Why is domain-wall fermion mathematically interesting?

Hidenori Fukaya (Osaka U.)

HF, T Onogi, S. Yamaguchi PRD96(2017) no.

12, 125004 [arXiv:1710.03379]

M. Furuta (U. Tokyo), S. Matsuo (Nagoya U.), T. Onogi (Osaka U.), S. Yamaguchi (Osaka U.), M. Yamashita (U.Tokyo)

[arXiv: 19xx.xxxxx]

Menu: Atiyah-Patodi-Singer (APS)

index theorem and domain-wall fermion

My talk (appetizer): perturbative finding that an APS index coincides with the eta-invariant of domain-wall Dirac op.

[F, Onogi, Yamaguchi2017]

Furuta's talk (main dish): mathematical proof that every APS index is equivalent to the eta-invariant of domain-wall Dirac [F, Furuta, Matsuo, Onogi, Yamaguchi,

Yamashita in progress.]

Menu: Atiyah-Patodi-Singer (APS)

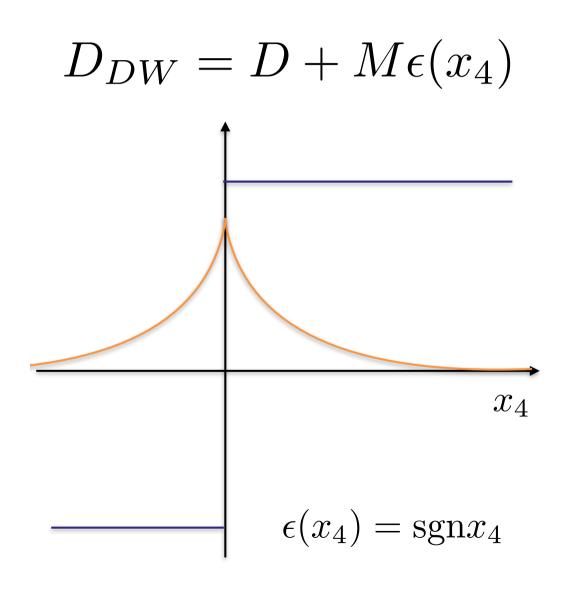
index and domain-wall fermion

My talk (appetizer): 4D domain-wall fermion w/ SU(N) gauge field in the flat **continuum** Euclidean space with Pauli-Villars regulator.

Furuta's talk (main dish): More general set-up including curved metric.

APS index on a lattice? -> on going. Please wait for lattice 2019 conference [F, Kawai, Matsuki, Mori, Onogi, Yamaguchi in progress.].

4-dim. domain-wall fermion



Massless Dirac fermion localized at 3-dim edge.

No gauge anomaly, but T(or parity) anomaly.

good model for topological insulator.

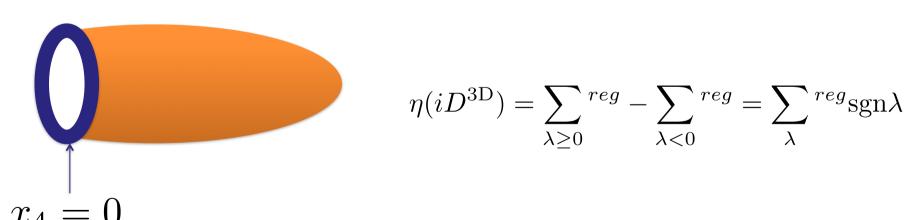
Atiyah-Patodi-Singer index theorem

index on a manifold with boundary,

$$\lim_{\Lambda\to\infty} {\rm Tr} \gamma_5 e^{D_{4\mathrm{D}}^2/\Lambda^2} = \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} {\rm tr} [F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3\mathrm{D}})}{2}$$
 integer

non-integer

non-integer



[Atiyah-Patodi-Singer 1975]

APS index in topological insulator

Witten 2015: APS index is a key to understand bulk-edge correspondence in symmetry protected topological insulator:

fermion path integrals

$$Z_{\rm edge} \propto \exp(-i\pi\eta(iD^{\rm 3D})/2)$$

T-anomalous

$$Z_{\rm bulk} \propto \exp\left(i\pi \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} {\rm tr}[F^{\mu\nu}F^{\rho\sigma}]\right)$$

 $Z_{\rm edge}Z_{\rm bulk} \propto (-1)^{\Im} \longrightarrow {\it T-anomalous}$ T is protected!

$$\mathfrak{J} = \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$

[Related works: Metlitski 15, Seiberg-Witten 16, Tachikawa-Yonekura 16, Freed-Hopkins 16, Witten 16, Yonekura 16...]

1. APS boundary condition is non-local, while that of topological matter is local.

- 1. APS boundary condition is non-local, while that of topological matter is local.
- 2. APS is for massless fermion but bulk fermion of topological insulator is massive (gapped).

- 1. APS boundary condition is non-local, while that of topological matter is local.
- 2. APS is for massless fermion but bulk fermion of topological insulator is massive (gapped).
- 3. No "physicist-friendly" description in the literature [except for Alvarez-Gaume et al. 1985 (bulk part is limitted to an integer due to adiabatic approximation, and boundary condition is obscure.)]

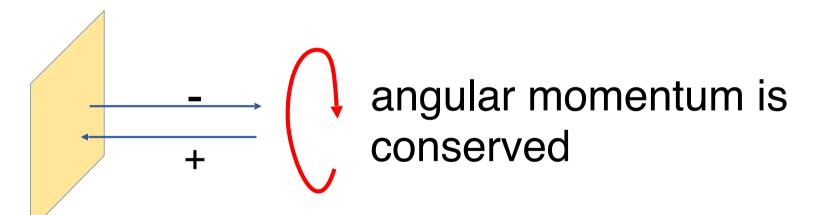
- 1. APS boundary condition is non-local, while that of topological matter is local.
- 2. APS is for massless fermion but bulk fermion of topological insulator is massive (gapped).
- 3. No "physicist-friendly" description in the literature [except for Alvarez-Gaume et al. 1985 (bulk part is limitted to an integer due to adiabatic approximation, and boundary condition is obscure.)]
- → We launched a study group reading original APS paper and it took 3 months to translate it into "physics language", and we propose an alternative expression.

Contents

- ✓ 1. Introduction
 - 2. What is APS index theorem?
 - 3. Index from massive Dirac operator
 - 4. New index from domain-wall operator
 - 5. What's good with eta-invariant
 - 6. Summary

Difficulty with boundary

If we impose **local** and **Lorentz** (**rotation**) invariant boundary condition, + and – chirality sectors do not decouple any more.



 n_+, n_- and the index do not make sense.

Atiyah-Patodi-Singer boundary

condition

[Atiyah, Patodi, Singer 75]

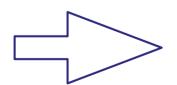
Gives up the locality and rotational symmetry but keeps the chirality.

Eg. 4 dim
$$x^4 \ge 0$$
 $A_4 = 0$ gauge

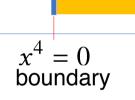
$$D = \gamma^4 \partial_4 + \gamma^i D_i = \gamma^4 (\partial_4 + \gamma^4 \gamma^i D_i)$$

They impose a non-local b.c.

$$(A + |A|)\psi|_{x^4 = 0} = 0$$



$$index = n_+ - n_-$$

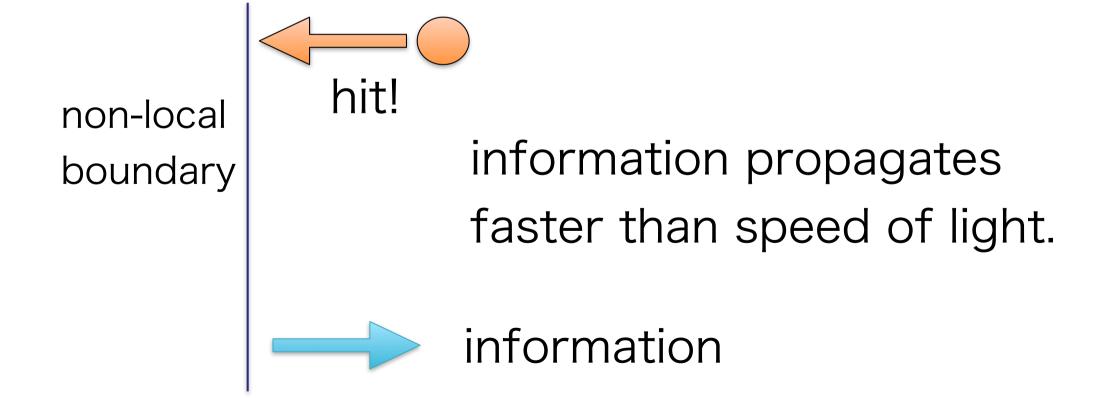


Beautiful!

But physicistunfriendly.

Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.



Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.

→ need to give up chirality and consider L/R mixing (massive case)

$$n_{+} = \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$

Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.

→ need to give up chirality and consider L/R mixing

$$n_{+} = \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$

Can we still make a fermionic integer (even if it is ugly)?

Locality (=causality) is essential.

We cannot accept APS condition even if it is beautiful.

→ need to give up chirality and consider L/R mixing

$$n_{+} = \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} \text{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$

Can we still make a fermionic integer (even if it is ugly)? Our answer is "Yes, we can".

Contents

- ✓ 1. Introduction
- ✓ 2. What is APS index theorem?
 mathematically O.K. but unphysical.
 - 3. AS index from massive Dirac operator
 - 4. New index from domain-wall operator
 - 5. What's good with eta-invariant
 - 6. Summary

Massive Dirac operator

$$D + M = \begin{pmatrix} M & D_{LR} \\ D_{RL} & M \end{pmatrix}$$

Anti-Hermitian Hermitian

Let's consider a Hermitian operator:

$$H = \gamma_5(D+M)$$
 $\gamma_5 = i\gamma_1\gamma_2\gamma_3\gamma_4.$

on a manifold without boundary.

Zero-modes & non-zero modes

$$H = \gamma_5(D + M)$$

Zero-modes of D = still eigenstates of H:

$$H\phi_0 = \gamma_5 M\phi_0 = \pm M\phi_0.$$

Non-zero modes make ± pairs

$$H\phi_i = \lambda_i \phi_i$$

$$HD\phi_i = -DH\phi_i = -\lambda_i D\phi_i$$

Eta invariant of massive Dirac operator

$$\eta(H) = \sum_{i} \operatorname{sgn} \lambda_{i}$$

$$= \# \text{ of } +M - \# \text{ of } -M$$

coincides with the original AS index!

Eta invariant of massive Dirac operator

$$\eta(H) = \sum_{i} \operatorname{sgn} \lambda_{i} \qquad H = \gamma_{5}(D + M)$$
$$= \# \text{ of } +M - \# \text{ of } -M$$

coincides with the original AS index!

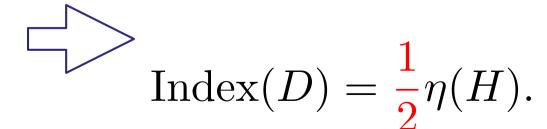
In fact, we need a factor 1/2.

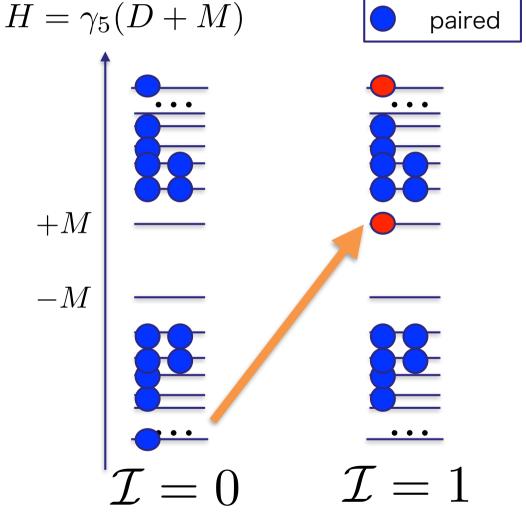
$$\operatorname{Index}(D) = \frac{1}{2}\eta(H)^{reg}.$$

$\eta(H)$ always jumps by 2.

To increase + modes, we have to borrow one from - (UV) modes.

Good regularizations (e.g. Pauli-Villars, lattice) respect this fact.





unpaired

Perturbative "proof" (in physics sense)

using Pauli-Villars regulator

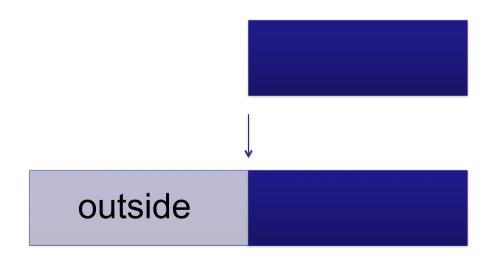
$$\begin{split} \frac{1}{2}\eta(H)^{reg} &= \frac{1}{2}\left[\eta(H) - \eta(H_{PV})\right]. &\quad H = \gamma_5(D+M) \\ \eta(H) &= \lim_{s \to 0} \mathrm{Tr} \frac{H}{(\sqrt{H^2})^{1+s}} = \frac{1}{\sqrt{\pi}} \int_0^\infty dt t^{-1/2} \mathrm{Tr} H e^{-tH^2} \\ &= \frac{1}{\sqrt{\pi}} \int_0^\infty dt' t'^{-1/2} \mathrm{Tr} \gamma_5 \left(\mathrm{sgn} M + \frac{D}{M}\right) e^{-t' D^\dagger D/M^2} e^{-t'}, \\ (t' &= M^2 t) &\quad \text{does not contribute}. \\ &= \mathrm{sgn} M \frac{1}{32\pi^2} \int d^4 x \; \epsilon_{\mu\nu\rho\sigma} \mathrm{tr}_c F^{\mu\nu} F^{\rho\sigma} + \mathcal{O}(1/M^2). \end{split}$$

Contents

- ✓ 1. Introduction
- ✓ 2. What is APS index theorem?
 mathematically O.K. but unphysical.
- ✓ 3. AS index from massive Dirac operator $\Im = \eta(\gamma_5(D+M))^{reg}/2$ coincides with the AS index.
 - 4. New index from domain-wall operator
 - 5. What's good with eta-invariant
 - 6. Summary

In physics,

 Any boundary has "outside": manifold + boundary → domain-wall.



In physics,

- Any boundary has "outside": manifold + boundary → domain-wall.
- 2. Boundary should not preserve helicity but keep angular-mom: massless → massive (in bulk)

In physics,

- Any boundary has "outside": manifold + boundary → domain-wall.
- 2. Boundary should not preserve helicity but keep angular-mom: massless → massive (in bulk)
- 3. Boundary condition should not be put by hand
 - → but automatically chosen.

In physics,

- Any boundary has "outside": manifold + boundary → domain-wall.
- 2. Boundary should not preserve helicity but keep angular-mom: massless → massive (in bulk)
- 3. Boundary condition should not be put by hand→ but automatically chosen.
- 4. Edge-localized modes play the key role.

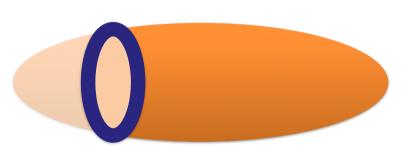
Domain-wall Dirac operator

Let us consider

$$D_{4D} + M\epsilon(x_4), \quad \epsilon(x_4) = \operatorname{sgn} x_4$$

[Jackiw-Rebbi 1976, Callan-Harvery 1985, Kaplan 1992]

on a closed manifold with sign flipping mass, without assuming any boundary condition



(we expect it dynamically given.).

"new" APS index [F-Onogi-Yamaguchi 2017]

$$\frac{1}{2}\eta(\gamma_5(D+M))^{reg} = AS \text{ index}$$

$$\frac{1}{2}\eta(\gamma_5(D+M\epsilon(x_4)))^{reg}$$

$$= \frac{1}{2}\eta(H_{DW}) - \frac{1}{2}\eta(H_{PV})$$

$$H_{DW} = \gamma_5 (D_{4D} + M\epsilon(x_4))$$
$$H_{PV} = \gamma_5 (D_{4D} - M_2)$$

We will show this coincides with APS index!

PV part = Atiyah-Singer index

$$\begin{split} \eta(H_{PV}) &= \lim_{s \to 0} \mathrm{Tr} \frac{H_{PV}}{(\sqrt{H_{PV}^2})^{1+s}} = \frac{1}{\sqrt{\pi}} \int_0^\infty dt t^{-1/2} \mathrm{Tr} H_{PV} e^{-tH_{PV}^2} \\ &= \frac{1}{\sqrt{\pi}} \int_0^\infty dt' t'^{-1/2} \mathrm{Tr} \gamma_5 \left(-1 + \frac{D}{M}\right) e^{-t'D^\dagger D/M^2} e^{-t'}, \\ &= \mathrm{Fujikawa-method} \qquad \text{does not contribute.} \\ (t' = M^2 t) &= -\frac{1}{32\pi^2} \int d^4x \; \epsilon_{\mu\nu\rho\sigma} \mathrm{tr}_c F^{\mu\nu} F^{\rho\sigma} + \mathcal{O}(1/M^2). \end{split}$$

$$H_{PV} = \gamma_5 (D_{4D} - M_2)$$

Domain-wall fermion part

Now let's compute

$$\eta(H_{DW}) = \lim_{s \to 0} \text{Tr} \frac{H_{DW}}{(\sqrt{H_{PV}^2})^{1+s}} = \lim_{s \to 0} \frac{1}{\Gamma(\frac{1+s}{2})} \int_0^\infty dt t^{(s-1)/2} \text{Tr} H_{DW} e^{-tH_{DW}^2}$$

$$H_{DW} = \gamma_5 (D_{4D} + M\epsilon(x_4))$$

In the free fermion case,

$$H_{DW}^2 = -\partial_{\mu}^2 + M^2 - 2M\gamma_4\delta(x_4).$$

 \rightarrow eigenvalue problem = Schrodinger equation with δ -function-like potential.

Complete set in the free case

Solutions to $(-\partial_{x_4}^2 + \omega^2 - 2M\gamma_4\delta(x_4))\varphi = 0$ are

$$\begin{split} \varphi_{\pm,o}^{\omega}(x_4) &= \frac{1}{\sqrt{4\pi}} \left(e^{i\omega x_4} - e^{-i\omega x_4} \right), \\ \varphi_{\pm,e}^{\omega}(x_4) &= \frac{1}{\sqrt{4\pi(\omega^2 + M^2)}} \left((i\omega \mp M) e^{i\omega |x_4|} + (i\omega \pm M) e^{-i\omega |x_4|} \right), \\ \varphi_{+,e}^{\text{edge}}(x_4) &= \sqrt{M} e^{-M|x_4|}, \quad \Longrightarrow \quad \text{Edge mode appears !} \end{split}$$

where
$$\omega = \sqrt{p^2 + M^2 - \lambda_{4D}^2}$$
 and $\gamma_4 \varphi_{\pm,e/o}^{\omega, \mathrm{edge}} = \pm \varphi_{\pm,e/o}^{\omega, \mathrm{edge}}$

3D direction = conventional plane waves.

"Automatic" boundary condition

We didn't put any boundary condition by hand. But

$$\left[\frac{\partial}{\partial x_4} \pm M \epsilon(x_4) \right] \varphi_{\pm,e}^{\omega,\text{edge}}(x_4) \Big|_{x_4=0} = 0, \quad \varphi_{\pm,o}^{\omega}(x_4=0) = 0.$$

is automatically satisfied due to the δ -function-like potential.

This condition is LOCAL and PRESERVES angularmomentum in x_4 direction but DOES NOT keep chirality.

Fujikawa-method

$$\eta(H_{DW}) = \frac{1}{\Gamma(\frac{1+s}{2})} \int_0^\infty dt' t'^{\frac{s-1}{2}} \text{Tr} \gamma_5 \left(\epsilon(x_4) + \frac{D}{M} \right) e^{-t' H_{DW}^2 / M^2} e^{-t'},$$

 $\begin{array}{c} \text{Perturbative} \\ \text{expansion} \\ \text{We insert our complete set } \{\varphi_{\pm,e \nmid o}^{\omega,\text{edge}}(x_4) \times e^{i \pmb{p} \cdot \pmb{x}}\} \end{array}$

(See our paper for the details.) 100% edge-mode effect

Perturbative

$$= \frac{1}{32\pi^2} \int d^4x \, \epsilon(\mathbf{x_4}) \epsilon_{\mu\nu\rho\sigma} \mathrm{tr}_c F^{\mu\nu} F^{\rho\sigma} - \frac{\eta}{\eta} (iD^{3D})$$

$$\epsilon(x_4) = \operatorname{sgn} x_4$$
 (CS mod integer)

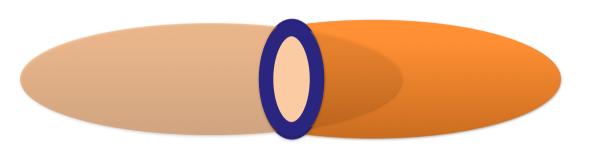
Total index

$$\mathfrak{I} = \frac{\eta(H_{DW})}{2} - \frac{\eta(H_{PV})}{2}
= \frac{1}{2} \left[\frac{1}{32\pi^2} \int d^4x \, \epsilon(x_4) \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}_c F^{\mu\nu} F^{\rho\sigma} - \eta(iD^{3D}) \right]
+ \frac{1}{32\pi^2} \int d^4x \, \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}_c F^{\mu\nu} F^{\rho\sigma} \right]
= \frac{1}{32\pi^2} \int_{x_4>0} d^4x \, \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}_c F^{\mu\nu} F^{\rho\sigma} - \frac{1}{2} \eta(iD^{3D})$$

Contents

- ✓ 1. Introduction
- ✓ 2. What is APS index theorem? mathematically O.K. but unphysical.
- ✓ 3. AS index from massive Dirac operator $\Im = \eta(\gamma_5(D+M))^{reg}/2$ coincides with the AS index.
- ✓ 4. New index from domain-wall operator $\Im = \eta(\gamma_5(D + M\epsilon(x_4)))^{reg}/2$ coincides with the APS index.
 - 5. What's good with eta-invariant
 - 6. Summary

We don't need any boundary condition.



The kink structure automatically chooses a local and rotationally symmetric boundary condition,

and extension from AS index is simple:

$$\frac{1}{2}\eta(\gamma_5(D+M)) \to \frac{1}{2}\eta(\gamma_5(D+M\epsilon(x)))$$

massive fermion = chiral symmetry is NOT important.

The lattice fermion "knew" this fact:

$$Ind(D_{ov}) = \frac{1}{2} \text{Tr} \gamma_5 \left(1 - \frac{aD_{ov}}{2} \right) \quad D_{ov} = \frac{1}{a} \left(1 + \gamma_5 \frac{H_W}{\sqrt{H_W^2}} \right)$$
$$= -\frac{1}{2} \text{Tr} \frac{H_W}{\sqrt{H_W^2}} = -\frac{1}{2} \eta (\gamma_5 (D_W - M))!$$

If the original AS index were given by

$$-\frac{1}{2}\eta(\gamma_5(D-M))$$

we should have known the lattice index theorem much before Hasenfratz 1998.

Massless vs. massive

index theorem with massless Dirac

	continuum	lattice
AS	$Tr\gamma^5 e^{-D^2/M^2}$	$Tr\gamma^5(1 - aD_{ov}/2)$
APS	${\rm Tr}\gamma^5 e^{-D^2/M^2}$ w/ APS b.c.	not known.

index theorem with massive Dirac

	continuum	lattice
AS	$-\frac{1}{2}\eta(\gamma_5(D-M))$	$-\frac{1}{2}\eta(\gamma_5(D_W-M))$
APS	$-\frac{1}{2}\eta(\gamma_5(D-M\epsilon(x)))$	$-\frac{1}{2}\eta(\gamma_5(D_W-M\epsilon(x)))?$

we will report at Lat19, Wuhan

Contents

- ✓ 1. Introduction
- ✓ 2. What is APS index theorem? mathematically O.K. but unphysical.
- ✓ 3. AS index from massive Dirac operator $\Im = \eta(\gamma_5(D+M))^{reg}/2$ coincides with the AS index.
- ✓ 4. New index from domain-wall operator $\mathfrak{I} = \eta(\gamma_5(D+M\epsilon(x_4)))^{reg}/2$ coincides with the APS index.
- ✓ 5. What's good with eta-invariant gives a united view without chiral symmetry.
 - 6. Summary

Summary

- 1. APS index describes bulk-edge correspondence (of anomaly) of topological insulators.
- 2. APS (as well as AS) index can be reformulated as the eta-invariant of massive domain-wall Dirac operator.
- 3. Eta-invarant with massive Dirac operator gives a united view of inde theorems, where chiral symmetry is not important.

The original APS and Domain-wall fermion are totally different!

APS

- 1. massless Dirac (even in bulk)
- 2. non-local boundary cond. (depending on gauge fields)
- 3. SO(2) rotational sym. on boundary is lost.
- 4. no edge mode appears.
- 5. manifold + boundary

Domain-wall fermion

- 1. massive Dirac in bulk (massless mode at edge)
- 2. local boundary cond.
- 3. SO(2) rotational sym. on boundary is kept.
- 4. Edge mode describes etainvariant.
- 5. closed manifold + domain-wall

Next talk by Furuta-san = A mathematical proof for

$$Ind(D_{APS}) = \frac{1}{2}\eta(H_{DW}^{reg})$$

on general even-dimensional manifold.

APS

- 1. massless Dirac (even in bulk)
- 2. non-local boundary cond. (depending on gauge fields)
- 3. SO(2) rotational sym. on boundary is lost.
- 4. no edge mode appears.
- 5. manifold + boundary

Domain-wall fermion

- 1. massive Dirac in bulk (massless mode at edge)
- 2. local boundary cond.
- 3. SO(2) rotational sym. on boundary is kept.
- 4. Edge mode describes eta-invariant.
- 5. closed manifold + domain-wall

Backup slides

Example: 1+1d bulk + 0+1d edge Majorana fermion coupled to gravity

APS index tells

$$Z \propto \exp\left(2\pi i \frac{n}{8}\right)$$

consistent with Z₈ classification of Kitaev's interacting Majorana chain.

Eta invariant = Chern Simons term + integer (non-local effect)

$$\frac{\eta(iD^{3D})}{2} = \frac{CS}{2\pi} + integer$$

$$CS \equiv \frac{1}{4\pi} \int_{Y} d^{3}x \operatorname{tr}_{c} \left[\epsilon_{\nu\rho\sigma} \left(A^{\nu} \partial^{\rho} A^{\sigma} + \frac{2i}{3} A^{\nu} A^{\rho} A^{\sigma} \right) \right],$$

= surface term.

$$\Im = \frac{1}{32\pi^2} \int_{x_4>0} d^4x \epsilon_{\mu\nu\rho\sigma} \operatorname{tr}[F^{\mu\nu}F^{\rho\sigma}] - \frac{\eta(iD^{3D})}{2}$$