Consistency between Luscher's method and HAL method for two-baryon systems on the lattice

Takumi Doi

(RIKEN Nishina Center / iTHEMS)

for HAL QCD Collaboration

Y. Akahoshi, S. Aoki, T. Miyamato, K. Sasaki (YITP)
T. Aoyama (KEK)
T. Doi, T. M. Doi, S. Gongyo, T. Hatsuda,
<u>Takumi Iritani</u>, T. Sugiura (RIKEN)
F. Etminan (Univ. of Birjand)
Y. Ikeda, N. Ishii, K. Murano, H. Nemura (RCNP)
T. Inoue (Nihon Univ.)

FLQCD2019 @ YITP

Interactions on the Lattice

- Direct method (*a la* Luscher's method)
 - Phase shift & B.E. from temporal correlation in finite V

M.Luscher, CMP104(1986)177 CMP105(1986)153 NPB354(1991)531

HAL QCD method

- "Potential" from spacial (& temporal) correlation
- Phase shift & B.E. by solving Schrodinger eq in infinite V

Ishii-Aoki-Hatsuda, PRL99(2007)022001, PTP123(2010)89 HAL QCD Coll., PTEP2012(2012)01A105

$$\psi(r) \simeq A \frac{\sin(kr - l\pi/2 + \delta(k))}{kr}$$

Direct method vs HAL method (NN @ heavy quark masses)

HAL method (HAL) : unbound Direct method (PACS-CS (Yamazaki et al.)/NPL/CalLat): bound

Direct method vs HAL method (NN @ heavy quark masses)

HAL method (HAL) :unboundDirect method (PACS-CS (Yamazaki et al.)/NPL/CalLat):bound

The Challenge in multi-baryons on the lattice

Existence of elastic scatt. states

- → (almost) No Excitation Energy
- → LQCD method based on
 G.S. saturation impossible

Signal/Noise issue

 $S/N \sim \exp[-\mathbf{A} \times (\mathbf{m}_{\mathbf{N}} - \mathbf{3}/\mathbf{2m}_{\pi}) \times \mathbf{t}]$

Parisi, Lepage(1989)

L=8fm @ physical point $(E_1 - E_0) \simeq 25 \text{MeV} \Longrightarrow t > 10 \text{fm}$ $S/N \sim 10^{-32}$

Direct method: plateau fitting at t ~ 1fm → excited states give "noises"

HAL method: t-dep formalism to extract "signal" from all elastic states

Examine the reliability of the Direct method (w/ plateau fitting)

LQCD data: $\Xi \Xi ({}^{1}S_{0}) @ m\pi = 0.51 \text{GeV}$

wall source & smeared source

Same confs in Yamazaki et al. ('12)

T. Iritani et al. (HAL Coll.) JHEP1610(2016)101T. Iritani et al. (HAL Coll.) PRD96(2017)034521

 $R(t) = C_{2B}(t) / (C_B(t))^2, \quad C_B(t) = \langle 0 | T[\mathcal{J}_{sink}^B(t) \overline{\mathcal{J}}_{src}^B(0)] | 0 \rangle$ $C_{2B}(t) = \langle 0 | T[\mathcal{J}_{sink}^{2B}(t) \overline{\mathcal{J}}_{src}^{2B}(0)] | 0 \rangle$ The results should be indep of sink/src op

• Reality: The results are dependent on src op !

- "Objection" from direct method groups
 - wall src has large inelastic state contaminations in single-baryon

Study sink op dep w/ smeared src tuned in single-baryon

$$\mathcal{J}_{\text{sink}}^{2B} = \sum_{\vec{r}} g(r) \sum_{\vec{x}} B(\vec{r} + \vec{x}) B(\vec{x}) \quad \text{Usua}$$

Usual direct method: g(r)=1 only

Effective Energy shift ΔE

All plateaux "look" reliable

Study sink op dep w/ smeared src tuned in single-baryon

$$\mathcal{J}_{\rm sink}^{2B} = \sum_{\vec{r}} g(r) \sum_{\vec{x}} B(\vec{r} + \vec{x}) B(\vec{x}) \qquad \text{Usu}$$

Usual direct method: g(r)=1 only

All plateaux "look" reliable

In reality, I shift data vertically "by hand"

"Normality Check" for results from direct method

Examine the reliability of the HAL QCD method

Convergence of the derivative expansion of potential Contaminations from inelastic states

T. Iritani et al. (HAL) PRD99(2019)014514

Higher Order Approximation (N²LO) (2)

$$U(r,r') \simeq \left[V_0^{\mathrm{N}^2 \mathrm{LO}}(r) + \frac{V_2^{\mathrm{N}^2 \mathrm{LO}}(r) \nabla^2}{2} \right] \delta(r - r')$$

Phase Shift and Uncertainties in Velocity Expansion

 Wall src. LO approx. (standard of HAL QCD studies) works well at low energy.

potential & observable are stable even at early time

Understand how the direct method leads to unreliable results

T. Iritani et al. (HAL) JHEP03(2019) 007

Do Plateaux Dream of the Ground State ?

<u>Understand the origin of "pseudo-plateaux"</u>

Decompose NBS correlator to each eigenstates

<u>Understand the origin of "pseudo-plateaux"</u>

We are now ready to "predict" the behavior of m(eff) of ΔE at any "t"

<u>Understand the origin of "pseudo-plateaux"</u>

We are now ready to "predict" the behavior of m(eff) of ΔE at any "t"

Ideal and real of "optimized" smeared src

Smeared src: Optimized to suppress 1-body inelastic states

Recall the real challenge for two-baryon systems:

- → Noises from 2-body elastic excited states
- Traditional smeared src is NOT optimized for two-body systems !

Detailed implementation of smeared src all 6-quarks are smeared at the same spacial point

→ Large contaminations from 2-body elastic excited states are "rather natural"

r

Consistency between Luscher's method and HAL method

T. Iritani et al. (HAL Coll.) JHEP03(2019) 007

Operator optimized for 2-body system by HAL

- HAL method \rightarrow HAL pot \rightarrow 2-body wave func. @ finite V
- 2-body wave func. → optimized operator
 - Applicable for sink and/or src op : Here we apply for sink op
- While utilizing info by HAL, formulation is Luscher's method

Effective energy shift ΔE from "HAL-optimized op"

HAL-optimized sink op \rightarrow projected to each state \rightarrow "True" plateaux

Direct method vs HAL method (NN @ heavy quark masses)

Summary: Are Luscher's method and HAL method consistent ?

- (Were seemingly) NO, because ...
 - Direct method w/ naïve plateau fitting is unreliable
 - "plateau-like structure" strongly depends on sink / src op

• YES !

- True plateau by the projection to the eigenstate
 - Info from HAL is necessary for the proper projection
- HAL method = Luscher's method (≠ Direct method)
 - Useful to examine possible systematics
- Necessary procedure w/ Luscher's method
 - → Variational method to identify each ground/excited state
 - Talks by A. Hanlon, B. Hoerz