Some theoretical issues in HAL QCD method

Sinya Aoki

Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University

International Molecule-type Workshop Frontiers in Lattice QCD and related topics April 15- April 26, 2019, Yukawa Institute for Theoretical Physics, Kyoto University

O. Introduction Some Issues in the HAL QCD method

HAL QCD method

A powerful method to investigate hadron interactions

Strategy

$$\begin{split} \text{NBS wave function} \qquad \varphi^{\vec{k}}(\vec{x})e^{-W_{\vec{k}}t} &= \langle 0|N(\vec{r},t)N(\vec{r}+\vec{x},t)|NN,W_{\vec{k}}\rangle \qquad W_{\vec{k}} &= 2\sqrt{\vec{k}^2 + m_N^2} \\ & \rightarrow \sum_{lm} C_{lm} \frac{\sin(kx+\delta_l(k))}{kx} Y_{lm}(\Omega_{\vec{x}}) \end{split}$$

energy-independent non-local potential

 $V(\vec{x}, \vec{\nabla}) = V_0(x) + V_{\sigma}(x)(\vec{\sigma}_1 \cdot \vec{\sigma}_2) + V_T(x)S_{12} + V_{\rm LS}(x)\vec{L} \cdot \vec{S} + O(\vec{\nabla}^2)$

Some issues

Q1. The HAL QCD potential in the moving system?

I. The HAL QCD potential from the moving system

Q2. Validity of the derivative expansion ? small parameter ?

II. Definition of the HAL QCD potential with the derivative expansion

- Q3. Is the HAL QCD potential Hermite?
 - III. Hermite potential from non-Hermite potential
- Q4. Partial wave mixings in the cubic box ?

Sinya Gongyo's taik on 4/24.

Q5. Quark annihilation processes and resonances ?

Yutaro Akahoshi's talk on 4/16.

I. The HAL QCD potential from the moving system

Our Motivation

 σ resonance from the $I=0~\pi\pi$ scattering in the HAL QCD method

"vacuum" has the same quantum numbers

"vacuum" state appears in the NBS wave function in center-of-mass system

the potential describes the vacuum as the "deeply bound state" of two pions ?

Moving system no "vacuum" state in the NBS

But $\varphi^{\vec{k}}(\vec{x})e^{-W_{\vec{k}}t} = \langle 0|N(\vec{r},t)N(\vec{r}+\vec{x},t)|NN,W_{\vec{k}}\rangle \rightarrow \sum_{lm} C_{lm} \frac{\sin(kx+\delta_l(k))}{kx}Y_{lm}(\Omega_{\vec{x}})$

true only in the CM system

no definition of the potential directly from the boosted NBS

Generalized definition of the potential in the CM system

non-equal time NBS wave function in CM system

$$\varphi^{\vec{k}}(\vec{x}, x_4) = \left\langle 0 \left| N\left(\frac{\vec{x}}{2}, \frac{x_4}{2}\right) N\left(-\frac{\vec{x}}{2}, -\frac{x_4}{2}\right) \right| NN, W_{\vec{k}} \right\rangle$$
$$\simeq \sum_{lm} A_{lm} \frac{\sin(kx + \delta_l(k) + \pi l/2)}{kx} Y_{lm}(\Omega_{\vec{x}}) \qquad k = |\vec{k}|$$
$$(E_k - H_0) \varphi^{\vec{k}}(\vec{x}, x_4) = V_{x_4}(\vec{x}, \nabla) \varphi^{\vec{k}}(\vec{x}, x_4) \qquad \text{also in Akahoshi's talk}$$

the HAL QCD potential in the x_4 scheme

 $x_4 = 0$: equal time scheme

Can we extract the generalized potential from the boosted NBS function ?

For simplicity, we consider this problem for scalar field.

CM and moving systems

 $P_0^* := (\Lambda P)_0 = \gamma (P_0 - \vec{V}\vec{P}), \quad P_k^* := (\Lambda P)_k = \gamma (P_k - V_k P_0) = 0, \qquad \gamma = \frac{1}{\sqrt{1 - \vec{V}^2}}$ boost factor $\vec{V} = \vec{P}/P_0.$ boost velocity depends on energy

$$(\vec{p}^*)^2 := (\vec{p}^*_{\perp})^2 + (\vec{p}^*_{\parallel})^2 = \vec{p}^2 - \frac{(\vec{P} \cdot \vec{p})^2}{P_0^2} = \frac{P_0^2 - \vec{P}^2}{4} - m^2.$$

important relation

relation of NBS wave functions between 2 systems

NBS
$$\psi_{p,P}(x,X) := \langle 0|T\{\phi(x_1)\phi(x_2)\}|p_1,p_2\rangle$$

 $x := x_1 - x_2, X = (x_1 + x_2)/2$
 $p_1^2 - m^2 = 0$
 $P_0 = \sqrt{p_1^2 + m^2} + \sqrt{p_2^2 + m^2}.$

$$\psi_{p,P}(x,X) = \langle 0|e^{i\hat{P}\cdot X}T\{\phi(x/2)\phi(-x/2)\}e^{-i\hat{P}\cdot X}|p_1,p_2\rangle$$
$$= e^{-iP\cdot X}\varphi_{p,P}(x),$$

 $\begin{array}{ll} \mbox{moving} & \mbox{CM} \\ \mbox{Scalar field} & e^{-iP\cdot X}\varphi_{p,P}(x) = e^{-iP^*\cdot X^*}\varphi_{p^*,P^*}(x^*). & P\cdot X = P^*\cdot X^* \end{array}$

$$\varphi_{p,P}(x) = \varphi_{p^*,P^*}(x^*),$$

$$p^* = (0, \vec{p}^*), \quad P^* = (P_0^*, \vec{0}) \quad x^* = \left(\gamma(x_0 - \vec{V}\vec{x}), \ \gamma(\vec{x}_{\parallel} - \vec{V}x_0), \ \vec{x}_{\perp}\right)$$

Euclidean space-time (Wick rotation) $x_4 = ix_0$

Minkowski

 $\begin{array}{ll} \mbox{moving} & \mbox{CM} \\ \varphi_{p,P}(x) & = & \varphi_{p^*,P^*}(x^*), \end{array}$

$$p^* = (0, \vec{p}^*), \quad P^* = (P_0^*, \vec{0}) \quad x^* = (\gamma(x_4 - i\vec{V}\vec{x}), \ \gamma(\vec{x}_{\parallel} + i\vec{V}x_4), \ \vec{x}_{\perp}).$$

complex in CM !

$$(\vec{p}^*)^2 = \frac{P_0^2 - \vec{P}^2}{4} - m^2, \quad P_0^* = \frac{P_0}{\gamma}, \quad \vec{V} = \frac{\vec{P}}{P_0},$$

$$-iP \cdot X = -P_0 X_4 + i\vec{P}\vec{X} = -P_0^* X_4^*.$$

HAL QCD potential from boosted NBS wave function

$$(E_{p^*} - H_0)\varphi_{p^*,P^*}(x^*) = V_{x_4^*}(\vec{x}, \nabla)\varphi_{p^*,P^*}(x^*)$$
 generalized definition

using Boosted NBS

$$\varphi_{p,P}(x) = \varphi_{p^*,P^*}(x^*),$$

$$V_{x_4^*}(\vec{x*}, \nabla)\varphi_{p,P}(x) = \frac{(p^*)^2 + \nabla_{x^*}^2}{m}\varphi_{p,P}(x)$$

$$CM \qquad Moving \qquad CM \qquad Moving$$

$$\nabla_{x^*}^2 = \gamma^2 \left(\nabla_{x_{\parallel}} + iV \partial_{x_4} \right)^2 + \nabla_{x_{\perp}}^2$$

CM

Moving

$$V_{\gamma(x_4-iVx_{\parallel})}(\gamma(x_{\parallel}+iVx_4),x_{\perp},\nabla_{x^*})\varphi_{p,P}(x) = \frac{(\vec{p}^*)^2 + \gamma^2 \left(\nabla_{x_{\parallel}}+iV\partial_{x_4}\right)^2 + \nabla_{x_{\perp}}^2}{m}\varphi_{p,P}(x)$$

 $x_4 = 0$ (equal-time boosted NBS) is required.

Minkowski time from Euclidean correlates !

$$(\vec{p}^*)^2 = \frac{P_0^2 - \vec{P}^2}{4} - m^2, \quad P_0^* = \frac{P_0}{\gamma}, \quad \vec{V} = \frac{\vec{P}}{P_0},$$

Time-dependent HAL QCD method

R-correlator

$$R_{\vec{P}}(x,X)e^{i\vec{P}\cdot\vec{X}} := \langle T\{\phi(x_{1})\phi(x_{2})\}J_{\phi\phi}^{\dagger}(0,\vec{P})\rangle = e^{i\vec{P}\cdot\vec{X}}\sum_{\substack{P_{0}^{n}\leq W_{\text{th}}}A_{n}e^{-P_{0}^{n}X_{4}}\varphi_{p^{n},P^{n}}(x)+\cdots,$$

sum of NBS

. .

$$V_{-i\gamma V x_{\parallel}}(\gamma x_{\parallel}, x_{\perp}, \nabla_{x^*})\varphi_{p,P}(x) = \frac{(\vec{p^*})^2 + \gamma^2 \left(\nabla_{x_{\parallel}} + iV\partial_{x_4}\right)^2 + \nabla_{x_{\perp}}^2}{m}\varphi_{p,P}(x).$$

$$\gamma_n^2 = \frac{(P_0^n)^2}{(P_0^n)^2 - \vec{P}^2} \qquad (\vec{p}^*)^2 = \frac{P_0^2 - \vec{P}^2}{4} - m^2, \quad P_0^* = \frac{P_0}{\gamma}, \quad \vec{V} = \frac{\vec{P}}{P_0},$$

$$A_{1}(x,X) := \left(\partial_{X_{4}}^{2} - \vec{P}^{2}\right) R_{\vec{P}}(x,X) = \sum_{n} A_{n} e^{-P_{0}^{n} X_{4}} ((P_{0}^{n})^{2} - \vec{P}^{2}) \varphi_{p^{n},P^{n}}(x),$$

$$A_{2}(x,X) := \left(\partial_{X_{4}}^{2} - \vec{P}^{2}\right)^{2} R_{\vec{P}}(x,X) = \sum_{n} A_{n} e^{-P_{0}^{n} X_{4}} ((P_{0}^{n})^{2} - \vec{P}^{2})^{2} \varphi_{p^{n},P^{n}}(x),$$

$$B(x,X) := \nabla_{x_{\perp}}^{2} A_{1}(x,X),$$

$$C(x,X) = \left(-\partial_{X_{4}} \nabla_{x_{\parallel}} + i |\vec{P}| \partial_{x_{4}}^{2}\right)^{2} R_{\vec{P}}(x,X)$$

$$= \sum_{n} A_{n} e^{-P_{0}^{n} X_{4}} (P_{0}^{n})^{2} \left(\nabla_{x_{\parallel}} + i V_{n} \partial_{x_{4}}\right)^{2} \varphi_{p^{n},P^{n}}(x),$$

$$V_{n} = \frac{|\vec{P}|}{P_{0}^{n}}$$

$$(41)$$

LO potentail

$$V_{x_4^*=0}^{\text{LO}}(0,x_{\perp}) = \frac{A_2(x,X)/4 - m^2 A_1(x,X) + B(x,X) + C(x,X)}{mA_1(x,X)}$$

 $x_4 = x_{\parallel} = 0$

Future investigations

1. Check the formula for he simple system

 $I = 2 \pi \pi$ moving system

2. resonance in the HAL QCD potential

 σ resonance in $I = 0 \pi \pi$ moving system

3. extension to fermions (Baryons)

lower components mix

relativistic formulation for the "potential" ?

II. Definition of the HAL QCD potential with the derivative expansion

$$(E_{\vec{k}} - H_0)\varphi^{\vec{k}}(\vec{x}) = \int U(\vec{x}, \vec{y})\varphi^{\vec{k}}(\vec{y})d^3y, \quad W_{\vec{k}} \le W_{\rm th}$$

This equation does not fix the non-local potential due to the restriction of energies. Therefore this potential is ambiguous. We have to fix the definition of the potential (scheme) explicitly.

We here propose a scheme to fix the potential completely using the derivative expansion.

For simplicity, let us consider the scalar particles and ignore the angular momentum dependent part of the potential.

- We consider the expansion in terms of ∇^2 (but not \mathbf{L}^2).
- Terms with odd number of ∇ are not included. This is our scheme.
- The potential must be non-Hermitian. We can make it Hermitian as seen later.

Of course, the scheme is not unique. One may use a different one.

Definition of the potential

choice of energy

$$W_k^n := 2m_N + \frac{k}{n}(W_{\text{th}} - 2m_N), \quad k = 0, 1, \cdots, n$$

approximated potential at the n-th order

$$V^{(n)}(\mathbf{x}, \nabla) := \sum_{k=0}^{n} V_{k}^{(n)}(\mathbf{x}) (\nabla^{2})^{k}$$
(L²)^k terms are ignored for simplicity.
Coefficient functions $V_{k}^{(n)}(\mathbf{x})$ can be determined from faithful to phase shifts

Coefficient functions $V_k^{(n)}(\mathbf{x})$ can be determined from

$$\sum_{k=0}^{n} V_{k}^{(n)}(\mathbf{x})(\nabla^{2})^{k} \varphi_{p_{k}}(\mathbf{x}) = (\epsilon_{p_{k}} - H_{0})\varphi_{p_{k}}(\mathbf{x}) \qquad \qquad W_{n}^{k} = 2\sqrt{p_{k}^{2} + m_{N}^{2}}$$

$$\begin{pmatrix} \varphi_{p_{0}}(\mathbf{x}) \quad \nabla^{2}\varphi_{p_{0}}(\mathbf{x}) & \cdots & (\nabla^{2})^{n}\varphi_{p_{0}}(\mathbf{x}) \\ \varphi_{p_{1}}(\mathbf{x}) \quad \nabla^{2}\varphi_{p_{1}}(\mathbf{x}) & \cdots & (\nabla^{2})^{n}\varphi_{p_{1}}(\mathbf{x}) \\ \cdots & \cdots & \cdots & \cdots \\ \varphi_{p_{n}}(\mathbf{x}) \quad \nabla^{2}\varphi_{p_{n}}(\mathbf{x}) & \cdots & (\nabla^{2})^{n}\varphi_{p_{n}}(\mathbf{x}) \end{pmatrix} \begin{pmatrix} V_{0}^{(n)}(\mathbf{x}) \\ V_{1}^{(n)}(\mathbf{x}) \\ \vdots \\ V_{n}^{(n)}(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} (\epsilon_{p_{0}} - H_{0})\varphi_{p_{0}}(\mathbf{x}) \\ (\epsilon_{p_{1}} - H_{0})\varphi_{p_{1}}(\mathbf{x}) \\ \vdots \\ (\epsilon_{p_{n}} - H_{0})\varphi_{p_{n}}(\mathbf{x}) \end{pmatrix}$$
a number of unknowns = a number of equations
$$V_{k}^{(n)}(\mathbf{x})$$
Def of potential
$$V(\mathbf{x}, \nabla) := \lim_{n \to \infty} V^{(n)}(\mathbf{x}, \nabla) = \lim_{n \to \infty} \sum_{n \to \infty}^{n} V_{k}^{(n)}(\mathbf{x})(\nabla^{2})^{k}$$

 $n \rightarrow \infty$

In practice Take n = 1 with $W_0^1 \simeq 2m_N$ and $W_1^1 \simeq W_{\text{th}}$.

Demonstration

 $v(\vec{x}) = e^{-\mu x}, \quad x := |\vec{x}|$ $U(\vec{x}, \vec{y}) = wv(\vec{x})v(\vec{y})$ Separable potential

L=0 wave function

R: IR cut-off

$$\psi_k^0(x) = \frac{e^{i\delta(k)}}{kx} \left[\sin(kx + \delta(k)) - \sin\delta(k)e^{-\mu x} \left(1 + x\frac{\mu^2 + k^2}{2\mu} \right) \right] \qquad x \le R$$
$$= C \frac{e^{i\delta(k)}}{kx} \sin(kx + \delta_R(k)) \qquad x > R$$

phase shift $\delta_R(k)$ is exactly calculable.

separable potential

 $U(\vec{x}, \vec{y})$

 $V_0^{\text{LO}}(r)$ from $k^2 = 0$ or $k^2 = \mu^2$ LO potential

NLO potential

 $V_0^{\rm NLO}(r) + V_1^{\rm NLO}(r)\nabla^2$

NLO potential reproduces the exact phase shift rather well.

III. Hermitian potential from non-Hermitian potential

The HAL QCD potential is non-Hermitian in general, since NBS wave functions are not orthogonal to each other. (If Hermite, eigenfunctions must be orthogonal.)

Can we make non-Hermitan potential Hermite?

$$\begin{split} H\psi &= E\psi, E \in \mathcal{R} \quad H = H_0 + U \quad H_0 = -\frac{1}{m_N} \nabla^2, \\ \text{real eigenvalues} \quad U : \text{ non-Hermitian} \\ & & \\$$

1. LO in the derivative expansion (n=1)

 $V_2^{ji} = V_2^{ij}$

$$U = V_0 + V_1 \nabla_i + \frac{1}{2} V_2^{ij} \nabla_i \nabla_j = V_0 + \bar{V}_1^i \nabla_i + \frac{1}{2} \nabla_j V_2^{ij} \nabla_j,$$

$$\tilde{V}_1^i := V_1^i - (\nabla_j V_2^{ij})/2$$

$$\tilde{H} = H_0 + \tilde{V}_0 + \frac{1}{2} \nabla_i V_2^{ij} \nabla_j + \left\{ \tilde{V}_1^i - \frac{2}{m_N} R^{-1} \nabla^i R + V_2^{ij} R^{-1} V_j R \right\} \nabla_i = 0$$

$$\tilde{V}_0 := V_0 - \frac{1}{m_N} R^{-1} \nabla^2 R + V_1^i R^{-1} \nabla_i R + \frac{1}{2} V_2^{ij} R^{-1} (\nabla_i \nabla_j R).$$

Rotationally symmetric case:

$$\tilde{V}_1^i := \hat{r}^i V_1(r), \quad V_2^{ij} := \delta^{ij} V_{2a} + \hat{r}^i \hat{r}^j V_{2b}, \qquad \hat{r}^i := \frac{r^i}{r}$$

$$\frac{dR(r)}{dr} = \frac{m_N}{2} \frac{\bar{V}_1(r)}{1 - \frac{m_N}{2} V_2(r)} R(r), \quad V_2 := V_{2,a} + V_{2,b},$$

$$R(r) = \exp\left[\frac{m_N}{2} \int_{r_{\infty}}^r ds \, \frac{\bar{V}_1(s)}{1 - \frac{m_N}{2} V_2(s)}\right]$$

At this order, we can make the potential Hermitian without approximation.

$$\tilde{V}_0 = V_0 - \frac{\tilde{V}_1}{r} - \frac{\tilde{V}_1'}{2} + \frac{m}{4} \frac{\tilde{V}_1^2}{1 - \frac{m}{2}V_2} \qquad \qquad \tilde{V}_1 := V_1 - V_{2a} - \frac{V_{2a}' + V_{2b}'}{2}$$

2. NLO (n=2)

 $H_1 = H^0 + U_1, \ H^0 = H_0 + U_0 \qquad O(\nabla^2)$ $O(\nabla^4)$ $U_1 = V_3 + V_4 = U_{1,4} + U_{1,3} + U_{1,2} + U_{1,1}$ $U_{1,n}$: *n*-th derivative term Hermitian **Hermitian** $\tilde{H}_1 := R^{-1} H_1 R, \quad R := R_0 (1 + R_1)$ $R^{-1} \simeq (1 - R_1) R_0^{-1}$ $(1 - R_1)R_0^{-1}(H^0 + U_1)R_0(1 + R_1)$ $\tilde{H}^0 := R_0^{-1} H^0 R_0 = \tilde{V}_0 + \frac{1}{2} \nabla_i H_0^{ij} \nabla_j$ Hermitian (n=1) $\tilde{H}_1 \simeq \tilde{H}^0 + R_0^{-1} U_1 R_0 + [\tilde{H}^0, R_1] + [R_0^{-1} U_1 R_0, R_1]$ neglected as higher order (approximation) $\tilde{U}_1 := R_0^{-1} U_1 R_0 = U_{1,4} + \tilde{U}_{1,3} + \tilde{U}_{1,2} + \tilde{U}_{1,1} + \tilde{U}_{1,0}$ Η Η Н

Take
$$R_1 = R_{1,0} + R_{1,2}, \quad R_{1,2} := \frac{1}{2} R_{1,2}^{ij} \nabla_i \nabla_j$$

 $[\tilde{H}^0, R_1]$

 $X_{0} := [\tilde{H}^{0}, R_{10}] = X_{0,1} + X_{0,0}, \quad X_{2} := [\tilde{H}^{0}, R_{12}] = X_{2,3} + X_{2,2} + X_{2,1} + X_{2,0}$ $\tilde{H}_{1} = \tilde{H}^{0} + U_{1,4} + \tilde{U}_{1,2} + \tilde{U}_{1,0} + X_{2,2} + X_{2,0} + X_{0,0} \quad \text{Hermitian}$ $\tilde{U}_{1,3} + X_{2,3} = \mathbf{0} \longrightarrow R_{12} \qquad \tilde{U}_{1,1} + X_{2,1} + X_{0,1} = \mathbf{0} \longrightarrow R_{10}$

The potential can be made Hermitian within the derivative expansion.

Higher orders can be treated similarly. (detail skipped)

Example of II & III

 $a = 0.09 \text{ fm} (a^{-1} = 2.2 \text{ GeV})$ 2+1 flavor QCD $m_{\pi} = 0.51 \text{ GeV}, m_N = 1.32 \text{ GeV}, m_K = 0.62 \text{ GeV}, m_{\Xi} = 1.46 \text{ GeV}$ $n = 0 \Xi \Xi$ potential $\Xi\Xi({}^{1}S_{0}) N_{s} = 64 t = 14$ 0.03 smeared: more higher energy modes 0.02 wall: low energy modes 0.01 والالاسلام لدقي معاديه والم , eff 0.00 -0.01 smeared src. -0.02 small difference wall src. -0.03 5 10 15 20 25 30

From the difference, we can determine two terms.

Scattering phase shift

Effects of NLO contributions gradually show up as energy increases.

LO local potential after Hermitization is better than non-Hermitian one.

Our answers

Q1. The HAL QCD potential in the moving system?

I. The potential can be construed from the boosted NBS.

Q2. Validity of the derivative expansion ? small parameter ?

II. The derivative expansion is a part of the definition.

Q3. Is the HAL QCD potential Hermite?

III. The HAL QCD potential is non-Hermite, but can be made Hermite.

Q4. Partial wave mixings in the cubic box ?

Sinya Gongyo's talk on 4/24.

Q5. Quark annihilation processes and resonances ?

Yutaro Akahoshi's talk on 4/16.

States and operators

Lorentz tr. of EM op.

$$\hat{P}'_{\mu} := U \hat{P}_{\mu} U^{-1} = (\Lambda^{-1})_{\mu}{}^{\nu} \hat{P}_{\nu},$$

Lorentz tr. of states

$$\begin{split} U|p\rangle &= |\Lambda p\rangle, \qquad (\Lambda p)_{\mu} = \Lambda_{\mu}{}^{\nu}p_{\nu} \qquad \hat{P}_{\mu}|p\rangle &= p_{\mu}|p\rangle \\ \hat{P}_{\mu}U|p\rangle &= UU^{-1}\hat{P}_{\mu}U|p\rangle = U\Lambda_{\mu}{}^{\nu}\hat{P}_{\nu}|p\rangle = \Lambda_{\mu}{}^{\nu}p_{\nu}U|p\rangle, \end{split}$$

 $U|p_1, p_2\rangle = |\Lambda p_1, \Lambda p_2\rangle, \qquad U|0\rangle = |0\rangle,$

Scalar field o

op.
$$U\phi(x)U^{-1} = e^{i\Lambda^{-1}\hat{P}\cdot x}U\phi(0)U^{-1}e^{-i\Lambda^{-1}\hat{P}\cdot x} = e^{i\hat{P}\cdot\Lambda x}\phi(0)e^{-i\hat{P}\cdot\Lambda x}$$

= $\phi(\Lambda x)$

$$\phi(x) = e^{i\hat{P}\cdot x}\phi(0)e^{-i\hat{P}\cdot x}, \quad U\phi(0)U^{-1} = \phi(0),$$

 $\Lambda^{-1}A \cdot B := g^{\mu\nu}(\Lambda^{-1})_{\mu}{}^{\alpha}A_{\alpha}B_{\nu} = g^{\alpha\beta}A_{\alpha}\Lambda_{\beta}{}^{\nu}B_{\nu} = A \cdot \Lambda B_{\alpha}$

Procedure

- 1. At non-zero boost \vec{P} , calculate $\varphi_{p,P}(x)$ at fixed energy or $R_{\vec{P}}(x,X)$.
- 2. Define projections as

$$(P_{\parallel})_{ij} = \frac{P_i P_j}{\vec{P}^2}, \quad P_{\perp} = 1 - P_{\parallel}.$$

3. If P_0 can be measured, calculate

$$\vec{V} = \frac{\vec{P}}{P_0}, \quad \gamma = \frac{1}{\sqrt{1 - \vec{V}^2}}, \quad (\vec{p}^*)^2 = \frac{P_0^2 - \vec{P}^2}{4} - m^2.$$

4. Calculate $V_{-i\gamma V x_{\parallel}}(\gamma x_{\parallel}, x_{\perp}, \nabla)$ from $\varphi_{p,P}$ or $V_{x_{4}^{*}=0}(0, x_{\perp}, \nabla)$ from $R_{\vec{P}}$.

IV. Partial wave decomposition in the HAL QCD method

T. Miyamoto, et al. (HAL QCD), in preparation

Lattice QCD in the finite box

Rotational symmetry $O(3, \mathbf{R})$

Cubic symmetry
$$O(3, \mathbf{Z})$$

angular momentum is conserved

partial wave decomposition is possible

a finite number of irreducible representation

different partial waves are mixed

1	ron	basis polynomials	independent elements
l	rep.	Dasis polynomiais	independent elements
0	A_1^+	1	
1	T_1^-	r_i	i = 1, 2, 3
2	E^+	$r_i^2 - r_j^2$	(i, j) = (1, 2), (2, 3)
2	T_2^+	$r_i r_j$	$i \neq j$
3	A_2^-	$r_1 r_2 r_3$	
3	T_{1}^{-}	$5r_i^3 - 3r^2r_j$	i = 1, 2, 3
3	T_{2}^{-}	$r_i(r_j^2 - r_k^2)$	(i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)
4	A_1^+	$5(r_1^4 + r_2^4 + r_3^4) - 3r^4$	
4	E^+	$7(r_i^4 - r_j^4) - 6r^2(r_i^2 - r_j^2)$	(i, j) = (1, 2), (2, 3)
4	T_1^+	$r_i r_j^3 - r_j r_i^3$	$i \neq j$
4	T_2^+	$7(r_i r_j^3 + r_j r_i^3) - 6r^2 r_i r_j$	$i \neq j$

$$\mathbf{0} = A_1^+, \ \mathbf{1} = T_1^-, \ \mathbf{2} = E^+ \oplus T_2^+, \mathbf{3} = A_2^- \oplus T_1^- \oplus T_2^-, \ \mathbf{4} = A_1^+ \oplus E^+ \oplus T_1^+ \oplus T_2^+,$$

S-wave projection

continuous space $\varphi^{L=0}(r) = \int d\Omega Y_{00}^*(\theta, \phi) \varphi(\vec{x}, r = |\vec{x}|)$ spherical surface integral

discrete space

0.0

0.5

1.0

 $r \, [\mathrm{fm}]$

1.5

2.0

$$A_1 = \mathbf{0} \oplus \mathbf{4} \oplus \mathbf{6} \oplus \cdots$$

manifestation of higher (L = 4, 6, ...) partial waves

Can we remove these higher partial waves?

A choice of Δ , n_{max} and l_{max}

$$G_n^{R,\Delta}$$
 has $O(\Delta^{n_{\max}+2})$ discretization errors $\Delta \sim a, n_{\max} \geq 2$

Our choice $\Delta = a, n_{\text{max}} = 2, l_{\text{max}} = 6$

NBS wave function

Higher L contributions seem to be removed by the Misner's method !

. Introduction

III. Mockup data IV. Lattice QCD data

V. Summary

Conventional HAL QCD

$$\vec{\nabla}^2 \varphi^{A_1}(\vec{x}) \simeq \sum_{k=1}^3 \frac{\varphi^{A_1}(\vec{x} + a\vec{k}) + \varphi^{A_1}(\vec{x} - a\vec{k}) - 2\varphi^{A_1}(\vec{x})}{a^2}$$

Misner's method
$$\vec{\nabla}^2 g_{lm}(r) = \sum_{n=0}^{n_{\text{max}}} c_{nlm}^{R,\Delta} \frac{1}{r} \frac{\partial^2}{\partial r^2} \left[r G_n^{R,\Delta}(r) \right]$$
 analytic derivative

The finite difference approximation enhances higher partial wave contributions.

Potential

The Misner's method can remove large fluctuations caused by the contamination from higher partial waves to the S=0 component.

Fits

Fit to the conventional HAL QCD data \sim The Misner's method

Statistical errors of the fit to the conventional HAL QCD data are not affected by contaminations from higher partial waves.

Scattering phase shift

Almost identical between the conventional result and the Misner's method.

No improvement of statistical errors, but we have more confidence on validity of our results !