Study of the $\pi\pi$ scatterings with a combination of all-to-all propagators and the HAL QCD method

Yukawa Institute for Theoretical physics Yutaro Akahoshi (for HAL QCD collaboration) FLQCD 2019 @ YITP, 2019/04/16

Contents

- 1. Introduction
- 2. Methods
 - HAL QCD method
 - Hybrid method for all-to-all propagators
- 3. Results
 - I=2 S-wave $\pi\pi$ scattering
 - I=1 P-wave $\pi\pi$ scattering (test)
- 4. Summary

Introduction

Unconventional hadronic resonances (X, Y, Z, $\sigma/f_0(500)$, etc.)

Attempts to interpret them by some models

- We need to understand them from QCD non-perturbatively
- Methods for studying hadronic resonances from lattice QCD ... Luscher's method, HAL QCD method

Introduction

Ultimately, we want to understand every hadronic resonance containing exotic ones by using the HAL QCD method

As a first step, we are trying to investigate the ρ meson resonance which emerges in the simplest, $\pi\pi$ scattering

HAL QCD method: construct an interaction potential from lattice QCD

Basic quantity: The Nambu-Bethe-Salpeter(NBS) wave function

$$\psi_{\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{x}} \langle 0 | \pi(\mathbf{r} + \mathbf{x}, 0) \pi(\mathbf{x}, 0) | \pi \pi; \mathbf{k} \rangle \quad |\pi \pi; \mathbf{k} \rangle : \frac{\pi \pi \text{ scattering state with}}{\text{a relative momentum } \mathbf{k}}$$

$$(\nabla^2 + k^2) \psi_{\mathbf{k}}(\mathbf{r}) = 0 \quad (r > R)$$

$$\psi_l(k, r) \sim \frac{\sin\left(kr - \frac{l\pi}{2} + \delta_l\right)}{kr} \quad (r > R)$$

$$(\nabla^2 + k^2) \quad \text{Local operator based on the quark model} \quad \pi^+(\mathbf{x}, t) = \bar{d}(\mathbf{x}, t) \gamma_5 u(\mathbf{x}, t)$$

$$U(\mathbf{r}, \mathbf{r}') : \quad \text{chargy mappendent barrier barrier potentiar} \quad (\mathbf{r} + \mathbf{r}) = \mathbf{r} \cdot \mathbf{r$$

> Derivative expansion $U(\mathbf{r}, \mathbf{r}') = (V_0(r) + V_1(r)\nabla^2 + ...) \delta(\mathbf{r} - \mathbf{r}')$

> In lattice QCD
$$F(\mathbf{r},t) \equiv \sum_{\mathbf{x}} \langle \pi(\mathbf{r}+\mathbf{x},t)\pi(\mathbf{x},t)\mathcal{J}_{\pi\pi}(t_0) \rangle = \sum_{n} A_n \psi_n(\mathbf{r}) e^{-W_n(t-t_0)}$$

Time-dependent HAL QCD method (N.Ishii et al.(2012))

> All of the elastic scattering states share the same potential

$$\left(\nabla^2 + k_n^2\right)\psi_n(\mathbf{r}) = 2\mu \int d^3\mathbf{r}' U(\mathbf{r}, \mathbf{r}')\psi_n(\mathbf{r}'), \ (n = 0, 1, ..., n_{\rm th})$$

They are unified into one equation through the "R-correlator"

R-correlator
$$R(\mathbf{r},t) \equiv \frac{F(\mathbf{r},t)}{e^{-2m_{\pi}t}} = \sum_{n} A_{n}\psi_{n}(\mathbf{r})e^{-\Delta W_{n}t}$$

If we can neglect inelastic contributions, it satisfies
 $\left[\frac{\nabla^{2}}{m_{\pi}} - \frac{\partial}{\partial t} + \frac{1}{4m_{\pi}}\frac{\partial^{2}}{\partial t^{2}}\right]R(\mathbf{r},t) = \int d^{3}\mathbf{r}' U(\mathbf{r},\mathbf{r}')R(\mathbf{r}',t)$

- ✓ We can obtain a reliable potential at an early time ($O(e^{-\Delta W_1 t}) \gg O(e^{-\Delta W_{\text{inela}}t})$)
- ✓ We can use **all of the elastic states** to construct the potential

Difficulty in the calculation of the $I = 1 \pi \pi$ scattering

U

Typical calculation (point-to-all propagators) Solve the equation below for fixed x_0 $D(x;y)\psi(y) = \delta_{x,x_0}$ Then ψ is a propagator from fixed x_0 to every x $\psi(x) = D^{-1}(x; x_0)$

All-to-all propagators

A propagator from every point to every point Naively, we need to calculate the point-to-all propagator

 $N_{\rm vol}$ times

 $\mathcal{O}(10^6) \sim \mathcal{O}(10^8)$

Naïve calculation is not realistic Need for some approximations

space

Previous study: HAL QCD+LapH (D.Kawai et al. (2018)) I=2 $\pi\pi$ phase shift

All operators become non-local automatically due to the LapH method => contributions from higher derivative terms are enhanced $U(\mathbf{r}, \mathbf{r}') = (V_0(r) + V_1(r)\nabla^2 + ...) \delta(\mathbf{r} - \mathbf{r}')$

All-to-all method keeping the locality of operators:

The hybrid method (J.Foley et al. (2005))

Calculate a propagator approximately with eigenmodes of $H = \gamma_5 D$ and noisy estimators

 \succ Spectral decomposition of the propagator with eigenmodes of H

$$D^{-1} = \sum_{i=0}^{N_{\max}-1} \frac{1}{\lambda_i} v^{(i)} \otimes v^{\dagger(i)} \gamma_5$$

Practically, It is impossible to calculate all of the eigenmodes

Calculate a part of the propagator
by
$$N_{\rm eig}$$
 low-lying eigenmodes
 $D_0^{-1} = \sum_{i=0}^{N_{\rm eig}-1} \frac{1}{\lambda_i} v^{(i)} \otimes v^{\dagger(i)} \gamma_5$

Remaining parts are estimated by noisy estimators

The expectation value is estimated by an average over independent noise vectors

Additional errors are introduced from the noisy estimator

Noise reduction technique: dilution

Decompose a noise vector $\eta_{[r]}$ into linearly independent vectors $\eta_{[r]} = \sum_{j=0}^{m} \eta_{[r]}^{(j)}$

Example: color dilution in a calculation of $M_{a\alpha,b\beta}^{-1}(x,y) = \eta_{a\alpha}^{(i)}(x) = 0$ If $i \neq a$

w/o dilution

w/ dilution

$$\frac{1}{N_{\rm r}}\sum_{r} \left(M^{-1}\eta_{[r]} \otimes \eta_{[r]}^{\dagger} \right)_{a\alpha,b\beta} (x,y) = M^{-1}_{a\alpha,b\beta}(x,y) + \sum_{\substack{(c,\gamma,z) \neq (b,\beta,y)}} C_{c,\gamma,z} M^{-1}_{a\alpha,c\gamma}(x,z)$$

Noise contamination from (c, γ , z)

 $N_{\rm dil}-1$

$$\frac{1}{N_{r}}\sum_{i}\left(M^{-1}\eta_{[r]}^{(i)}\otimes\eta_{[r]}^{(i)}\right)_{a\alpha,b\beta}(x,y) = \frac{1}{N_{r}}\sum_{r}\left(M^{-1}\eta_{[r]}^{(b)}\otimes\eta_{[r]}^{(b)}\right)_{a\alpha,b\beta}(x,y)$$

$$\frac{\text{In our study}}{\text{Color: full Time: full or J-interlace}} M_{a\alpha,b\beta}^{-1}(x,y) + \sum_{\substack{(\gamma,z)\neq(\beta,y)\\(\gamma,z)\neq(\beta,y)}}C'_{\gamma,z}M_{a\alpha,b\gamma}^{-1}(x,z)$$

$$Noise \text{ contamination is reduced thanks to color dilution (color index is fixed to b)}}$$

Results

Simulation details

- 2+1 flavor QCD configurations (CP-PACS+JLQCD, a = 0.1214[fm], $16^3 \times 32$)
- $m_\pi \approx 870$ MeV, $m_
 ho \approx 1230$ MeV ($E_0 = -510$ MeV)
- Calculations are held on Cray XC40 (YITP) and HOKUSAI Big-Waterfall (RIKEN)

Results

• I=2 $\pi\pi$ S-wave scattering

Investigation into effectiveness of the hybrid method with the HAL QCD method

We can compare our results with ones obtained without all-to-all propagators

• I=1 $\pi\pi$ P-wave scattering (preparatory calculation) Test calculation for the system containing quark annihilation diagrams with the hybrid method We use a ρ shape source operator $\mathcal{J}_{\pi\pi}(t_0) = \bar{\rho}_i(t_0) = \frac{1}{\sqrt{2}} \left(\bar{u}\gamma_i u - \bar{d}\gamma_i d \right)(t_0)$

Behavior of the potential

- Bulk behavior of the potential are consistent with one without all-to-all propagators
- Statistical errors are enhanced due to the additional noise contamination
- The contamination mainly comes from the Laplacian part

 -> noise reductions in spatial directions are important

Importance of spatial dilutions

Cancellation among different spatial points occurs in energy shift calculation

> Fine spatial dilution is crucial, especially for the HAL QCD method

Consistency check with results without all-to-all propagators

Results with the hybrid method are reasonable

Potential with the same setup as the I = 2 calculation

Extremely large statistical errors (due to the quark annihilation diagrams)

More noise reductions are needed

Efforts of noise reductions

1. Changing dilution setups for each propagators

Result 2: I=1 P-wave $\pi\pi$ scattering Efforts of noise reductions

2. Taking the different-time scheme for the NBS wave function

- \succ Motivated by the fact that there is no equal-time propagation in the I = 2 case
- Note: potentials depend on the scheme we choose, but physical quantities are independent of it
- 3. Taking an average over the noise vectors

Resultant potential and binding energy

> A bound state **exists** (related to ρ meson)

Long-tail structure ... need for considering finite volume effects in fitting

Result 2: I=1 P-wave $\pi\pi$ scattering Finite volume effects in the potential fitting $V_{\rm FV}(\mathbf{r}) = V(\mathbf{r}) + \sum V(\mathbf{r} + L\mathbf{n}), \ \mathcal{N} = \{\mathbf{n} | \mathbf{n} = (\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\}$ 1000 $\mathbf{n} \in \mathcal{N}$ 0 -1000 N_{L0}(*r*) [MeV] Ground state energy $E_0 = -374 \pm 16$ [MeV] -4000t=7fit result (w/o FV effects) -5000fit result (w/ FV effects) -6000↓ 0.1 0.6 0.2 0.7 0.8 0.5 0.3 0.4 0.9 *r* [fm]

> Smaller binding energy than that from the naïve fitting (previous slide)

Result 2: I=1 P-wave $\pi\pi$ scattering Comparison with the expected g.s. energy

Our result (w/ FV effects) $E_0 pprox -370 \; {
m MeV}$

Expected g.s. energy $E_0 \approx -510 \text{ MeV}$

Possible origins of this difference

- \blacktriangleright Interaction does not fit in a box (R > L/2) ... reliable calculation is hard
- Leading-order potential is not a good approximation for this system
- Systematic errors from the fitting?

Summary

- As a first step for future resonance studies, we study the $\pi\pi$ scatterings with the HAL QCD method + the hybrid method
- From the I=2 calculation, It is confirmed that we can obtain meaningful results with the hybrid method
- In the I=1 calculation, we see that noise contamination becomes large due to the quark annihilation diagrams
- Thanks to the additional noise reductions, we get a precise potential enough to calculate the binding energy, and we obtain $E_0 \approx -370$ MeV

Future work

• ρ meson resonance study

We have to improve our method to reduce numerical costs

• Further studies of hadronic resonances

I=0 $\pi\pi$ scattering($\sigma/f_0(500)$), other meson-meson systems

Backup

What dilution really does

Consider a noise vector $\eta = (1,1,1,1,1,1)$

Without the dilution,

$$\langle \eta \otimes \eta^{\dagger} \rangle = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Diluted vectors : $\eta^{(1)} = (1,1,0,0,0,0), \eta^{(2)} = (0,0,1,1,0,0), \eta^{(3)} = (0,0,0,0,1,1)$

Remaining noise contamination

$$\sum_{j=1}^{3} \eta^{(j)} \otimes \eta^{(j)\dagger} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Block off-diagonal noise contamination becomes exactly 0

• J-interlace time dilution

$$\eta = \sum_{i=0}^{J-1} \eta^{(i)}$$
$$\eta^{(i)}(\mathbf{x}, t) = 0 \text{ if } i \neq t \mod J$$

Schematically, $(L_t = 8, 4-interlace)$

Space-even/odd dilution

$$\eta = \sum_{i=0}^{1} \eta^{(i)}$$

Decompose into two vectors by an even/odd parity of $n_x + n_y + n_z$

• Space-4 dilution

$$\eta = \sum_{i=0}^{3} \eta^{(i)}$$

On z = 0 surface,

• Space-8 dilution

$$\eta = \sum_{i=0}^{r} \eta^{(i)}$$

On z = 0 surface,

Details of calculations

- I=2 $\pi\pi$ calculation
 - 16-interlace time, full color, full spin, 4-space dilution
 - Neig = 100
 - Smearing: exponential smearing with the Coulomb gauge
 - #. of confs: 60 (60 x 32 time slices) for consistency check, 20 (20 x 32 time slices) for studies of systematics
- I=1 $\pi\pi$ calculation
 - Using different-time scheme ($\Delta t = 1$ in Lattice Unit)
 - 16-interlace time, full color, full spin, space-4 (src to sink)
 - 4-interlace time, full color, full spin, space-8 * even/odd (sink to sink)
 - Neig = 100
 - Smearing: exponential smearing with the Coulomb gauge
 - #. of confs: 60 (statistics: 60 x 32 time slice)
 - #. of noise samples: 24

Exponential smearing

$$q_s(\mathbf{x},t) = \sum_{\mathbf{y}} f(\mathbf{x} - \mathbf{y}) q(\mathbf{y},t), \quad f(\mathbf{x}) = \begin{cases} ae^{-b|\mathbf{x}|} & (0 < |\mathbf{x}| < (L-1)/2) \\ 1 & (|\mathbf{x}| = 0) \\ 0 & (|\mathbf{x}| \ge (L-1)/2) \end{cases}$$

We take a=1.0, b=0.47 (lattice unit) to get a plateau of pion mass at an early time

I=2 effective energy shift

 ΔE is saturated around $t = 5 \rightarrow$ potentials at $t \ge 5$ can be reliable

Time dependence of potentials

Potentials are saturated around t = 6

Importance of noisy estimators

Dependence on Neig

Errors are reduced if we use more eigenmodes

Note: there is an optimal Neig which depends on lattice setups and numerical costs

Potential fitting

We use a 2-Gaussian fitting function for I=2 case

$$V(r) = a_0 e^{-\left(\frac{r}{a_1}\right)^2} + a_2 e^{-\left(\frac{r}{a_3}\right)^2}$$

Result of the fitting

$a_0 \; [\mathrm{MeV}]$	$a_1 [\mathrm{fm}]$	$a_2 \; [\text{MeV}]$	$a_3 [\mathrm{fm}]$	χ^2/dof
2047.7	0.11	377.9	0.32	1.27

ρ source calculation

We use a ρ shape source operator

$$\mathcal{J}_{\pi\pi}(t) = \bar{\rho}^0(t) = \sum_{\mathbf{x}} \frac{1}{\sqrt{2}} \left(\bar{u}(\mathbf{x}, t) \gamma_i u(\mathbf{x}, t) - \bar{d}(\mathbf{x}, t) \gamma_i d(\mathbf{x}, t) \right)$$

Then, triangle diagrams contribute to the correlator

I=1 effective energy shift

t=7 is sufficient for the ground state saturation

Potential fitting

We use a fitting function defined below for I=1 case

$$V(r) = \frac{a_0}{r} e^{-\left(\frac{r}{a_1}\right)^2} + a_2 e^{-\left(\frac{r}{a_3}\right)^2} + a_4 e^{-\left(\frac{r}{a_5}\right)^2}$$

This function has an inter-quark potential behavior in short range $(r \sim 0)$

$$V(r) \approx \frac{a_0}{r} - \frac{a_0}{a_1^2}r + a_2 + a_4$$

Results of the fitting (in lattice unit)

	a_0	a_1	a_2	a_3	a_4	a_5	χ^2/dof
w/ FV effects	-3.80	2.83	-0.43	7.70	-15.5	0.77	9.40
w/o FV effects	-3.81	2.89	-0.42	10.6	-15.5	0.77	9.40

Time dependence of the potential

Potentials are saturated around t = 4, 5, 6, 7

Time dependence of g.s. energies

NLO analysis of the potential

We can obtain the NLO potential by solving linear equations below:

$$\begin{bmatrix} \frac{\nabla^2}{m_{\pi}} - \frac{\partial}{\partial t} + \frac{1}{4m_{\pi}} \frac{\partial^2}{\partial t^2} \end{bmatrix} R_0(\mathbf{r}, t) = V_0(r) R_0(\mathbf{r}, t) + V_1(r) \nabla^2 R_0(\mathbf{r}, t)$$
$$\begin{bmatrix} \frac{\nabla^2}{m_{\pi}} - \frac{\partial}{\partial t} + \frac{1}{4m_{\pi}} \frac{\partial^2}{\partial t^2} \end{bmatrix} R_1(\mathbf{r}, t) = V_0(r) R_1(\mathbf{r}, t) + V_1(r) \nabla^2 R_1(\mathbf{r}, t)$$

 $(R_0, R_1 \text{ are the R-correlators calculated with different source operators)$

Need for a new strategy

The required properties of the new method

- Using less noise vectors
- Smaller computational cost

#. of noise vectors= #. of indices wehave to contract

To satisfy those properties, we consider combining some propagator calculation techniques

- hybrid method
- point-to-all propagator
- sequential propagator
- one-end trick (2 noise vectors -> 1 noise vector)

One-end trick

- Generate a noise vector $\eta_{[r]}(\mathbf{z})$ in each time slice (ex. Z4 noise)
- Then calculate ξ, χ $\xi_{t_0[r]}(x) \equiv \sum_{\mathbf{z}} D^{-1}(x; \mathbf{z}, t_0) \eta_{[r]}(\mathbf{z})$ $\chi_{t_0[r]}(x) \equiv \sum_{\mathbf{z}} D^{-1}(x; \mathbf{z}, t_0) \gamma_5 \Gamma^{\dagger} \eta_{[r]}(\mathbf{z})$ • Using ξ, χ , we obtain time
 - $\sum_{\mathbf{y}} D^{-1}(\mathbf{x}_1, t_1; \mathbf{y}, t_0) \Gamma D^{-1}(\mathbf{y}, t_0; \mathbf{x}_2, t_2) \approx \frac{1}{N_{\mathrm{r}}} \sum_{r=0}^{N_{\mathrm{r}}-1} \xi_{t_0[r]}(\mathbf{x}_1, t_1) \otimes \chi_{t_0[r]}^{\dagger}(\mathbf{x}_2, t_2) \gamma_5$
- Dilution technique can be used in this method
- > We can combine this method with smearing and momentum projection

Sequential propagator

• Consider a part of diagram below (same as the one-end trick):

$$\mathbf{x_{10}} = \sum_{\mathbf{y}} D^{-1}(\mathbf{x_1}, t_1; \mathbf{y}, t_0) \Gamma D^{-1}(\mathbf{y}, t_0; \mathbf{x_2}, t_2)$$

time

- We can calculate the red part exactly
- Note: we have to calculate $D^{-1}(\mathbf{y}, t_0; \mathbf{x_2}, t_2)$ in advance

I=1 calculation (ρ source)

• Triangle diagram

✓ There is ambiguity in a choice of a method to calculate a sink-to-sink propagator

Behavior of 1st time derivative term

From this behavior, we can conclude that ρ meson state dominates in a short-range region, and on the other hand, $\pi\pi$ scattering state dominates in a long-range region