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RG flow in QFT

Entanglement
Entropy

QFT

Quantum inequalities

RG flow

Entanglement entropy as a measure of degrees of freedom

Construct a monotonic function c(Energy) of the energy scale
The Zamolodchikov’s c-theorem in (1+1) dimensions
[Zamolodchikov 86]
The a-theorem in (3+1) dimensions [Cardy 88,
Komargodski-Schwimmer 11]
An entropic counterpart in (1+1) dimensions [Casini-Huerta 04]
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Entanglement and F -theorem in (2 + 1) dimensions

For any RG flow in (2 + 1) dimensions

A surprising relation between F [S3] and EE!

A proof is based on Strong subadditivity + Lorentz invariance
[Casini-Huerta 12] using the renormalized EE [Liu-Mezei 12]
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Supersymmetry and exact results in QFT

QFT

Supersymmetry
Exact results

Non-perturbative calculations are almost impossible in
interacting QFTs without resorting to methods such as lattice
gauge theories

There have been accumulating exact results in supersymmetric
QFTs

Supersymmetric indices [Witten 82, Romelsberger 05,
Kinney-Maldacena-Minwalla-Raju 05, · · · ]
Partition functions on spheres [Pestun 07,
Kapustin-Willett-Yaakov 09, · · · ]

These results provide non-trivial evidences for dualities in
QFTs (e.g. Seiberg dualities) and gauge/gravity dualities
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Supersymmetric partition functions

Supersymmetry reduces an infinite-dimensional measure of the
path integral to a finite one (supersymmetric localization)

Partition functions on a compact manifold M typically
become a matrix model:

Z[M] ∼
∫

dM f(M)

(M : N ×N matrix for U(N) gauge theories)

The F -theorem was originally tested by calculating Z[S3] for
N = 2 gauge theories [Jafferis-Klebanov-Pufu-Safdi 11]
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Supersymmetry and entanglement entropy

Entanglement

QFT

Quantum inequalities

RG flow

Supersymmetry
Exact results

Sdisk, CFT = logZ[S3]

Main question
Can we calculate Rényi entropies of a disk

exactly for SUSY gauge theories?
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Outline

1 Entanglement entropy in QFT

2 Supersymmetric Rényi entropy

3 Holographic supersymmetric Rényi entropy
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Definition of entanglement entropy

Divide a system to A and B = Ā: Htot = HA ⊗HB

t

A

B

Definition
SA = −trAρA log ρA
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t

A

B

Definition
SA = −trAρA log ρA

T.Nishioka (Tokyo) May 31, 2016 @ YITP 9 / 29



Path integral representation

In the path integral representation

[ρA]ab
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Path integral representation

In the path integral representation

[ρA]ab = 〈φA
a |ρA|φA

b 〉

=
1

Z1

B A B
~x

φA
a

φA
b

t = 0+

t = 0−

|φA
a,b〉: states in HA (= boundary conditions on region A)
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The n-fold cover Mn

trAρnA =
1

(Z1)n

φA
1

φA
2

φA
2

φA
3

φA
n

φA
1

n copies ≡ Zn
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Replica trick

As a one-parameter extension

nth Rényi entropy

Sn =
1

1− n
log trA ρnA

It indeed reduces to entanglement entropy

SA = lim
n→1

Sn = −(∂n − 1) logZn

∣∣
n=1
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Conformal map

t

ρ

φ

R3

ds2 = dt2 + dρ2 + ρ2dφ2

Conformal Map

φ

τ

θ = 0 π/2

S3

ds2 = dθ2 + sin2 θdτ2 + cos2 θdφ2
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Conformal map

t

ρ

φ

R3

ds2 = dt2 + dρ2 + ρ2dφ2

Conformal Map

φ

τ

θ = 0 π/2

S3

ds2 = dθ2 + sin2 θdτ2 + cos2 θdφ2

For CFT3 [Casini-Huerta-Myers 11]

Zn = Z[S3n]

S3n: n-fold cover of S3 (τ ∼ τ + 2πn)
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Rényi entropy for CFT

The Rényi entropy of a disc for CFT

Sn =
1

1− n
log

Z[S3n]
(Z[S3])n

For free fields, Z[S3n]: one-loop determinant
[Klebanov-Pufu-Sachdev-Safdi 11]

For SUSY gauge theories, Z[S3] (n = 1) can be obtained by
localization [Kapstin-Willet-Yaakov 09, Jafferis, Hama-Hosomichi-Lee
10]
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SUSY on singular space

SUSY is broken on the singular space S3n
ds2 = dθ2 + n2 sin2 θdτ2 + cos2 θdφ2 , τ ∼ τ + 2π

To recover SUSY, turn on the U(1)R symmetry b.g. gauge
field in N = 2 theories

A(R) =
n− 1

2
dτ

φ
τ A

(R)
τ

θ = 0 π/2

S3

The definition of RE should be modified if SUSY is preserved!
(c.f. charged Rényi entropies
[Belin-Hung-Maloney-Matsuura-Myers-Sierens 13])
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Supersymmetric Rényi entropy

Supersymmetric Rényi entropy [TN-Yaakov 13]

Ssusy
n =

1

1− n
log

∣∣∣∣ Zsusy[S3n]
(Zsusy[S3])n

∣∣∣∣
Exact partition function Zsusy[S3n] by localization!
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Supersymmetric Rényi entropy

Supersymmetric Rényi entropy [TN-Yaakov 13]

Ssusy
n =

1

1− n
log

∣∣∣∣ Zsusy[S3n]
(Zsusy[S3])n

∣∣∣∣
Exact partition function Zsusy[S3n] by localization!

SUSY partition function on S3
n

Zsusy[S3n] = Zsusy[S3b ]

S3b : squashed three-sphere with squashing parameter b =
√
n

Zsusy[S3b ] obtained by [Hama-Hosomichi-Lee 11, Imamura-Yokoyama
11]
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Some properties

SRE is not equal to RE due to the U(1)R symmetry chemical
potential
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Some properties

SRE is not equal to RE due to the U(1)R symmetry chemical
potential

Expansion around n = 1

Ssusy
n = S1 +

π2

16
τRR(n− 1) + · · ·(

〈j(R)
µ (x)j

(R)
ν (0)〉 ∝ τRR

)
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Some properties

SRE is not equal to RE due to the U(1)R symmetry chemical
potential

Expansion around n = 1

Ssusy
n = S1 +

π2

16
τRR(n− 1) + · · ·(

〈j(R)
µ (x)j

(R)
ν (0)〉 ∝ τRR

)
Large-N limit

Ssusy
n =

3n+ 1

4n
S1
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Twist operator representation

A free field partition function Zn

decomposes into the n-copies

Zn =

n∏
k=1

Zn,k

Using twist operators Tn,k

Zn,k = 〈Tn,k(∂A)〉

where Tn,kφ ∼ e2πik/nφ

Tn,1 Tn,−1

Tn,2 Tn,−2

Tn,3 Tn,−3
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Twist operator in supersymmetric Rényi entropy

In d dimensions, twist operators for Rényi entropy are dim ∂A
= d− 2 dimensional objects

Interestingly, the supersymmetric partition function implies a
decomposition into the n-copies [TN-Yaakov 13, WIP]

Zn ∼
n∏

k=1

Zn,k

Such a factorization may provide us a characterization of twist
operators (c.f. [Hung-Myers-Smolkin 14])
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Adding Wilson loop

The quark insertion is equivalent to the Wilson loop
[Lewkowycz-Maldacena 13]

t

R3

Conformal Map
φ

τ

θ = 0 π/2

S3
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Adding Wilson loop

The quark insertion is equivalent to the Wilson loop
[Lewkowycz-Maldacena 13]

t

R3

Conformal Map
φ

τ

θ = 0 π/2

S3

The variation of RE by the loop

SW,n =
1

1− n
(n log |〈W 〉1| − log |〈W 〉n|)

T.Nishioka (Tokyo) May 31, 2016 @ YITP 21 / 29



Wilson loop in the large-N [TN 14]

1/6-BPS Wilson loop in ABJM on S3n

log〈W 〉n =
π(n+ 1)

2

√
2λ+O(logN)

λ: ’t Hooft coupling λ ≡ N/k
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Wilson loop in the large-N [TN 14]

1/6-BPS Wilson loop in ABJM on S3n

log〈W 〉n =
π(n+ 1)

2

√
2λ+O(logN)

λ: ’t Hooft coupling λ ≡ N/k

The variation does not depend on the Rényi parameter n!

The SRE of the Wilson loop

Ssusy
W,n =

π

2

√
2λ
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Outline

1 Entanglement entropy in QFT

2 Supersymmetric Rényi entropy

3 Holographic supersymmetric Rényi entropy
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Further conformal map

φ

τ

θ = 0 π/2

S3

ds2 = dθ2 + sin2 θdτ2 + cos2 θdφ2

Conformal Map

τ

φ

u

S1 ×H2

ds2 = dτ2 + du2 + sinh2 udφ2

The n-fold cover has τ ∼ τ + 2πn
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The dual gravity solution

The 1/2-BPS U(1) charged topological AdS4 black hole in
N = 2 gauged SUGRA

ds2 = f(r)dτ2 +
dr2

f(r)
+ r2ds2H2

A = Q

(
1

r
− 1

rH

)
dτ

The horizon is at r = rH where f(rH) = 0

The temperature:

T =
2rH − 1

2π
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Holographic supersymmetric Rényi entropy

Choose the temperature to be T = 1
2πn

Using the holographic free energy,

Fn = − logZn =
(n+ 1)2

4n

π

2G4
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Holographic supersymmetric Rényi entropy

Choose the temperature to be T = 1
2πn

Using the holographic free energy,

Fn = − logZn =
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π

2G4

The holographic supersymmetric Rényi entropy

Ssusy
n =

3n+ 1

4n
S1
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Holographic supersymmetric Rényi entropy

Choose the temperature to be T = 1
2πn

Using the holographic free energy,

Fn = − logZn =
(n+ 1)2

4n

π

2G4

The holographic supersymmetric Rényi entropy

Ssusy
n =

3n+ 1

4n
S1

Agrees with the large-N result! [Huang-Rey-Zhou 14, TN 14]

T.Nishioka (Tokyo) May 31, 2016 @ YITP 26 / 29



Adding holographic Wilson loop

The fundamental string dual to the Wilson loop

r
rH r∞

H2

BH horizon

This configuration reproduces the large-N result! [TN 14]

The holographic SRE of the Wilson loop

SW,n =
π

2

√
2λ
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Summary

SUSY has to be broken for the Rényi entropies with n 6= 1

A new observable, supersymmetric Rényi entropy, is
introduced

The holographic duals of the supersymmetric Rényi entropies
are given by the BPS charged topological AdS black holes
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Future direction

Can SRE be defined in other dimensions?
2d N = (2, 2) [Giveon-Kutasov 15], [Mori 15]
4d N = 2 [Huang-Zhou 14], [Crossley-Dyer-Sonner 14]
5d N = 1 [Alday-Richmond-Sparks 14], [Hama-TN-Ugajin 14]
6d N = (2, 0) [Nian-Zhou 15], [Zhou 15]

Boundary SRE or squashed SRE?

Entangling surface as a surface operator? [TN-Yaakov, WIP]
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