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The	model	studied	in	this	work	

•  Quantum	mechanics	of		
two	2	x	2	Hermi)an	matrices	X1,	X2		(momenta	P1,	P2)	

•  Hamiltonian:	
	
	
	

•  SU(2)	gauge	symmetry:		
		Physical	states	are	required	to	be	invariant	under	
	
																							

•  Simple,	but	not	(known	to	be)	integrable.		



Matrix	quantum	mechanics:	theory	of	D0-branes	

•  Collec)on	of		N	D-branes	are	described	by	N x	N	hermi)an	
matrices.			
–  diagonal	elements:	posi)on	of	D-branes	
–  off-diag.	elements:	strings	between	D-branes	
		

•  Novel	features	of	D-branes:	
– Non-commuta)vity	of	coordinates	
–  SU(N)	gauge	symmetry	

•  Important	issues:	
–  Fast	scrambling	[Sekino-Susskind,	‘08]:		
Due	to	non-locality	in	the	space	of	matrix	elements?	

–  Change	of	reference	frames:	gauge	symmetry?	



The	full	theory	for	D0-branes	(BFSS	Matrix	theory)	

Dimensional	reduc)on	of	supersymmetric	SU(N)		
Yang-Mills	theory	from	(9+1)D	
	
	
	
	
Proposed	to	be	an	exact	descrip)on	of	M-theory.		
																																											[Banks-Fischler-Shenker-Susskind,	’96]	
	
Difficult	to	solve:	
•  No	mass	term;	Interac)on	connects	every	elements.	
•  Perturba)on	is	useful	only	in	limited	cases.	
Known	facts:	
•  Flat	direc)on	for	[Xi,	Xj]=0,	due	to	SUSY	cancella)on;	

con)nuous	spectrum	[de	Wit-Luscher-Nicolai	’89,	…]	



Known	facts	
•  Evidence	for	correspondence	w/	gravity	from	Monte-Carlo	
– Reproduces	black	hole	thermodynamics	

[Hanada,	Nishimura,	Ishiki,	Hyakutake,	Takeuchi,	Miwa,	‘08-]	

– Gauge/gravity	correspondence:	correla)on	func)ons	
[Sekino,	Yoneya,	’99-,	Hanada,	Nishimura,	Sekino,	Yoneya,	‘09-]	

•  Analysis	of	classical	dynamics:		
				[Asplund,	Berenstein,	Dzienkowski,	’12-,	Gur-Ari,	Hanada,	Shenker,	’16]	
	

Direct	quantum	mechanical	study	is	desirable	
(find	energy	eigenstates,	and	study	unitary	evolu)on).	
	
As	a	toy	model,	we	study	the	d=2,	N=2	bosonic	model.	



Degrees	of	freedom	

•  We	parametrize	the	2x2	matrices	as:	
	

•  Each	matrix	is	a	vector	in	the	“internal	space”	R3:		
	
•  Gauge	symmetry	SU(2)=SO(3)	acts	as	rota)on	in	this	R3.	
(Gauge	transforma)on:	simultaneous	rota)on	of																	)	

														　　　　　　　																																							
•  Hamiltonian:		
		

		
(Have	been	considered	as	a	prototypical	model	of	chaos)	



Gauge	invariant	wave	func)on	

•  Total	angular	momentum	(in	internal	space)	=0.	
	

•  Gauge	invariant	variables:		
			r1,	r2,	θ12		(angle	between																				)	
	
	

	
•  Gauge	invariant	wave	fn.:	parametrized	by	spherical	harmonics	

		
	
	
	
		One	func)on																								for	each		



Schrödinger	equa)on	
•  HΨ=EΨ	
	
	
	
– 1st	term	(from	kine)c	term):	diagonal	in					.		
– 2nd	term	(from	commutator)	:	shits							by	±2	
(Interac)on	is	local	in	the							space.)	
	

•  								is	roughly	the	2nd	order	difference	operator		
	
	
– The							system	is	roughly	the	discre)zed	harmonic	
oscillator	(with	r1,	r2	dependent	mass,	spring	constant)	
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Conserved	charge	
•  SO(2)	angular	momentum	(in	target	space):	
	
	
	

•  Representa)on	of	Q	as	an	operator	ac)ng	on		
	
	
	
	
	

•  [H,	Q]=0:	H	and	Q	are	simultaneously	diagonalizable.	
•  Eigenvalues	of	Q	are	even	integers.		
	



Analysis	of	the	spectrum	

We	numerically	diagonalize	the	Hamiltonian.	
•  Hilbert	space:	

•  Truncate	the	Hilbert	space:		
Take	the	first	h0=107	levels	of	the	oscillators	for	r1,	r2,		
and	the	first	l0=156	of	l.	
Checked	the	cutoff	independence	by	varying	h0	and	l0	
	

•  The	locality	of	interac)on	has	been	essen)al	for	the	
precision	of	the	analysis.	(Sparse	matrices	are	easier	to	
diagonalize	than	general	ones.)	



We	found	about	800	energy	eigenstates.	
	
For	each	energy	eigenstate,	
•  Iden)fy	conserved	charge	:		<Q2>	
•  Compute	the	spa)al	extent	of	the	state:		
	
Label	the	states	by	Eq,n	
•  q	:	Eigenvalue	of	Q	(even	integers)	
•  n	:	level	number	in	a	given	q	sector	
	

All	the	states	are	bound	states	
•  No	flat	direc)on	in	the	bosonic	model	
	



Spectrum:	power	law				

Size	is	mostly	
propor)onal	to	E		

Our	result	is	
consistent	with �
1.5 ≤α≤2.3.		
Best	fit:	α=1.62	

There	are	states	
with	excep)onally		
small	size.	



q	versus	(E+E0)2	(Chew-Frautschi	plot):	Same	data	

Small	figure:	
size	vs	E	
for	n=11	

•  Behavior	very	similar	to	the	“Regge	trajectory”	



Equilibra)on	

•  With	the	knowledge	of	the	spectrum,	we	can	make	some	
exact	statements	about	equilibra)on:	
1.  Bound	on	the	“effec)ve	dimension”	
2.  There	are	states	with	long	equilibra)on	)me	

•  We	consider	sector	with	a	fixed	conserved	charge,	q.		
	

•  “Equilibra)on”:	For	most	)mes,	expecta)on	values	take	
values	as	if	the	system	was	in	the	)me-averaged	state	ω:	
	

	

	
	



Effec)ve	dimension	
•  “Effec)ve	dimension”:		
	
	
(measure	of	how	many	pure	states	contribute	to	ω)	

			
•  Large	deff	:	expecta)on	values	tend	to	stay	close	to	those	
of	the	)me	average.		[Linden,	Popescu,	Short,	Winter,	2009]	

– For	any	dS	dimensional	subsystem	S,	the	expected	
devia)on	from	)me	averaged	state	ωs	is	bounded	as:	
	
	
(						:	expectated	value;															:	“trace	norm”)																																											



Effec)ve	dimension	in	our	model	

•  Fact:	For	random	states	in	the	energy	window	[E,	E+Δ]	
(whose	#	of	states:	dΔ),	effec)ve	dimension	is	bounded	by	
	
	

•  Number	of	states	dΔ	in	our	model	(1.5≤	α	≤2.3):	
	
	

•  Thus,	deff	grows	with	E:	
	
	
	For	large	ini)al	energy,	one	expects	strong	equilibra)on.	



Equilibra)on	)me	

•  There	are	special	states	for	which	equilibra)on	takes	
arbitrarily	long	)me.	

•  Consider	ini)al	state	and	observable	(I=states	in	[E,	E+Δ]):		
			
	
	

•  The	difference	from	)me-average	is	bounded	from	below:	
	
	
	
	
(Equilibra)on	)me	can	be	arbitrarily	long,	if	E	is	large.)	



Conclusions	
Found	spectrum	of	the	d=2,	N=2	bosonic	matrix	model:	
•  Regge-like	trajectories	(It	is	remarkable	that	this	can	be	
found	by	straigh~orward	diagonaliza)on.)	

•  Higher	trajectories	(not	only	leading	ones)	are	seen,	
probably	because	of	the	low	dimensionality.	

•  States	with	small	size:	due	to	non-trivial	dynamics.	
	

Derived	proper)es	about	equilibra)on:	
•  Effec)ve	dimension,	equilibra)on	)me	scale	
	
Our	method	should	be	applicable	to	higher	d	and	N:	
•  Locality	in	the	space	of	“angular	momentum”	persists.	


