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Scrambling



Out-of-time ordered correlation function

* Scrambling: delocalization of quantum information, hidden into non-local DOF.

* Fast scrambling is the defining feature of black holes.

e Qut-of-time ordered (OTO) correlators can detect scrambling.

* Definition
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Scrambling implies decay of OTO

* | ocal perturbation to an initial state cannot be detected by any local measurement
on an output state.

 Consider OTO = <A(O)B(t)A‘L(O)BT(t)> (group commutator)

A, B| =0  then OTO =1

Non-commutativity between A(0) and B(t)

{A,B} =0  then OTO = -1

e Expand B(t):

‘wo(t» B(t) = ot B iHt _ Z Ozj
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scrambling/chaos (butterfly effect)

[Roberts-Susskind-Stanford]



Key Questions

* How do we define scrambling ?

e Quantum information theoretic meaning of OTO ?

e |s the converse true ? [ scrambling J [OTO ~ () ]
?

* Relation to entanglement entropy (and geometric quantities) ?



State-Channel duality

* Quantum channel on n qubits can be viewed as a state on 2n qubits.

unitary operator as a state (T=infty)
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* Thermofield double state (finite T)
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Average value of OTO

* Average of OTO over local operators A and D at T=infty
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This implies the mutual information Ig, = Sy’ + 55 — Sgp is small

B and D are not correlated, so the system is scrambling.

e For finite T, we consider TFD state.

[Hosur, Qi, Roberts, BY]
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TFD(0)

TFD(T)

Scrambling in AdS black hole
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Toy model of the ER bridge

* Operators grow ballistically, leading to decay of OTO correlators.
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OTO average for Alice and Bob

( )
* Alice and Bob are playing a catch ball. Alice may apply some perturbation

* Bob asks Charlie to throw the same ball, and compare it with Alice’s ball.

- »
* Alice applies Ai with equal probability. » superoperator Z AZ()AI
* Bob performs a joint measurement on two systems. > Z B; ® B;
8 ) ’ SWAP operator
: . . f t
The outcome : Z<AZ(O)BJ (t)A’i (O)Bj (t)> gravitational shockwave !
. irj
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Alice Bob * / ...................................
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Complexity



Can we detect complexity growth ?

 The complexity of the TFD state still keeps growing ?

Reference state » larget state

How many quantum gates do we need ?
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[Hayden-Harlow, Susskind, Brown et al]



Entanglement can detect complexity 7

* Entropy grows as the complexity grows.

perturbation

entropy
R /

O O 0|0 O O @ O 0O O quench dynamics of

local perturbation

) < >

entanglement propagation

e After the scrambling time, entanglement entropies get saturated.

A
complexity

Entanglement is not enough'!
entanglement

----------------------------------------

> time
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time [Susskind]



Unitary k-design (complexity of randomness)

* Imagine an ensemble of Haar (uniformly distributed) random unitary (on n qubits)

A typical operator in the Haar ensemble has exp(n) complexity.

» Consider k copies of the system (kn qubits in total) and consider “k-fold twirl” :

P — K(p):/dU(i@)- ®U) ®.

K copies

kn qubits n qubits

* We think of approximating the Haar random ensemble by some ensembles which are
easier to generate.

U} p = @)= pUe---0U)p U & - aU))

J

olf ® = K ,then {p;,U;} is said to form a unitary k-design,

l.e. it is as good as Haar up to k-th moment.

[For an easy introduction, see a recent paper by Zak Webb]



Examples of k-design

* A group of Pauli operators is 1-design.
I, X,Y,Z,2Z,YYZY, ....
* A group of Clifford operators is 2-design.

Clifford operators can prepare arbitrary stabilizer states (eg perfect tensors).

e A toy model of the wormhole (Hosur, Qi, Roberts, BY) randomlunitary
RS
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this object forms an approximate k-design.
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Lower bound on complexity

e Imagine a system of n qubits. (d=2"n states in the Hilbert space).

* If an ensemble of unitary operators formed a k-design, the ensemble must contain at least

[Supp(€)| > (

d+k—1

k

)2.

(due to the Schur-Weyl duality)

* At each step, the number of implementable quantum gates is

* In T step, the number of implementable quantum gates is (gnZ)T

~ gn’

(g: number of different 2-qubit gates)

* A typical operator in k-design has a complexity of at least

-
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2kn log(2)
log(gn?)

roughly linearink and n !
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How do we detect the design ?

e Answer : QOut-of-time ordered correlation functions

e 2k-point OTO correlators can detect k-design.

A time
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OTO determines k-fold channel

Consider a k-fold twirl over an arbitrary ensemble & = {p;, U,}

— ij(Uj Q- Uj)p(U]T Q- ® UJT). (quantum channel)
K copies

The density matrix can be expanded by Pauli operators, so we are interested In

@5(@1@9'“@3)) Z Yer...cC1 @ -+ @ Cy)
e A

Pauli op

characterization of the channel.

Assume that we know averages of 2k-point OTO correlators for Pauli operators

(@)= [(AL(0)Bi(t) -+~ Au(0) Bil(t)) | Bi(t) = UB,U'

We know these numbers.

rQuestion )

Can we determine 7Ci,....C, from @a,..4, ?
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Theorem : OTO and k-fold twirl

Define : Mgll """ < b= Tr[AC) - - ApCy

.....

.....




Effective “design” of an ensemble

e \We need to know OTO values for Haar random (or k-design) in advance.

This is possible by using some heavy math machineries.

* 4m-point OTO correlation functions that are related to shockwave geometries.

. 1 , 1
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[4m-point| ~ ) 2-design

“effective design” of the ensemble
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Growth of design in an ER bridge 7

How do we define “design” in an ER bridge ?
e Unitary t-design considers an ensemble of unitary operators.

* Time-evolution of an ER bridge is given by a single Hamiltonian H.

Maybe, we can consider an ensemble of Hamiltonians ?

eg) Sachdev-Ye-Kitaev model .
random variables

1 N we can compute disorder
~ ; Jijkt| Xi X5 XkXI average analytically
t0,0,k,0=1

Or, we can imagine very high-energy DOF, which can be integrated out.




Conclusion / Speculation

toy model of AAS/CFT out-of-time ordered correlator

very entangled tensor

(eg random tensor) probe of space-time
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