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Introduction: Entanglement and CFT

• We will consider von Neumann and Rényi entropies for
real-space entanglement in a 2d CFT of central charge c.

• Partition the 1d space into an interval of length ` and the
rest, called respectively A and B.

• Then H = HA ×HB. If ρ is any density matrix on H, then
let

ρA = trB ρ

and the von Neumann entropy is:

SA = −trρA log ρA
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• In QFT, von Neumann entropy can be hard to compute,
partly because of the log in the definition.

• As is well-known, one can alternatively study the Rényi
entropy, defined as:

S
(n)
A =

1

1− n
log tr (ρA)n

where n is an integer ≥ 2. This is easier to compute, using
the replica trick – at least for free fields.

• By analytically continuing this to arbitrary real values of n,
one can obtain the von Neumann entropy as a limit:

SA = lim
n→1

S
(n)
A
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entropy, defined as:

S
(n)
A =

1

1− n
log tr (ρA)n

where n is an integer ≥ 2. This is easier to compute, using
the replica trick – at least for free fields.

• By analytically continuing this to arbitrary real values of n,
one can obtain the von Neumann entropy as a limit:

SA = lim
n→1

S
(n)
A



• In CFT, if the total space is infinite and we work at zero
temperature, it is well-known that:

SA =
c

3
log

`

a
+ c′

where:

` = size of the interval A

c = central charge

a = UV cutoff

c′ = non-universal constant



• In a finite spatial region of size L, the formula changes to:

SA =
c

3
log

(
L

πa
sin

π`

L

)
+ c′

• On the other hand, suppose we have an infinite interval but
work at finite temperature T = (β)−1. Thus the original
density matrix is thermal (rather than a pure state). This
time the von Neumann entropy becomes:

SA =
c

3
log

(
β

πa
sinh

π`

β

)
+ c′

• It is true that the von Neumann entropy is not a good
entanglement measure at finite temperature, but it is still
an interesting quantity (cf. Herzog’s talk).



• In a finite spatial region of size L, the formula changes to:

SA =
c

3
log

(
L

πa
sin

π`

L

)
+ c′

• On the other hand, suppose we have an infinite interval but
work at finite temperature T = (β)−1. Thus the original
density matrix is thermal (rather than a pure state). This
time the von Neumann entropy becomes:

SA =
c

3
log

(
β

πa
sinh

π`

β

)
+ c′

• It is true that the von Neumann entropy is not a good
entanglement measure at finite temperature, but it is still
an interesting quantity (cf. Herzog’s talk).



• In a finite spatial region of size L, the formula changes to:

SA =
c

3
log

(
L

πa
sin

π`

L

)
+ c′

• On the other hand, suppose we have an infinite interval but
work at finite temperature T = (β)−1. Thus the original
density matrix is thermal (rather than a pure state). This
time the von Neumann entropy becomes:

SA =
c

3
log

(
β

πa
sinh

π`

β

)
+ c′

• It is true that the von Neumann entropy is not a good
entanglement measure at finite temperature, but it is still
an interesting quantity (cf. Herzog’s talk).



• Notice that the previous formulae are interchanged under
the modular transformation β ↔ L, `→ i`.

• The reason is that the path integral treats temperature as
a Euclidean time of length β, and it does not distinguish
between space and (Euclidean) time.

• This suggests we study the case of finite interval and finite
spatial size.
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• Computations of von Neumann entropy in 2d CFT are
difficult when there are several intervals, even at zero
temperature. The case of finite size and finite temperature
is difficult even for a single interval.

• These examples probe sensitively the operator spectrum of
the CFT. Therefore they are less universal and more
specific, and more interesting.

• The precise goal is to compute SA(`, L, β) where ` is the
size of the spatial interval, L is the size of the space (a
circle) and β is the inverse temperature. In this case the
CFT lives on a torus with a cut on it.

• From the preceding discussion, we know
limL→∞ SA(`, L, β) as well as limβ→∞ SA(`, L, β). In both
cases the torus decompactifies to a cylinder and the answer
is again universal.
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• There is a general result [Cardy-Herzog] about the universal
thermal correction to the Rényi/von Neumann entropies at

lowest order in q = e2πiτ = e−2π β
L for an arbitrary CFT:

δS
(n)
A = f(`,∆, n)q∆ + · · ·

where ∆ is the conformal dimension of the lowest nontrivial
primary and f is a function that they compute exactly.

• However the full computation of von Neumann entropy at
finite size and finite temperature has been carried out only
for free theories and not for any other 2d CFT.

• Even for free theories, there are some issues – as I will
discuss in what follows.
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• For free field theories, the Rényi
entropy can be expressed in
terms of a quantity called the
“replica partition function”:

tr(ρA)n =
Zn

(Z1)n

where Z1 is the ordinary
partition function.

• To compute Zn one extends the
original torus to an n-fold cover
joined at branch cuts along
spatial intervals from 0 to `.

• This branched cover has genus n.
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• The quantity (ρA)n is created by gluing the copies together.

• Let ψ̃k be a free field on the kth replica. An operator called
the twist field sends each field to the next replica:

σk : ψ̃k → ψ̃k+1

• By a suitable diagonalisation of the problem, one reduces
the problem to a set of fields ψk on a single copy of the
space. The twist field acts on each one by a phase:

σk : ψk → ωkψk

where ω = e2πi/n and k = −n−1
2 ,−n−1

2 + 1, · · · , n−1
2 .
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• This is achieved if the OPE between the twist field and the
fundamental field is of the form:

σk(z, z̄)ψ(w) ∼ (z − w)
k
n

• The conformal dimensions ∆k of the twist fields satisfy:∑
k

∆k =
c

24

(
n− 1

n

)

• Then, the replica trick tells us that:

tr ρnA =

n−1
2∏

k=−n−1
2

〈σk(`, `)σ−k(0, 0)〉



• This is achieved if the OPE between the twist field and the
fundamental field is of the form:

σk(z, z̄)ψ(w) ∼ (z − w)
k
n

• The conformal dimensions ∆k of the twist fields satisfy:∑
k

∆k =
c

24

(
n− 1

n

)

• Then, the replica trick tells us that:

tr ρnA =

n−1
2∏

k=−n−1
2

〈σk(`, `)σ−k(0, 0)〉



• This is achieved if the OPE between the twist field and the
fundamental field is of the form:

σk(z, z̄)ψ(w) ∼ (z − w)
k
n

• The conformal dimensions ∆k of the twist fields satisfy:∑
k

∆k =
c

24

(
n− 1

n

)

• Then, the replica trick tells us that:

tr ρnA =

n−1
2∏

k=−n−1
2

〈σk(`, `)σ−k(0, 0)〉



Outline

1 Introduction: Entanglement and CFT

2 Entanglement and modular invariance

3 Thermal entropy relation

4 Free boson CFT

5 Free fermion entanglement

6 Multiple fermions and lattice bosons

7 Conclusions



Entanglement and modular invariance

• Entanglement is a property of a spatial interval relative to
its complement.

• However, in path-integral language it is natural to exchange
space and Euclidean time. Indeed, the path integral does
not know the difference: “modular invariance”.

• We already saw that β ↔ L, `→ i` is a symmetry of von
Neumann entropy at very large or small β

L . This is an
example of modular invariance (in a limit).

• It is therefore interesting to ask how the von
Neumann/Rényi entropies of a CFT at arbitrary finite size
L and inverse temperature β transform under the modular
group SL(2,Z).
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• The first calculation of the Rényi entropy at finite
temperature and finite spatial size was performed in 2007
by [Azeyanagi-Nishioka-Takayanagi] for free fermions. This was
reviewed and extended by [Herzog-Nishioka] to massive
fermions.

• These computations were carried out at fixed torus
boundary conditions for the fermions. Therefore they were
not modular invariant.

• Subsequently [Datta-David] attempted to compute the Rényi
entropy for a free compact scalar field at radius R. This
was later corrected by [Chen-Wu]. These authors did not
comment on the modular properties of their results.
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• For a specific radius, the compact free boson at radius
R = 1 is supposed to be dual to a Dirac fermion
(“bosonisation”). However there was no sign of this duality
between the above computations.

• This is as expected, because free fermions with fixed
boundary conditions are not dual to free bosons. To get
this duality one has to sum over spin structures.

• Our motivation was to understand whether von Neumann
entropy at finite temperature and size is modular invariant,
and whether it obeys Bose-Fermi duality. Accordingly, we
investigated it for the modular-invariant free fermion
theory and compared the result with that for free bosons.

• We were partially successful, but some puzzles remain.
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Thermal entropy relation

• Before studying modular invariance and entanglement
within CFT, let us consider what holography tells us about
this issue.

• The famous [Ryu-Takayanagi] proposal says the von
Neumann entropy for a region on the boundary is the
length of the corresponding geodesic in the bulk.

• At finite temperature and spatial size, we are dealing with
a Euclidean 3d bulk that is asymptotic to Euclidean AdS3.
The boundary is a (conformally) flat Euclidean 2d torus.

• Now suppose we are at high temperature. Then there is a
black hole in the bulk.
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• For a large entangling region the “drooping geodesic” can
sense the black hole. Hence the geodesics with boundary `
and L− ` are not the same.

L-l

l

• This leads to the thermal entropy relation [Azeyanagi-

Nishioka-Takayanagi]: As `→ 0 the difference is the geodesic
wrapping the black hole horizon, which gives the thermal
entropy of the CFT state. Hence we get the constraint:

lim
`→0

(
SA(L− `)− SA(`)

)
= Sthermal(β)
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• At low temperatures there is no black hole and instead we
have pure thermal AdS3.

• Now the Euclidean time circle on the boundary is
non-contractible in the bulk. Indeed, one goes from the
BTZ black hole to Euclidean AdS3 precisely by an S
modular transformation on the boundary:

S : τ → −1

τ
, τ = i

β

L

• This also suggests that the high- and low-temperature
limits of the boundary CFT are related by the same
S-transformation.

• Then, the thermal entropy relation should hold at any
temperature.
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• Although originally arising from holography, the thermal
entropy relation can be derived directly within CFT. In
fact a stronger relation holds ([Cardy-Herzog], [Chen-Wu]):

lim
`→0

Zn(`, L, β) =

(
`
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6(n− 1

n)
(Z1(L, β))n

lim
`→L

Zn(`, L, β) =
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L− `
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)− c
6(n− 1

n)
Z1(L, nβ)

• The intuition for this is that the replicas are connected
through the branch cut of the entangling interval.

• For a small interval the replicas are effectively decoupled,
so one finds n copies of the usual partition function. On the
other hand for a large interval, the replicas are effectively
“joined” into a single torus of n times the height.

• These relations are not merely intuitive guesses but have
been proved by formal manipulations in CFT.
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• They immediately imply the thermal entropy relation:

lim
`→0

(
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Z ′1( βL)

Z1( βL)

= Zthermal

• An implicit assumption is that the order of limits `→ 0
and n→ 1 can be interchanged.
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Free boson CFT

• For the free boson replica partition function, one considers
a complex boson (c = 2) compactified on a square torus of
size R. The twist fields Tk satisfy:

Tk(z, z̄)φ(w) ∼ (z − w)
k
n

and one has:

Zn(`, L;β) =

n−1∏
k=0

〈〈Tk(z, z̄)T−k(0, 0)〉〉τ

where z = `
L and τ = i βL .

• At the end one can take a square root to get the c = 1
theory.

• This problem was studied by [Datta-David] and [Chen-Wu]

using techniques developed many years ago for orbifold
compactifications.
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• The result of [Chen-Wu] is of the form:

Zn(R) = Z(1)
n Z(2)

n Z(3)
n (R)Z(3)

n

(
2

R

)
where:

Z(1) =
1

|η(τ)|2n
n−1∏
k=0

1

|W 1
1 (k, n; z|τ)|

Z(2) =

∣∣∣∣θ′1(0|τ)

θ1(z|τ)

∣∣∣∣ 1
6(n− 1

n)

Z(3)(R) =
∑
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− πR2

2n

n−1∑
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∣∣∣∣W 2
2 (k, n)

W 1
1 (k, n)

∣∣∣∣×
n−1∑
j,j′=0

[
cos 2π(j − j′)k

n

]
mjmj′
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• Here W 1
1 (k, n; z|τ) and W 2

2 (k, n; z|τ) are integrals of the
cut differentials over the different periods of the torus:

W 1
1 =

∫ 1

0
dz′ θ1(z′|τ)−(1− k

n)θ1

(
z′ − z|τ

)− k
n θ1

(
z′ − k

nz|τ
)

W 2
2 =
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0
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k
n θ̄1

(
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)−(1− k
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z̄|τ
)

• We investigated the modular transformation of this
expression. To this end, we note the following results:

η
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τ

)
= (−iτ)

1
2 η(τ)

W 1
1

(
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1
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)
=
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τ
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iπz2

τ
k
n(1− k

n)W 2
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θ′1
(
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τ

)
θ1

(
z
τ | −

1
τ

) = iτe−
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τ
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• Next, performing a multi-variable Poisson resummation, we
find that:

Z(3)
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z

τ

∣∣∣− 1

τ
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2
n
2

Rn

(
n−1∏
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)
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Z(3)
( 2

R
;
z

τ

∣∣∣− 1

τ

)
=
Rn

2
n
2

(
n−1∏
k=0

∣∣∣∣W 2
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• Thus the product transforms as:

Z(3)(R)Z(3)
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2

R

)
→
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∣∣∣∣W 2
2 (k, n)

W 1
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• Putting everything together, we find that:

Zn

(
R;

z

τ

∣∣∣− 1

τ

)
= |τ |

1
6(n− 1

n)Zn(R; z|τ)

Thus, it is modular covariant (rather than invariant).
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• The multiplicative factor vanishes at n = 1, so Z1 is indeed
modular invariant as it must be.

• The origin of this factor is the relationship:

replica partition function = twist-field correlator

Since twist fields have a conformal dimension, their
correlator cannot be modular invariant. Instead we expect:

Zn(i`, β, L) =

(
β

L

)2(∆+∆̄)

Zn(`, L, β)

• We have seen that twist fields have:

∆ = ∆̄ =
c

24

(
n− 1

n

)
• This precisely agrees with what we found.
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• As a result the Rényi and von Neumann entropies shift by
an additive term. Notice that the term is independent of
the entangling interval `.

• We can make the replica partition functions invariant by
multiplying them by a factor:

Z̃n =

(
β

L

) c
12(n− 1

n)
Zn

corresponding to a change in normalisation of twist fields.

• Alternatively we can live with the additive term in the
Renyi and von Neumann entropies, given that they anyway
have finite, non-universal additive terms.
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Free fermion entanglement

• We have found evidence for modular covariance of
Rényi/von Neumann entropies in the free boson theory.
Now we can explore this question in more general CFT’s.

• A natural choice to consider is free fermions. This is
interesting on its own, and also because of bosonisation.

• Only modular-invariant entanglement can satisfy the
Bose-Fermi correspondence, as already stressed by
[Headrick-Lawrence-Roberts] in a different context.

• Historically the first computation of finite-size,
finite-temperature von Neumann entropy for free fermions
was performed by [Azeyanagi-Nishioka-Takayanagi]. Let us see
whether their result can be rendered modular-invariant.

• This will lead to a puzzle.
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Rényi/von Neumann entropies in the free boson theory.
Now we can explore this question in more general CFT’s.

• A natural choice to consider is free fermions. This is
interesting on its own, and also because of bosonisation.

• Only modular-invariant entanglement can satisfy the
Bose-Fermi correspondence, as already stressed by
[Headrick-Lawrence-Roberts] in a different context.

• Historically the first computation of finite-size,
finite-temperature von Neumann entropy for free fermions
was performed by [Azeyanagi-Nishioka-Takayanagi]. Let us see
whether their result can be rendered modular-invariant.

• This will lead to a puzzle.



Free fermion entanglement

• We have found evidence for modular covariance of
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• Consider a free complex Dirac fermion D(z), which has
c = 1. As a modular-invariant CFT, this is equivalent to a
single free boson at radius R = 1.

• The twist field can be identified by bosonisation as follows.

• At R = 1 the physical vertex operators for a boson are:

Oe,m = ei(e+
m
2 )φ(z)ei(e−

m
2 )φ̄(z̄)

with (∆e,m, ∆̄e,m) =
(

1
2

(
e+ m

2

)2
, 1

2

(
e− m

2

)2)
.

• The fermion is D(z) ∼ eiφ(z).
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• The twist field is supposed to multiply the fermion by a
phase:

σk : ψ → e
2πik
n ψ

• This is equivalent to a shift of the boson:

φ→ φ+
2πk

n

• Thus we can identify the twist field with the vertex
operator:

σk = O0, 2k
n
, k = −n−1

2 , · · · n−1
2

• These operators have (∆, ∆̄) = ( k2

2n2 ,
k2

2n2 ). They are
nonlocal operators with the desired OPE:

O0, 2k
n

(z, z̄)D(w) ∼ (z − w)
k
n
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σk = O0, 2k
n
, k = −n−1

2 , · · · n−1
2

• These operators have (∆, ∆̄) = ( k2

2n2 ,
k2
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• A standard computation now gives:
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|η(τ)|2

• Note that this involves a sum over spin structures, or
(±,±) boundary conditions, of free fermions on the torus.

• [Azeyanagi et al] restricted to a specific spin structure, to get:

〈〈O0, 2k
n

(z, z̄)O0,− 2k
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(0)〉〉 =
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×
|θ3( k`nL |τ)|2
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(recall that θ3 corresponds to (−−) boundary conditions).
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• Taking the product over replicas they got:

Zn(`, L, β) =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) n−1
2∏

k=−n−1
2

|θ3( k`nL |τ)|2

|η(τ)|2

• Under modular transformations θ3 goes into other
θ-functions, so this result is not modular invariant.
Therefore it cannot be equal to the modular-invariant
answer for free bosons that we exhibited earlier.

• One can expand it and show that it satisfies the thermal
entropy relation of [Cardy-Herzog], with ∆ = 1

2 . But we know
that in the modular-invariant theory, the primary of lowest
dimension is the spin field of dimension ∆ = 1

8 .
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• Let us now try to render their answer modular invariant.

• The key issue is how to take the product over replicas,
relative to summing over spin structures.

• One way would be to sum over spin structures before we
carry out replication, leading to the “uncorrelated replica
partition function”:

Zu
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• Another way is to take the product over replicas before
summing over spin structures, leading to the “correlated
replica partition function”:

Zc
n(`, L, β) =

1

2

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) 4∑
ν=1

n−1
2∏

k=−n−1
2

|θν( k`nL |τ)|2

|η(τ)|2



• Let us now try to render their answer modular invariant.

• The key issue is how to take the product over replicas,
relative to summing over spin structures.

• One way would be to sum over spin structures before we
carry out replication, leading to the “uncorrelated replica
partition function”:

Zu
n (`, L, β) =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) n−1
2∏

k=−n−1
2

1

2

∑4
ν=1 |θν( k`nL |τ)|2

|η(τ)|2

• Another way is to take the product over replicas before
summing over spin structures, leading to the “correlated
replica partition function”:

Zc
n(`, L, β) =

1

2

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) 4∑
ν=1

n−1
2∏

k=−n−1
2

|θν( k`nL |τ)|2

|η(τ)|2



• Let us now try to render their answer modular invariant.

• The key issue is how to take the product over replicas,
relative to summing over spin structures.

• One way would be to sum over spin structures before we
carry out replication, leading to the “uncorrelated replica
partition function”:

Zu
n (`, L, β) =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) n−1
2∏

k=−n−1
2

1

2

∑4
ν=1 |θν( k`nL |τ)|2

|η(τ)|2

• Another way is to take the product over replicas before
summing over spin structures, leading to the “correlated
replica partition function”:

Zc
n(`, L, β) =

1

2

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) 4∑
ν=1

n−1
2∏

k=−n−1
2

|θν( k`nL |τ)|2

|η(τ)|2



• Let us now try to render their answer modular invariant.

• The key issue is how to take the product over replicas,
relative to summing over spin structures.

• One way would be to sum over spin structures before we
carry out replication, leading to the “uncorrelated replica
partition function”:

Zu
n (`, L, β) =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) n−1
2∏

k=−n−1
2

1

2

∑4
ν=1 |θν( k`nL |τ)|2

|η(τ)|2

• Another way is to take the product over replicas before
summing over spin structures, leading to the “correlated
replica partition function”:

Zc
n(`, L, β) =

1

2

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
1
6

(n− 1
n

) 4∑
ν=1

n−1
2∏

k=−n−1
2

|θν( k`nL |τ)|2

|η(τ)|2



• Notice that the two types of replica partition functions
coincide at n = 1:

Zu
1 = Zc

1 = Z1 =
1

2

∑4
ν=1 |θν(0|τ)|2

|η(τ)|2

which is the ordinary modular-invariant partition function.

• Also both types of replica partition functions are
modular-covariant with the same prefactor:

Z
u,c
n (i`, β, L) =

(
β

L

) 1
6(n− 1

n)
Z

u,c
n (`, L, β)
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• To find out which one is right, we may look at the limits of
the entangling interval: `→ 0 and `→ L.

• Recall that as `→ 0 one expects:

lim
`→0

Zn(`, L, β) =

(
`

L

)− c
6(n− 1

n)
(Z1(L, β))n

• Taking this limit on our candidate answers, we get:

Zu
n (`, L, β) ∼

(
`

L

)− 1
6(n− 1

n)
(

1

2

∑4
ν=1 |θν(0|τ)|2

|η(τ)|2

)n

Zc
n(`, L, β) ∼

(
`

L

)− 1
6(n− 1

n) 1

2

∑4
ν=1 |θν(0|τ)|2n

|η(τ)|2n

• Only in the first case do we obtain the expected answer
∼ (Z1)n. Thus on this basis it seems that Zu

n is the correct
Rényi entropy.
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• Now we consider the same quantities in the limit `→ L.
This time we find:

Zu
n (`, L, β) ∼

(
L− `
L

)− 1
6(n− 1

n)
n−1

2∏
k=−n−1

2

1

2

∑4
ν=1 |θν( kn |τ)|2

|η(τ)|2

Zc
n(`, L, β) ∼

(
L− `
L

)− 1
6(n− 1

n) 1

2

4∑
ν=1

n−1
2∏

k=−n−1
2

|θν( kn |τ)|2

|η(τ)|2

• This time, neither of the answers looks like the desired
Z1(L, nβ). However there is a beautiful θ-identity that
allows us to evaluate the correlated case:

n−1
2∏

k=−n−1
2

∣∣∣θν(k
n
− z
∣∣∣τ)∣∣∣ =

 ∞∏
p=1

∣∣∣∣(1− q2p)n

1− q2pn

∣∣∣∣
 ∣∣θν(nz|nτ)
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• It follows easily that:

Zc
n(`→ L,L, β) =

1

2

(
L− `
L

)− 1
6(n− 1

n) 4∑
ν=1

|θν(0|nτ)|2

|η(nτ)|2

=

(
L− `
L

)− 1
6(n− 1

n)
Z1(L, nβ)

• This time it is the “correlated” replica partition function,
where the sum over spin structures is taken after the
product over replicas, that satisfies the desired relation.

• It is easy to check that, due to cross terms, the
uncorrelated one does not satisfy any similar relation.
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• To summarise: as `→ 0 the sum over spin structures must
be performed before the product over replicas. As `→ L it
must be performed after the product over replicas.

• There should of course be a unique Rényi entropy for this
theory at all `, but it is not (yet) clear what is the
prescription for it.

• In contrast, older works where spin structures were not
summed were able to write the complete answer in terms of
a single θ-function valid for all `.
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• Ideally one would like to compare with the free boson
result at c = 1 to verify Bose-Fermi duality.

• Unfortunately the boson result is extremely implicit and
hard to compute. And as we just saw, on the fermion side,
we don’t know the replica partition function at
intermediate values of `.

• However, as `→ 0 and `→ L the bosonic expression has
been evaluated by [Chen-Wu] and found to agree with the
predictions (Z1(τ))n and Z1(nτ) respectively.

• Since at R = 1, the function Z1 is equal to the free Dirac
fermion partition function, this means our results and
theirs are in full agreement in the regions `→ 0 and `→ L
where comparison is possible.
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Multiple fermions and lattice bosons

• The theory of d free Dirac fermions with correlated spin
structures is dual to a specific compactification of d free
bosons on a target-space torus:

T c = Rd/Γd

where Γd is the root lattice of Spin(2d).

• This can be achieved by starting with a rectangular torus
and choosing a suitable constant metric and B-field.

• In this case the d different bosons are not orthogonal to
each other, while the fermions have correlated spin
structures, so on both sides of the Bose-Fermi duality we
are dealing with CFT’s that are not direct sums of simpler
ones.
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• In the free boson theory, let ΛR be the root lattice and ΛW
be the dual weight lattice.

• Then the vertex operators are:

Owi,w̄i = eiw
iφieiw̄

iφ̄i

where wi, w̄i ∈ ΛW and wi − w̄i ∈ ΛR.

• Elements of the weight lattice can be parametrised as:

wi =
1√
2
gijvj , w̄i =

1√
2
gij v̄j

where vi, v̄i are integers and gij is the inverse of gij which is
the half the Cartan matrix of Spin(2d).

• We have 1√
2
(vi − v̄i) =

√
2ni where ni are integers.
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• To reconstruct the fermion operators, we must look for
pairs of points of unit length in the weight lattice that
differ by an element of the root lattice.

• If ~αi are the d simple roots of Spin(2d) and ~λi are the
fundamental weights then one finds:

Dp(z) ∼ eiw
(p)iφi(z)

where w(p)i =
√

2(~λi)p.

• We can now look for the twist field, which induces a
monodromy:

σk : Dp(z)→ e
2πik
n Dp(z)

corresponding to a shift:

w(p)iφi(z)→ w(p)iφi(z) +
2πk

n
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• This will be induced by a shift φi → φi + 2πζ
(k)
i where ζ

(k)
i

is a constant vector satisfying:

w(p)iζ
(k)
i =

k

n

for all p.

• As the last weight of Spin(2d) is λ(d) = (1
2 ,

1
2 , · · · ,

1
2), the

shift is given by:

ζ
(k)
i =

√
2k

n
(0, 0, · · · , 0, 1)

Thus the twist field only acts on the last scalar φd.

• It takes the form:

σk = Oζ(k)i,−ζ(k)i = eiζ
(k)iφi(z)e−iζ

(k)iφ̄i(z̄)

and has the desired conformal dimension∑
k ∆k = d

24

(
n− 1

n

)
.
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• Now we can calculate the two-point function of each σk
and thereby the replica partition function.

• Recall that the ordinary partition function for these
theories is:

Z1 =
1

|η(τ)|2d
∑

w,w̄∈ΛW
w−w̄∈ΛR

qw
2
q̄ w̄

2

=
1

2

1

|η(τ)|2d
∑

ν=2,3,4

|θν(0|τ)|2d

• The un-normalised two-point function of twist fields is:

〈〈σk(z, z̄)σ−k(0)〉〉 =

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
2dk2

n2
1

|η(τ)|2d
×∑

w,w̄∈ΛW
w−w̄∈ΛR

qw
2
q̄ w̄

2
e2πi `

L
gij(w

i+w̄i)ζ(k)j
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• Now we have:

gij(w
i + w̄i)ζ(k)j =

k

n

d∑
p=1

(np +mp), w, w̄ ∈ ΛR ∪ ΛV

=
k

n

d∑
p=1

(np +mp − 1), w, w̄ ∈ ΛS ∪ ΛC

• It follows that:

〈〈σk(z, z̄)σ−k(0)〉〉 =
1

2

∣∣∣∣∣ θ′1(0|τ)

θ1( `L |τ)

∣∣∣∣∣
2dk2

n2 ∑4
ν=1 |θ(

k`
nL |τ)|2d

|η(τ)|2d

• Taking the product over k after/before the sum over spin
structures gives us the uncorrelated/correlated Zn.

• As before, we choose the former as `→ 0 and the latter as
`→ L, and the thermal entropy relation follows.
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• We have argued that Rényi and von Neumann entropies for
CFT’s should be modular invariant (more precisely,
covariant with a known prefactor).

• The free boson result for arbitrary radius R is known and
satisfies this requirement, but is very complicated and
implicit.

• The free fermion result offers a puzzle: the order of the
sum over spin structures and product over replicas needs to
be reversed when going from `→ 0 to `→ L. Thus we do
not know the answer for intermediate values of `.
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• For the future, some directions are suggested:

• Can one write the replica partition function for fermions at
intermediate values of ` as a linear combination of
correlated/uncorrelated quantities? Alternatively, should
the twist fields depend on the spin structure?

• For free bosons, there is a result but it is very implicit. Can
its form be simplified?

• Can such computations be extended to other CFT’s? Can
modular invariance be used as a constraint for this purpose?

• Can one compute entanglement negativity (a better
measure for mixed states) for CFT at finite size and
temperature, and is it modular-invariant?
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Spin structures and modular invariance

• Boundary conditions on a torus of sides L, β:

ψ(z + L) = ±ψ(z)

ψ(z + iβ) = ±ψ(z)

• With these boundary conditions, denote the path integral
by Z±±(L, β) and the Hamiltonian by H±(L). Then:

Z−− = tre−βH− Z+− = tre−βH+

Z−+ = tr(−1)F e−βH− Z++ = tr(−1)F e−βH+

• Let τ = i βL . Then only Z++ is invariant under modular
transformations:

τ → τ + 1, τ → −1

τ

while the other three are permuted. However, Z++ = 0
(and it is not a thermal ensemble anyway).
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• As shown long ago by Seiberg and Witten, the following
combination is modular-invariant:

Z(L, β) = 1
2(Z−− + Z−+ + Z+− + Z++)

= tr

(
1 + (−1)F

2

)
e−βH− + tr

(
1 + (−1)F

2

)
e−βH+

It is a physical thermal ensemble, being a sum over the
projected spectra of two Hamiltonians H+ and H−.

• For a Dirac fermion (c = 1), by direct computation we find:

Z−− =

∣∣∣∣θ3(0|τ)

η(τ)

∣∣∣∣2 Z+− =

∣∣∣∣θ2(0|τ)

η(τ)

∣∣∣∣2
Z−+ =

∣∣∣∣θ4(0|τ)

η(τ)

∣∣∣∣2 Z++ =

∣∣∣∣θ1(0|τ)

η(τ)

∣∣∣∣2 = 0

• The modular-invariant partition function of the free Dirac
fermion is therefore:

ZDirac =
1

2

∑
ν=2,3,4

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2
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• Next consider a free boson φ(z, z̄) that takes a compact set
of values:

φ(z, z̄) ∼ φ(z, z̄) + 2πR

This also has c = 1.

• Its partition function is easily computed:

Zboson(R) =
∑

e,m∈ZZ

q(
e
R

+mR
2 )

2

q̄(
e
R
−mR

2 )
2

where q = eiπτ .

• The statement of Bose-Fermi duality at c = 1 is then:

ZDirac = Zboson(R = 1)

Notice that this holds only with the spin-structure-summed
partition function on the LHS.
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• With multiple fermions one can have various different
theories depending on how the spin structures are mutually
correlated.

• For example with 2 Dirac fermions having uncorrelated
spin structures, the partition function is:

Zu
Two Dirac =

1

2

∑
ν=2,3,4

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2
2

• However if the spin structures of the two fermions are
correlated then the partition function is:

Zc
Two Dirac =

1

2

∑
ν=2,3,4

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣4
• The two theories have very different spectra and

correlation functions. In particular the latter theory is not
the direct sum of two CFT’s.



• With multiple fermions one can have various different
theories depending on how the spin structures are mutually
correlated.

• For example with 2 Dirac fermions having uncorrelated
spin structures, the partition function is:

Zu
Two Dirac =

1

2

∑
ν=2,3,4

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2
2

• However if the spin structures of the two fermions are
correlated then the partition function is:

Zc
Two Dirac =

1

2

∑
ν=2,3,4

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣4
• The two theories have very different spectra and

correlation functions. In particular the latter theory is not
the direct sum of two CFT’s.



• With multiple fermions one can have various different
theories depending on how the spin structures are mutually
correlated.

• For example with 2 Dirac fermions having uncorrelated
spin structures, the partition function is:

Zu
Two Dirac =

1

2

∑
ν=2,3,4

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣2
2

• However if the spin structures of the two fermions are
correlated then the partition function is:

Zc
Two Dirac =

1

2

∑
ν=2,3,4

∣∣∣∣θν(0|τ)

η(τ)

∣∣∣∣4

• The two theories have very different spectra and
correlation functions. In particular the latter theory is not
the direct sum of two CFT’s.



• With multiple fermions one can have various different
theories depending on how the spin structures are mutually
correlated.

• For example with 2 Dirac fermions having uncorrelated
spin structures, the partition function is:
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• The two theories have very different spectra and

correlation functions. In particular the latter theory is not
the direct sum of two CFT’s.
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