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Introduction

Unconventional hadronic resonances (X,Y, Z, a/f,(500), etc.)

Attempts to interpret them by some models

® 0O

G -=

Multiquark state Meson-molecule state

» We need to understand them from QCD non-perturbatively
» Methods for studying hadronic resonances from lattice QCD

... Luscher’s method, HAL QCD method



Introduction

N
Ultimately, we want to understand every hadronic

resonance containing exotic ones by using

the HAL QCD method
\__ y,

!

4 N
As a first step, we are trying to investigate the p

meson resonance which emerges in the simplest,

77T scattering
. J




Methods

HAL QCD method: construct an interaction potential from
lattice QCD

Basic quantity: The Nambu-Bethe-Salpeter(NBS) wave function
Yr(r) = Z<0|7T(r + x, 0)7(x, 0)|wm; K) | k) o 77 scattering state wim

a relative momentum k

X

Local operator based on the quark model

2, 1.2 2
(V2 + &%) du(r) =0 (r > R) » (V +k 7 (x,t) = d(x,t)ysu(x, t)

sin (kr — 12 4 §;)
kr

U(r,r'):
+ faithful to the S-matrix
\ * depends on a choice of the operator j

lbg(k,’l”) ~ (7“ > R)

> Derivative expansion  Ul(r,r’) = (Vo(r) + W (r)V? + ) o(r—r1')

> In lattice QCD F(r,t) Z<ﬂ-(r+x’t) (x, ) T (t0)) ZAn¢n o~ Wa(t—to)

X



Methods

Time-dependent HAL QCD method (N.Ishii et al.(2012))

» All of the elastic scattering states share the same potential

(V2 + k2) () = 20 / BrU (e, ) ('), (n

» They are unified into one equation through the “R-

0, 1: “tey nth)

correlator”

-

R-correlator R(r,t)

Z Aphn (r

If we can neglect inelastic contributions, it satlsfles
vZ 0 1 0?

my Ot 4mg Ot2

\mfﬂ' at+

] Rr.t) = / U (r, v )R(

— AW, t

)

~

J

v' We can obtain a reliable potential at an early time ( O(e

—AWlt) > 0(8_

v" We can use all of the elastic states to construct the potential

AWinclat ) )



Methods

Difficulty in the calculation of the I = 1 mrmr scattering

/> Typical calculation (point-to-all propagators)\

U n— | Solve the equation below for fixed x,
r D(z;9)¥(y) = 02,2
{d d 3 Then v is a propagator from fixed x, to every x
i — |z _
U wlt P(z) = D™ (z; 7o) J
imaginary time
. d C_Z K> All-to-all propagators A
u U A propagator from every point to every point
T Naively, we need to calculate the point-to-all propagator
lu U tg Ny times Naive calculation is not realistic
L d |7 \0(106) ~ O(10%) | Need for some approximations /

imaginary time



Methods

Previous study: HAL QCD+LapH (D.Kawai et al. (2018))

|=2 rr phase shift

_>] Vi (r30,64) Large deviation from a
V() + Vi () v yellow line
VEO (r;0,16)

—161 w/o all-to-all

—18 Y,
0.0 0.1 0.2 0.3 0.4 05 0.6

k? [GeV?]
» All operators become non-local automatically due to the LapH method
=> contributions from higher derivative terms are enhanced

Ur,x') = (Vo(r) + Vi(r)V?* + ) o(r—r)




Methods

All-to-all method keeping the locality of operators:
The hybrid method (J.Foley et al.(2005))

Calculate a propagator approximately with eigenmodes of H = y:D
and noisy estimators

»Spectral decomposition of the propagator with eigenmodes of H

Nmax_]-

pr= Y )\lv(z‘)@vw)%
i=0

(. N

Calculate a part of the propagator
Practically, It is impossible to » by Nejg low-lying eigenmodes

calculate all of the eigenmodes Neig—1

1 .
DTl — —p® i(2)
0 E—o N Qv s
\_ i J




Methods

»Remaining parts are estimated by noisy estimators

Noise vector 7: A /Solve an equation, I
(i @) = o Hy = Pin
|77 ’2 = 1 P;: a projection operator for
n - . .
- ) |_remaining parts y

N

[(%D RnNys = H'Pi(n@n)ys = H'Prys = D' — Do_l}

The expectation value is estimated by an average over independent noise
vectors

Additional errors are introduced from the noisy estimator



Methods

» Noise reduction technique: dilution N1

Decompose a noise vector 1y, into linearly independent vectors -] = Ul
§=0

Example: color dilution in a calculation of M __ bﬁ( z,y) 77&2 (x) =01fi#a

w/o dilution

1 _
ﬁ Z (M 1?7[7"] & nfrr]>aa b3 (37, y) Ma,albﬁ(m? y) + Z CC;'}’ Z‘Z\/Iaozlcv(wv Z)
Lo ’ Llen.2)#(0.5.y) J

Noise contamination from (c, y, z)

w/ dilution
1 (i) o (D) _ b ( (5) o . (b) T)
Z (M i ® M) )aa,bﬁ (z,y) = N, Z M~ ﬁ[r] ® M cob (z,y)
( T
In.our studY MLy > CLLML, (2,2)
Color: full Time: full or J-interlace [ (7,2)#(8.y)
. ' : j
Spin: full - Space: none, even/odd, etc. Noise contamination is reduced thanks to

- J

color dilution (color index is fixed to b)



Results

Simulation details

« 2+1 flavor QCD configurations (CP-PACS+JLQCD, a = 0.1214[fm], 163 x 32)
* my; =~ 870 MeV, m, = 1230 MeV (Ey = —510 MeV)

* Calculations are held on Cray XC40 (YITP) and HOKUSAI Big-Waterfall (RIKEN)

Results

* |=2 mm S-wave scattering

Investigation into effectiveness of the hybrid method with the HAL QCD
method

We can compare our results with ones obtained without all-to-all propagators

* |=1 rr P-wave scattering (preparatory calculation)
Test calculation for the system containing quark annihilation diagrams with
the hybrid method 1 B
We use a p shape source operator T (to) = pi(to) = ﬁ (@yiu — dv;d) (to)



Result 1: 1=2 T S-wave
scattering



Result 1: |=2 T S-wave scattering

Behavior of the potential

1000
) ) total
» Bulk behavior of the potential % % Laplacian
are consistent with one without 800 P i R
all-to-all propagators _ ® the 1st time derivative
%) the 2nd time derivative
S 600
> Statistical errors are enhanced — %
ey . O
due to the additional noise ‘S 400 i
contamination GC)
e
o)
o

» The contamination mainly comes
from the Laplacian part
-> noise reductions in spatial
directions are important

N

o

o
IT%!—@—H

2 2
Y0l %] R(r,t)




Result 1: |=2 T S-wave scattering

Importance of spatial dilutions

Potential Energy shift AE,, = E .z — 2m,
250 30
] ® (full, none, 100, point) ® (full, none, 100, point)
2001 é (fu”r e/o, 100, p0|nt) 251 & (fU“, e/O, 100, p0|nt)
S 1501
W
=
100/
>
S
S 50y
0
~501, ‘ ‘ ‘ ‘ ‘ . 1§
0.0 6 7 8 9 10 11 12

t [Lattice Unit]
» Cancellation among different spatial points occurs in energy shift calculation

> Fine spatial dilution is crucial, especially for the HAL QCD method



50 [deg]

Result 1: |=2 T S-wave scattering

Consistency check with results without all-to-all propagators

Bl Hybrid method t =6
Il Wall source t=10

[}
|
|
!
| | uscher's method ;
BN Hybrid method t=6 !
B Wall source t=10 ':
1

0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4
k? [GeV?] k2 [GeV?]

[ Results with the hybrid method are reasonable ]




Result 2: 1=1 P-wave Tt
scattering



Result 2: |=1 P-wave mrmr scattering

Potential with the same setup as the I = 2 calculation

ol
||||||||| Ii |

—10000

VLO(r) [MeV]

—20000

—30000

} potential(hybrid method) t=7
I [ 1|

—40000 ' - — L RN RS
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

r[fm]

Extremely large statistical errors

o . More noise reductions are needed
(due to the quark annihilation diagrams) »



Result 2: |=1 P-wave @ scattering

Efforts of noise reductions

1. Changing dilution setups for each propagators

r +X r + X
[t » |
/,__/\\\ < time ) time
)

All of th ' Finer spatial dilution for this part
0 © Propagators To enable us to use as independent diluted

share the same vectors as possible
dilution setup in Laplacian calculation

space
space




Result 2: |=1 P-wave @ scattering

Efforts of noise reductions

2. Taking the different-time scheme for the NBS wave function

r 4 x I T »Hx
x[t .

i time
time At

space
space

» Motivated by the fact that there is no equal-time propagation in the I = 2 case

» Note: potentials depend on the scheme we choose, but physical quantities are
independent of it

3. Taking an average over the noise vectors



Result 2: |=1 P-wave it scattering

Resultant potential and binding energy

2000

Very strong attractive force 0
—2000

—4000

Ground state energy
—6000

Ey = —453 4+ 9 [MeV] > .,

VLO(r) [MeV]

—10000 ¢ t=7
—— fit result
—12000

0.0 0.2 0.4 0.6 0.8
r [fm] L/2

» A bound state exists (related to p meson)
» Long-tail structure ... need for considering finite volume effects in fitting



Result 2: |=1 P-wave it scattering

Finite volume effects in the potential fitting

Vev(r) =V(r)+ ) V(r+Ln), N = {n|n = (+1,0,0), (0,%1,0),(0,0,£1)}
neN 1000

0 o G s 4 |

—1000
Ground state energy ~2000

—3000

VLO(r) [MeV]

E, = =374 + 16 [MeV]

—4000

t=7
—5000 == fit result (w/o FV effects)
== fit result (w/ FV effects)

_600%1 02 03 04 05 06 07 08 009
. . . . . . . . . L/2

rfm]

» Smaller binding energy than that from the naive fitting (previous slide)



Result 2: |=1 P-wave mrmr scattering

Comparison with the expected g.s. energy

4 ) 4 )
Our result (w/ FV effects) é Expected g.s. energy

Ey~ —370 MeV FEy =~ —510 MeV
g J g J

Possible origins of this difference

» Interaction does not fit in a box (R > L/2) ... reliable calculation is hard
» Leading-order potential is not a good approximation for this system

» Systematic errors from the fitting?



Summary

As a first step for future resonance studies, we study the mm scatterings
with the HAL QCD method + the hybrid method

From the I=2 calculation, It is confirmed that we can obtain meaningful
results with the hybrid method

In the I=1 calculation, we see that noise contamination becomes large
due to the quark annihilation diagrams

Thanks to the additional noise reductions, we get a precise potential
enough to calculate the binding energy, and we obtain E; = —370 MeV

Future work

p meson resonance study
We have to improve our method to reduce numerical costs

Further studies of hadronic resonances
|=0 mrrr scattering(a/f;(500)), other meson-meson systems



Backup



What dilution really does

Consider a noise vectorn = (1,1,1,1,1,1)

Without the dilution,

-
S T Gy G G Y

\
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Diluted vectors : ¥ = (1,1,0,0,0,0),7® = (0,0,1,1,0,0), n® =

(0,0,0,0,1,1)

Remaining noise
contamination Z"(j) @@t =

1 MO 0)0 0))
(1) 110_0Jlo 0 Block off-diagonal noise
0 0] 1 0 0

contamination becomes
exactly O




Details of dilutions

e J-interlace time dilution
J—1
n = > n¥
=0
n'W(x,t) = 0if it mod J

Schematically, (L, = 8, 4-interlace)

(1)
(0)

(2)
(3)



Details of dilutions

* Space-even/odd dilution
n = Zn(i)

Decompose into two vectors by an even/odd parity of n, +n, +n,

o -1
@ "

On z = 0 surface,

4000000‘ 4



Details of dilutions
e Space-4 dilution

On z = 0 surface,




Details of dilutions
e Space-8 dilution

7
n = » ot
1=0
On z = 0 surface,
o -1 _' Laplacian calculation
o 1Y V
A -n?
m-1®
@ o, ¢
©® -1 P
(6)
.
A\ » A

-n"



Details of calculations

* |=2 it calculation
e 16-interlace time, full color, full spin, 4-space dilution
* Neig =100
* Smearing: exponential smearing with the Coulomb gauge

» #. of confs: 60 (60 x 32 time slices) for consistency check,
20 (20 x 32 time slices) for studies of systematics

* |=1 7t calculation
e Using different-time scheme (At = 1 in Lattice Unit)
» 16-interlace time, full color, full spin, space-4 (src to sink)
 4-interlace time, full color, full spin, space-8 * even/odd (sink to
sink)
Neig = 100
Smearing: exponential smearing with the Coulomb gauge
#. of confs: 60 (statistics: 60 x 32 time slice)
e #. of noise samples: 24



Exponential smearing

(ae Xl (0< x| < (L—-1)/2)
gs(x,t) = >, f(x—=y)a(y,t), f(x)=41 ([x|=0)

L0 (x| =(L-1)/2)

We take a=1.0, b=0.47 (lattice unit) to get a plateau of pion mass at an early time
900
890+

85011 & Point source
A Smeared source

0 2 4 6 8 10 12
t [Lattice Unit]



|=2 effective energy shift

20

&
——
O —
——

o

+

AEnq(t) [MeV]

%

A
5_
® Point source
A Smeared source
% 2 3 6 8 10 12

t [Lattice Unit]

AE is saturated around t =5 -> potentials at t >= 5 can be reliable



Time dependence of potentials
| ¢ (16int, s4, 100, point) t =1
2000_§ A (16int, 54, 100, point) t = 2
& f  (16int, s4, 100, point) t = 3
~ (16int, s4, 100, point) t =4
o 1500/ ¥  (16int, s4, 100, point) t = 5
= ¥ (16int, s4, 100, point) t = 6
10001 &
S i
S
500/ %%

0.0 0.2 04 06 08 1.0 1.2 1.4 1.6
r[fm]

Potentials are saturated around t = 6



Importance of noisy estimators

140

120

There is significant difference 106
between results w/ and w/o

noisy estimators E 80

S 60

&

40

20

Noisy estimators are important o

to get a correct potential
=20

}
}

potential(hybrid method) t=6
potential(eigen only) t=6

0.2




Dependence on Neig

250
T ® (16int, e/o, 100, point)
200" A (16int, e/o, 200, point)

150

100

VO (r) [MeV]

0.0 0.2

» Errors are reduced if we use more eigenmodes

» Note: there is an optimal Neig which depends on lattice setups and numerical costs



Potential fitting

We use a 2-Gaussian fitting function for 1=2 case

T

Vir) = aoe_(al)Q + a,ze_(%)2

» Result of the fitting

ap [MeV] a;y [fm] as [MeV] ag [fm] | x*/dof

2047.7 0.11 377.9 0.32 | 1.27



p source calculation

We use a p shape source operator
Tonlt) = 29(1) = EX: % (a(x, t)yu(x, t) — d(x, D)nd(x, 1))

Then, triangle diagrams contribute to the correlator

r+ X r+X
l < l <
o O
© ©
v (%)
X X
< <

time time



|=1 effective energy shift

AE(t) [MeV]

-200

-300

—400

—500

—-600

=700

—800
0

—— ground state (expected)
® rho, smeared

)

@
=
—E-

6

8
t [Lattice Unit]

10

12 14

t=7 is sufficient for the ground state saturation

16



Potential fitting

We use a fitting function defined below for I1=1 case

2 2 2
T

This function has an inter-quark potential behavior in short range

(r ~ 0)

» Results of the fitting (in lattice unit)
ag aj az | as I a4 as ‘ X2/d0f

w/ FV effects -3.80 2.83 -043 | 7.70 | -15.5 0.77 | 9.40
w/o FV effects -3.81 2.89 -0.42 | 10.6 | -15.5 0.77 9.40




Time dependence of the potential

10001
0
—1000 -
>
@
= —-2000
=
5 ?
< -30001
—4000 ]
O t=4
A t=5
—5000 -] f t=6
b t=7
—6000 - : . | !
0.0 0.2 0.4 0.6 0.8 L/2

r [fm]

Potentials are saturated around t =4, 5, 6, 7



Time dependence of g.s. energies

—300
------- -510 MeV
—-3501| ¢ rhosmr
# rho smr (haive) +
—4001
< 450 0
Q [
= 500( o  E————————————————
(=]
W _550 #
—600 |
—650
5 6 7

Time dependence is observed t [Lattice Unit]

Although the potentials seem to
be saturated in this region

Fitting does not work

wellatt =6



NLO analysis of the potential

We can obtain the NLO potential by solving linear
equations below:

(V9 1 9]
m. Ot i dm, Ot2 |
(V:2 0 1 07
m, Ot i Adm @

Ro(r,t) = Vo(r)Ro(r,t) + Vi (r)VZRo(r, t)

Rl (I‘, t) = Vo(’f’)Rl (I‘, t) -+ Vl (T)V2R1 (I‘, t)

(Ry, Ry are the R-correlators calculated with different
source operators)



Need for a new strategy

The required properties of the new method
#. of noise vectors

e Using less noise vectors 7 Sy N
* Smaller computational cost have to contract

To satisfy those properties, we consider combining
some propagator calculation techniques

* hybrid method

* point-to-all propagator

* sequential propagator

* one-end trick (2 noise vectors -> 1 noise vector)




One-end trick

* Generate a noise vector 1,(z) in each time slice (ex. Z4 noise)

e Then calculate &, ¥

Sopry(2) = ZD Y (2) X1 y|
Xto[r] (CC) = ZD CE Z tO ’75FT77[T}( ) X2
e Using &, x, we obtain time

N.—1
_ _ l
ZD Hx,t3y, to) T DTy, toi X2, 12) & N Z fto[r](xlatl)®X10[7~](X27t2)75
' r=0

» Dilution technique can be used in this method

» We can combine this method with smearing and momentum projection

space



Sequential propagator

* Consider a part of diagram below (same as the one-end trick):

D™ (x1, 15y, to)T D™y, to; X2, t2)

to

time
* We can calculate the red part exactly

* Note: we have to calculate D=!(y, ty;x2,t,) in advance



=1 calculation (p source)

* Triangle diagram

Low-lying eigenmode: One-end trick
+ point-to-all prop. r+x
(LMA? AMA?)
. J
spatial average
vs » @
noise contamination §
[ Hybrid method ] X
<

time

v There is ambiguity in a choice of a method to calculate a sink-to-sink propagator

v’ #. of noise vectors =< 2



Behavior of 15t time derivative term

potential [MeWV]

LD

750 1

500 +

250 1

=250 4

=500

=750 4

~ OR(r,t)
ot

/R(r,t) ~ AW | Trr

>

Consistent with energy of p
meson state m, — 2m, =
— 510[MeV]

£, 12 noise mean), real part
t, 24 noise mean), real part

;

Consistent with energy of the lowest
T scattering state

JmZ + @n/L)% — 2m,; = 420[MeV]
\

-1000

(7_-‘-7?)[:1,[2 =0

)

I}.IS
r [fm]

0.2 0.4 0.6 10 1z 14 16

From this behavior, we can conclude that p meson state dominates in a
short-range region, and on the other hand, mm scattering state dominates in
a long-range region



