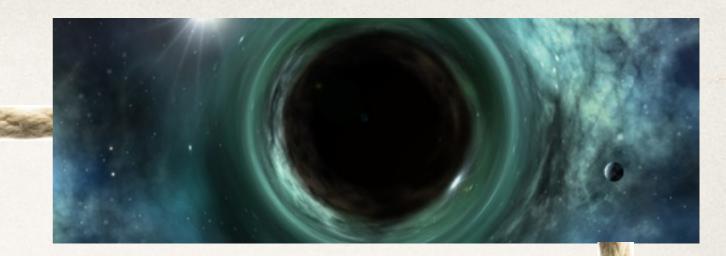


Tales from the Edge: Boundary Terms and Entanglement Entropy

Christopher Herzog (Stony Brook University)

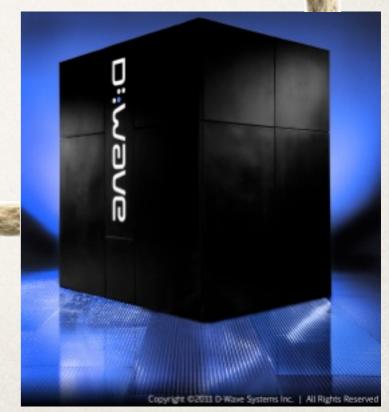
May 30, 2016





For a nonlocal, nonobservable, ultraviolet cut-off dependent quantity, entanglement entropy has become surprisingly important in theoretical physics today.

A Unifying Theme



Why is It Important?

- Quantum information, communication and computation measure of entanglement in quantum systems
- Condensed matter physics order parameter for exotic phase transitions (Osborne-Nielsen 2002, Vidal et al. 2003)
- Quantum field theory (QFT) measure of renormalization group flow (a and c theorems) (Casini-Huerta 2006, 2012)
- Gravity relations to black hole entropy (Bombelli et al. 1986, Srednicki 1993);
 Bekenstein bound (Casini 2008)
- String theory Ryu-Takayanagi (2006) formula and AdS/CFT ties QFT and gravity aspects together.

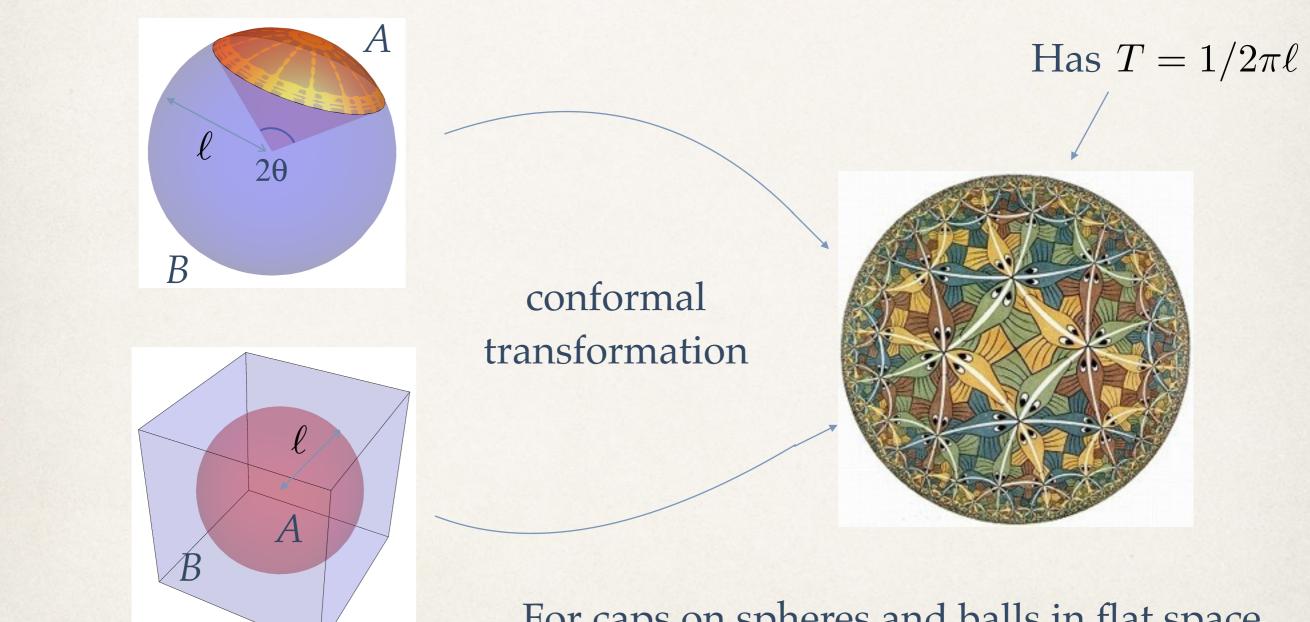
Two Tales from the Edge

For conformal field theories (CFTs)

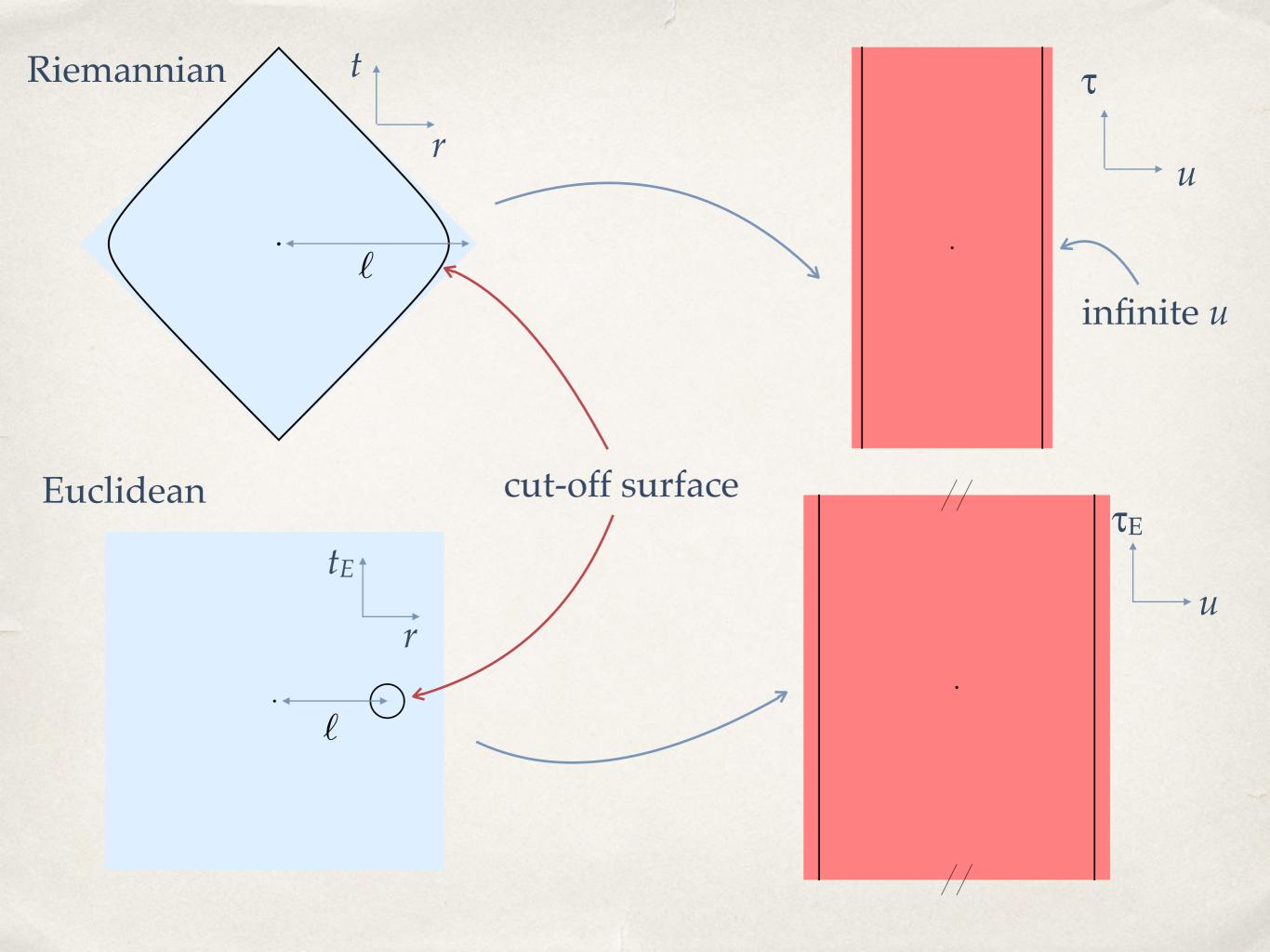
- Thermal corrections to entanglement entropy (work with M. Spillane, J. Nian, R. Vaz, and J. Cardy).
- Universal contributions to entanglement entropy at zero temperature (work with K.-W. Huang and K. Jensen).

Moral: The importance of boundary terms.

Trick for Calculating EE of CFTs



For caps on spheres and balls in flat space, "*A*" gets mapped to all of hyperbolic space.



Map to Hyperbolic Space

• Density matrix on hyperbolic space is thermal: $\beta = 2\pi \ell$

$$\rho = \frac{e^{-\beta H}}{\operatorname{tr} e^{-\beta H}} \qquad \qquad H \text{ called the modular Hamiltonian}$$

• $\rho_A = U^{-1}\rho U$ for some unitary operator *U*.

 EE invariant under *U* implies thermal entropy of hyperbolic space is EE. (see e.g. Casini-Huerta-Myers 2011)

A Tale from the Edge

Thermal Corrections?

The initial density matrix is not that of a pure state!

$$\rho(T) = \frac{e^{-H/T}}{\operatorname{tr}(e^{-H/T})}$$

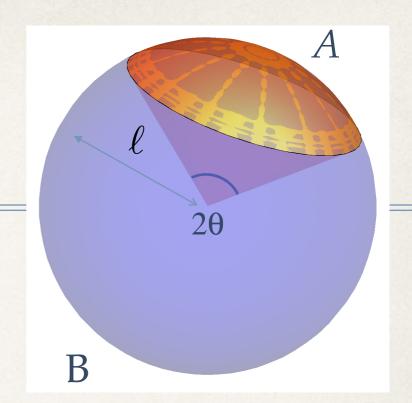
Entanglement entropy measures some combination of thermal entropy and quantum entanglement.

Why bother with thermal effects?

- Nice to be able to remove them.
- Lessons to be learned from EE in non-traditional contexts.
- Connection to black hole physics.

A Universal Result

In the $\ell T \ll 1$ limit, for a cap *A* of opening angle 2 θ on the S³,



$$S_E(A,T) - S_E(B,T) = 2\pi gm\ell \cot(\theta)e^{-m/T} + o(e^{-m/T})$$

(Herzog 2014)

m is the mass gap, $\sim 1/\ell$ *g* is the degeneracy of the 1st excited state

- Turns out to be true for any CFT in any dimension!
- Subleading in a large N expansion.
- The exp(-m/T) Boltzmann suppression should be true of any gapped QFT (Herzog-Spillane 2012).

Where does it come from?

Start with a thermal density matrix

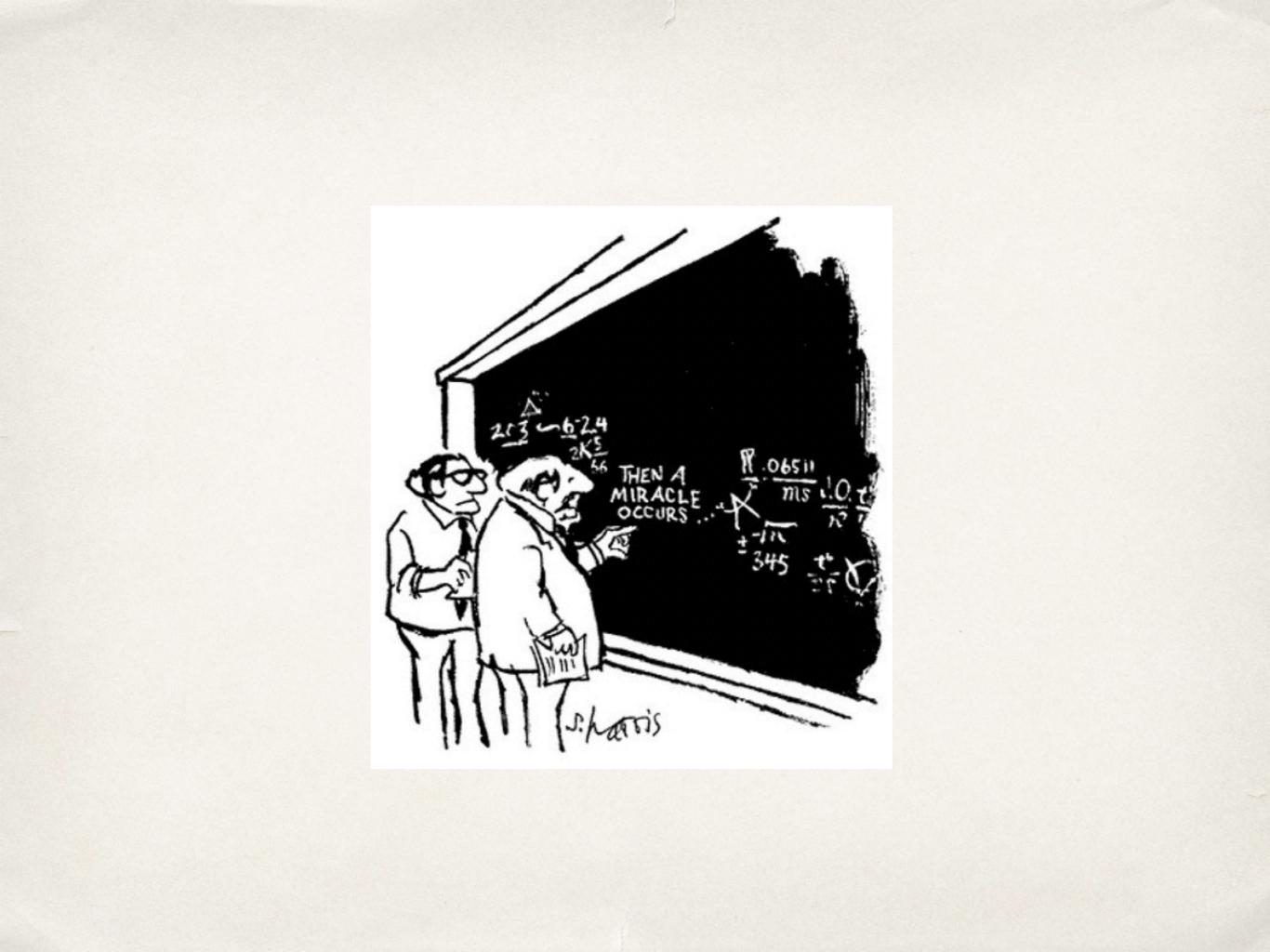
$$\rho(T) = \frac{e^{-H/T}}{\operatorname{tr}(e^{-H/T})}$$

(That ρ is mixed means we're not really measuring quantum entanglement.)

Make a small *T* perturbative expansion

Need to calculate $\langle \psi(x)\psi(y)\log\rho_A(0)\rangle$

where $\psi(x)$ creates the first excited state.



A Special Trick for CFTs

For CFTs and "*A*" a cap on a sphere, $-\log \rho_A(0)$

is unitarily related to the Hamiltonian on hyperbolic space.

H is the integral of the *tt* component of the stress-energy tensor $T_{\mu\nu}$.

 $\langle \psi(x)\psi(y)\log\rho_A(0)\rangle \to \langle \psi(x)\psi(y)T_{\mu\nu}(0)\rangle$

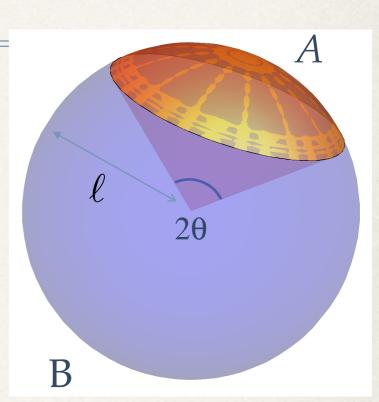
Three point functions involving the stress tensor in CFTs are constrained by symmetry to take relatively simple forms.

Related Result Not Quite Right

From the modular Hamiltonian method

$$S_E(A,T) - S_E(A,0) = gm\ell I_d(\theta)e^{-m/T} + \dots$$

where



$$I_d(\theta) = 2\pi \frac{\operatorname{Vol}(S^{d-2})}{\operatorname{Vol}(S^{d-1})} \int_0^{\theta_0} \frac{\cos \theta - \cos \theta_0}{\sin \theta_0} \sin^{d-2} \theta \, \mathrm{d}\theta$$

But for a scalar field, it turns out other methods match $I_{d-2}(\theta)$.

WHAT'S GOING ON !?!

A Resolution

Claim: The modular Hamiltonian should be defined with nonsingular Robin or Neumann boundary conditions.

- Sometime the naive modular Hamiltonian may be self-adjoint with bad (singular) boundary conditions.
- Sometimes the naive modular Hamiltonian can be improved by a boundary term to a modular Hamiltonian with good (non-singular) boundary conditions
- This problem and resolution occurs for both the conformally coupled scalar and for 4d gauge fields.

Half Space Entanglement

Stress tensor for a conformally coupled scalar field

$$T_{\mu\nu} = \partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}g_{\mu\nu}(\partial\phi)^2 - \xi(\partial_{\mu}\partial_{\nu} - g_{\mu\nu}\partial^2)\phi^2$$

Naively, the modular Hamiltonian is

$$H_{\xi} = 2\pi \int_{x^{1}>0} \mathrm{d}^{d-1}x \, x^{1} \, T_{00}(x,\xi) = H_{0} - 2\pi \xi \int_{x^{1}=0} \mathrm{d}^{d-2}x \, \phi^{2}(x)$$

Zero modes of *H* have boundary behavior

$$\phi = a + b \log(x^1) + \dots$$

The Robin condition for H_{ξ} means b will be nonzero! The Neumann condition for H_0 allows b = 0. Lee, Lewkowycz, Perlmutter, Safdi (2014); Casini, Mazitelli, Teste (2014)

The boundary term

Claim: This boundary counter-term appears in the hyperbolic space computation as

$$\Delta H = 2\pi\xi \int_{\partial H^{d-1}} \mathrm{d}^{d-2}x \sqrt{\gamma} \,\phi^2$$

and it is precisely what the doctor ordered to fix the discrepancy in the thermal correction story and send

 $I_{d-2}(\theta) \to I_d(\theta)$

Holo RG for a scalar ϕ generically requires at least the boundary term

 $\int_{\partial AdS} \sqrt{\gamma} \phi^2$

and often also $\int_{\partial A}$

$$\sqrt{\gamma}\phi \Box \phi$$

$$\int_{\partial AdS} \sqrt{\gamma} K \,, \, \int_{\partial AdS} \sqrt{\gamma} \,, \, \int_{\partial AdS} \sqrt{\gamma} R \,, \, \int_{\partial AdS} \sqrt{\gamma} R^2 \,, \, \text{etc.}$$

Holo RG for a scalar ϕ generically requires at least the boundary term

and often also

$$\gamma \sqrt{\gamma}\phi \Box \phi$$

crucial for understanding an apparent discrepancy for the thermal corrections story

$$\int_{\partial AdS} \sqrt{\gamma} K \, , \, \int_{\partial AdS} \sqrt{\gamma} \, , \, \int_{\partial AdS} \sqrt{\gamma} R \, , \, \int_{\partial AdS} \sqrt{\gamma} R^2 \, , \, \text{etc.}$$

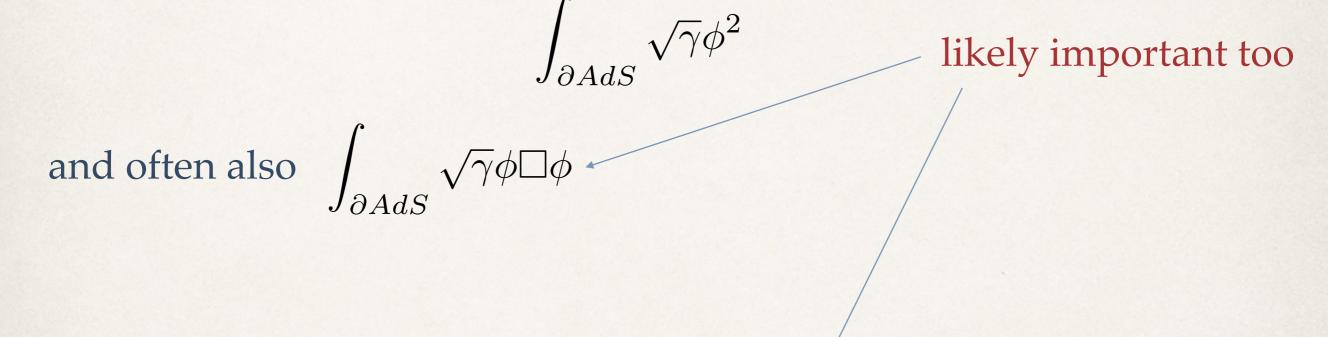
Holo RG for a scalar ϕ generically requires at least the boundary term

and often also $\int_{\partial AdS} \sqrt{\gamma} \phi \Box \phi$

 $\int_{\partial AdS} \sqrt{\gamma} \phi^2$ Think about it as the boundary term for the 2d Euler character. A higher dimensional analog will be key for the zero temperature story

 $\int_{\partial AdS} \sqrt{\gamma} K', \int_{\partial AdS} \sqrt{\gamma}, \int_{\partial AdS} \sqrt{\gamma} R, \int_{\partial AdS} \sqrt{\gamma} R^2, \text{ etc.}$

Holo RG for a scalar ϕ generically requires at least the boundary term

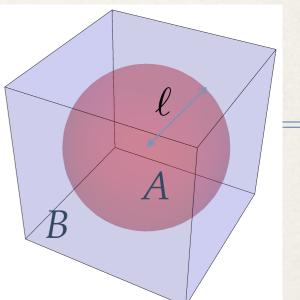


$$\int_{\partial AdS} \sqrt{\gamma} K \,, \, \int_{\partial AdS} \sqrt{\gamma} \,, \, \int_{\partial AdS} \sqrt{\gamma} R \,, \, \int_{\partial AdS} \sqrt{\gamma} R^2 \,, \, \text{etc.}$$

A Second Tale from the Edge

Universal contributions to EE at zero *T*

There is a "universal" contribution to EE that is proportional to "a" anomaly coefficient in $\langle T^{\mu}_{\mu} \rangle$.



$$T^{\mu}{}_{\mu}\rangle = \sum_{j} c_{j}I_{j} - (-1)^{d/2} \frac{4a}{d! \operatorname{Vol}(S^{d})} E_{d} + \operatorname{D}_{\mu}J^{\mu}$$
Weyl curvature Euler density
invariants UV cutoff
$$S_{E} = \alpha \frac{\operatorname{Area}(\partial A)}{\delta^{d-2}} + \ldots + 4a(-1)^{d/2} \ln \frac{\delta}{\ell} + \ldots$$

$$2 \times \text{Euler character of sphere.} \qquad \text{(Solodukhin 2008; Casini-Huerta-Myers 2012)}$$

First Take

Map the ball to a manifold with a single scale ℓ , say $H_{d-1} \times S^1$ of the previous story or dS.

For such a manifold $\ell \frac{d}{d\ell} W \sim \int T^{\mu}_{\mu} d^{d}x \sim a\chi$ $\Rightarrow W \sim a\chi \log(\ell/\epsilon)$ $\Rightarrow S_{E} \sim (\beta \frac{d}{d\beta} - 1)W$

Works for dS (Casini-Huerta-Myers (2011)), but not for $H_{d-1} \times S^1$. One problem CHM ran into is that E_d vanishes for $H_{d-1} \times S^1$.

Can we Succeed where CHM failed: 2D Case

We want to deduce an effective action $W[g_{\mu\nu}]$ from the trace anomaly $\langle T^{\mu}_{\mu} \rangle = \frac{c}{24\pi} R$

According to Polchinski, in the presence of a boundary, the most general form for the anomalous variation is

$$\delta_{\sigma}W = -\frac{c}{24\pi} \left[\int_{M} \mathrm{d}^{2}x \sqrt{g}R \,\delta\sigma + 2 \int_{\partial M} \mathrm{d}y \sqrt{\gamma}K \,\delta\sigma \right]$$

K here is the trace of the extrinsic curvature.

The Euler characteristic for a 2d manifold with boundary!

The 2d effective action.

We want to integrate $\delta_{\sigma}W$. In fact the best I can do is determine a difference:

$$\mathcal{W}[g_{\mu\nu}, e^{-2\tau}g_{\mu\nu}] \equiv W[g_{\mu\nu}] - W[e^{-2\tau}g_{\mu\nu}]$$

The answer is

$$\mathcal{W} = -\frac{c}{24\pi} \left[\int_M \mathrm{d}^2 x \sqrt{g} \left(R[g_{\mu\nu}]\tau - (\partial\tau)^2 \right) + 2 \int_{\partial M} \mathrm{d}y \sqrt{\gamma} \, K[g_{\mu\nu}]\tau \right]$$

Various methods:

guess work
 dimensional regularization
 integral formula

Dimensional Regularization

Define $\widetilde{W}[g_{\mu\nu}]$ in $n = 2 + \epsilon$ dimensions.

$$\widetilde{W}[g_{\mu\nu}] \equiv -\frac{c}{24\pi(n-2)} \left[\int_M \mathrm{d}^n x \sqrt{g} \, R + 2 \int_{\partial M} \mathrm{d}^{n-1} y \sqrt{\gamma} \, K \right]$$

Then

$$\mathcal{W}[g_{\mu\nu}, e^{-2\tau}g_{\mu\nu}] = \lim_{n \to 2} \left(\widetilde{W}[g_{\mu\nu}] - \widetilde{W}[e^{-2\tau}g_{\mu\nu}] \right)$$

Trick employed by Brown and Cassidy (1977). Relies on nice transformation properties of *R* under Weyl scaling.

under $g_{\mu\nu} \to e^{-2\tau} g_{\mu\nu}, \ \sqrt{g}R \to e^{(2-n)\tau} \sqrt{g}R + \text{total derivative}$

Entanglement of an Interval

Consider an interval with endpoints *u* and *v* on the *z* plane along with the following map to the cylinder with coordinate *w*:

$$e^{2\pi w/\beta} = \frac{z-u}{z-v} \qquad \Rightarrow \tau = -\frac{1}{2} \ln \left[\frac{\beta}{2\pi} \left(\frac{1}{v-z} - \frac{1}{u-z} \right) \right] + c.c.$$

- The cylinder has a periodic Euclidean time coordinate.
- The reduced density matrix on the interval is mapped to the thermal density matrix on the cylinder with inverse temperature β.

Plan of Attack

Can be obtained from Schwarzian derivative which in turn can be derived from varying $\mathcal{W}[g_{\mu\nu}, e^{-2\tau}g_{\mu\nu}]$ with respect to the metric.

Think of this term as

 $S_E = \beta \langle H \rangle - W_{\rm cyl}$

$$\mathcal{W}[\delta_{\mu\nu}, e^{-2\tau}\delta_{\mu\nu}] - \widetilde{W}[\delta_{\mu\nu}]$$

Assembling the Pieces

$$\beta \langle H \rangle \sim \frac{c}{6} \ln \frac{|v - u|}{\delta}$$

$$\mathcal{W}[\delta_{\mu\nu}, e^{-2\tau}\delta_{\mu\nu}]|_{\text{bulk}} \sim \frac{c}{6}\ln\frac{|v-u|}{\delta}$$

 $\mathcal{W}[\delta_{\mu\nu}, e^{-2\tau}\delta_{\mu\nu}]|_{\text{boundary}} \sim -\frac{c}{3}\ln\frac{|v-u|}{\delta}$

Comes from regulating infinite volume of the cylinder

τ multiplying K
in the effective action

$$-\widetilde{W}[\delta_{\mu\nu}] \sim \frac{c}{3} \ln \frac{|v-u|}{\delta}$$

Dim reg of extrinsic curvature

$$S_E \sim \frac{c}{3} \ln \frac{|v-u|}{\delta}$$

Holzhey, Larsen, Wilczek (1994)

Remarks about 2d

- Two ways of picking apart the answer.
 - EE comes from bulk terms on the cylinder.
 - * EE comes purely from $W[\delta_{\mu\nu}]$
- * One can use $\mathcal{W}[\delta_{\mu\nu}, e^{-2\tau}\delta_{\mu\nu}]$ for three purposes:
 - to derive Schwarzian derivative
 - to compute the EE
 - to compute the Rényi entropies

$$S_n \sim \frac{c}{6} \left(n + \frac{1}{n} \right) \ln \frac{|v - u|}{\delta}$$

Anomaly Action in General

"a" contribution to trace anomaly comes from the Euler character χ

$$\delta_{\sigma}W = (-1)^{d/2} 2a\chi(M) + \dots$$

$$= (-1)^{d/2} \frac{4a}{d! \operatorname{Vol}(S^d)} \left(\int_M \mathcal{E}_d \delta\sigma - \int_{\partial M} \mathcal{Q}_d \delta\sigma \right) + \dots$$
Fuller density
CS like term

Luici uclisity

Then for dim reg, define

$$\widetilde{W}[g_{\mu\nu}] = (-1)^{d/2} \frac{4a}{(n-d)d! \operatorname{Vol}(S^d)} \left(\int_M \mathcal{E}_{n,d} - \int_{\partial M} \mathcal{Q}_{n,d} \right)$$

and
$$\mathcal{W}[g_{\mu\nu}, e^{-2\tau}g_{\mu\nu}] = \lim_{n \to d} \left(\widetilde{W}[g_{\mu\nu}] - \widetilde{W}[e^{-2\tau}g_{\mu\nu}]\right)$$

4d effective action

Euler density Einstein tensor $\mathcal{W}[g_{\mu\nu}, e^{-2\tau}g_{\mu\nu}] = \frac{a}{(4\pi)^2} \int_M d^4x \sqrt{g} \left[\tau E_4 + 4E^{\mu\nu}(\partial_\mu \tau)(\partial_\nu \tau) + 8(D_\mu \partial_\nu \tau)(\partial^\mu \tau)(\partial^\nu \tau) + 2(\partial \tau)^4\right]$ $- \frac{a}{(4\pi)^2} \int_{\partial M} d^3y \sqrt{\gamma} \left[\tau Q_4 + 4(K\gamma^{\alpha\beta} - K^{\alpha\beta})(\partial_\alpha \tau)(\partial_\beta \tau) + \frac{8}{3}\tau_n^3\right]$ CS like term: only place τ appears normal derivative of τ

Bulk term figured in Komargodski-Schwimmer proof of the "a"-theorem

Boundary term is a new result.

6d effective action (bulk)

$$\mathcal{W}[g_{\mu\nu}, e^{-2\tau}g_{\mu\nu}]_{(\text{Bulk})} = \frac{a}{3(4\pi)^3} \int_M d^6x \sqrt{g} \left\{ -\tau E_6 + 3E^{(2)}_{\mu\nu} \partial^{\mu}\tau \partial^{\nu}\tau + 16C_{\mu\nu\rho\sigma} (D^{\mu}\partial^{\rho}\tau)(\partial^{\nu}\tau)(\partial^{\sigma}\tau) + 16E_{\mu\nu} \left[(\partial^{\mu}\tau)(\partial^{\rho}\tau)(D_{\rho}\partial^{\nu}\tau) - (\partial^{\mu}\tau)(\partial^{\nu}\tau)\Box\tau \right] - 6R(\partial\tau)^4 - 24(\partial\tau)^2 (D\partial\tau)^2 + 24(\partial\tau)^2 (\Box\tau)^2 - 36(\Box\tau)(\partial\tau)^4 + 24(\partial\tau)^6 \right\}$$

where

$$E^{(2)\mu\nu} \equiv g^{\mu\nu}E_4 + 8R^{\mu}_{\rho}R^{\rho\nu} - 4R^{\mu\nu}R + 8R_{\rho\sigma}R^{\mu\rho\nu\sigma} - 4R^{\mu}_{\rho\sigma\tau}R^{\nu\rho\sigma\tau} ,$$
$$C_{\mu\nu\rho\sigma} \equiv R_{\mu\nu\rho\sigma} - g_{\mu\rho}R_{\nu\sigma} + g_{\mu\sigma}R_{\nu\rho}$$

Reproduces a result from Elvang, Freedman, Hung, Kiermaier, Myers, Theisen (2012).

6d effective action (conformally flat)

$$\begin{split} \mathcal{W}[\delta_{\mu\nu}, e^{-2\tau}\delta_{\mu\nu}] &= -\frac{a}{16\pi^3} \int_M \mathrm{d}^6 x \sqrt{g} \left\{ 2(\partial\tau)^2 (\partial_\mu\partial_\nu\tau)^2 - 2(\partial\tau)^2 (\Box\tau)^2 + 3\Box\tau(\partial\tau)^4 - 2(\partial\tau)^6 \right\} \\ &- \frac{a}{3(4\pi)^3} \int_{\partial M} \mathrm{d}^5 y \sqrt{\gamma} \Big[-\tau Q_6[\delta_{\mu\nu}] + 48P^{\alpha}_{\beta}(\partial_{\alpha}\tau)(\partial^{\beta}\tau) + 3Q_4[\delta_{\mu\nu}](\mathring{\mathrm{D}}\tau)^2 \\ &+ 48K^{\alpha\beta}(\mathring{\mathrm{D}}\tau)(\mathring{\mathrm{D}}_{\alpha}\partial_{\beta}\tau) + 24K(\mathring{\mathrm{D}}_{\alpha}\partial_{\beta}\tau)^2 - 48K_{\alpha\gamma}(\mathring{\mathrm{D}}^{\beta}\partial^{\alpha}\tau)(\mathring{\mathrm{D}}^{\gamma}\partial_{\beta}\tau) \\ &- 24K(\mathring{\mathrm{D}}\tau)^2 - 32K(\mathring{\mathrm{D}}\tau)^2\mathring{\mathrm{D}}\tau - 16K(\partial^{\alpha}\tau)(\partial^{\beta}\tau)(\mathring{\mathrm{D}}_{\alpha}\partial_{\beta}\tau) \\ &+ 16K_{\alpha\beta}(\partial^{\alpha}\tau)(\partial^{\beta}\tau)\mathring{\mathrm{D}}\tau + 32K_{\alpha\beta}(\mathring{\mathrm{D}}^{\alpha}\partial^{\beta}\tau)(\mathring{\mathrm{D}}\tau)^2 + 12K\tau_n^4 \\ &\text{in the bry} \\ &+ 12K(\mathring{\mathrm{D}}\tau)^4 + 24K(\mathring{\mathrm{D}}\tau)^2\tau_n^2 + 48(\mathring{\mathrm{D}}\tau)(\mathring{\mathrm{D}}\tau)^2(\tau_n) + 16(\mathring{\mathrm{D}}\tau)(\tau_n^3) \\ &- 24(\mathring{\mathrm{D}}\tau)^2\tau_n^3 - 36\tau_n(\mathring{\mathrm{D}}\tau)^4 - \frac{36}{5}\tau_n^5 \Big] \end{split}$$

where

 $P^{\alpha}_{\beta} \equiv \left(K^2 - \operatorname{tr}(K^2)\right) K^{\alpha}_{\beta} - 2KK^{\alpha\gamma}K_{\beta\gamma} + 2K_{\gamma\delta}K^{\alpha\gamma}K^{\delta}_{\beta}$

The boundary term is a new result.

EE of the Ball

$$ds^{2} = -dt^{2} + dr^{2} + r^{2}d\Omega_{d-2}^{2},$$

$$= e^{2\sigma} \left[-dT^{2} + \ell^{2}(du^{2} + \sinh^{2} u d\Omega_{d-2}^{2}) \right]$$
where

$$e^{-\sigma} = \cosh u + \cosh T/\ell$$

$$S_E = \beta \langle H \rangle + \mathcal{W}[\delta_{\mu\nu}, e^{-2\sigma} \delta_{\mu\nu}] - \widetilde{W}[\delta_{\mu\nu}]$$

Assembling the Pieces: 4d

$$\beta \langle H \rangle \sim -\frac{3}{2} a \ln \frac{\ell}{\delta}$$
$$\mathcal{W}[\delta_{\mu\nu}, e^{-2\sigma} \delta_{\mu\nu}]|_{\text{bulk}} \sim \left(\frac{3}{2} - 4\right) a \ln \frac{\ell}{\delta}$$
$$\mathcal{V}[\delta_{\mu\nu}, e^{-2\sigma} \delta_{\mu\nu}]|_{\text{boundary}} \sim 4a \ln \frac{\ell}{\delta}$$

V

$$-\widetilde{W}[\delta_{\mu\nu}] \sim -4a \ln \frac{\ell}{\delta}$$

$$S_E \sim -4a \ln \frac{\ell}{\delta}$$

Assembling the Pieces: 6d

$$\beta \langle H \rangle \sim \frac{5}{4} a \ln \frac{\ell}{\delta}$$
$$\mathcal{W}[\delta_{\mu\nu}, e^{-2\sigma} \delta_{\mu\nu}]|_{\text{bulk}} \sim \left(-\frac{5}{4} + 4\right) a \ln \frac{\ell}{\delta}$$
$$\mathcal{W}[\delta_{\mu\nu}, e^{-2\sigma} \delta_{\mu\nu}]|_{\text{boundary}} \sim -4a \ln \frac{\ell}{\delta}$$
$$-\widetilde{W}[\delta_{\mu\nu}] \sim 4a \ln \frac{\ell}{\delta}$$

$$S_E \sim 4a \ln \frac{\ell}{\delta}$$

Technical Problem

Why can't I give you the story in general dimension?

Order of limits issue (fixing the metric before or after taking the *n* to *d* limit)

> I have not been able to evaluate $W[g_{\mu\nu}]$ for $S^1 \times H^{d-1}$ reliably.

Computing $\mathcal{W}[g_{\mu\nu}, e^{-2\sigma}g_{\mu\nu}]$ becomes harder as dimension increases.

Point of View #1

We can make an invariant distinction between $\mathcal{W}[\delta_{\mu\nu}, e^{-2\tau}\delta_{\mu\nu}]|_{\text{boundary}}$ and $\mathcal{W}[\delta_{\mu\nu}, e^{-2\tau}\delta_{\mu\nu}]|_{\text{bulk}}$.

Then $\beta \langle H \rangle + \mathcal{W}[\delta_{\mu\nu}, e^{-2\tau} \delta_{\mu\nu}]|_{\text{bulk}}$ computes the EE

while $\mathcal{W}[\delta_{\mu\nu}, e^{-2\tau}\delta_{\mu\nu}]|_{\text{boundary}} - \widetilde{W}[\delta_{\mu\nu}]$ comes purely from flat space and vanishes

Somewhat nicer — clean separation: Maps a problem in flat space to a problem in hyperbolic space.

Point of View #2

 $-W[\delta_{\mu\nu}]$ computes the EE and all the other terms cancel.

Consistent with Solodukhin's result in 4d that the "a" contribution to the EE is proportional to χ of the entangling surface.

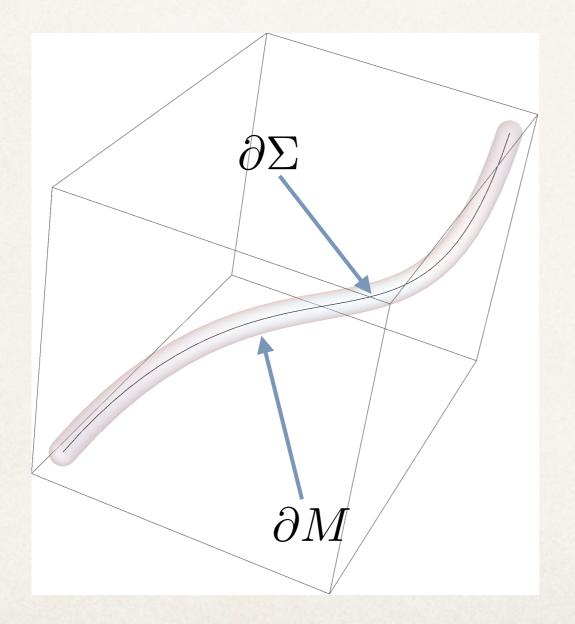
$$S_E \sim \ldots + (-1)^{d/2} 2a \, \chi(\partial A) \, \ln \frac{\delta}{\ell} + \ldots$$

Somewhat discouraging:

We tried to map the problem to hyperbolic space but somehow never got away from flat space.

A Failed Idea

Try to use $\widetilde{W}[\delta_{\mu\nu}]$ to calculate other central charges in the EE.



Deduce EE associated to Σ from boundary part of $\widetilde{W}[\delta_{\mu\nu}]$ evaluated on ∂M .

Only works for the ``*a*'' central charge.

Final Remarks

- For certain types of entanglement entropy, mapping to hyperbolic space is a useful tool.
- Hyperbolic space has a boundary, and the boundary has important effects.
 - Thermal corrections.

✤ Log contribution to the zero T EE.

Thanks to my collaborators

- Michael Spillane (grad student)
- Kuo-Wei Huang (grad student)
- Tatsuma Nishioka (U. Tokyo)
- John Cardy (Oxford)
- Jun Nian (grad student)
- Ricardo Vaz (grad student)
- Kristan Jensen (SF State)

