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Menu

. Atiyah-Patodi-Singer (APS)

index theorem and domain-wall fermion

My talk (appetizer): perturbative finding

that an A

PS Index coincides with the

eta-invariant of domain-wall Dirac op.

[ F, Onogi, YamaguchiZ201 7]

Furuta’'s talk (main dish): mathematical
oroof that every APS index Is equivalent
to the eta-invariant of domain-wall Dirac

op.

[ F, Furuta, Matsuo, Onogi, Yamaguchi,
Yamashita in progress.]



Menu : Atiyah-Patodi-Singer (APS)

index and domain-wall fermion

My talk (appetizer): 4D domain-wall fermion w/ SU(N)
gauge field in the flat continuum Euclidean space with
Pauli-Villars regulator.

Furuta's talk (main dish): More general set-up including
curved metric.

APS index on a lattice? -> on going. Please wait for
lattice 2019 conference [F, Kawai, Matsuki, Mori, Onodgi,
Yamaguchl In progress.].



4-dim. domain-wall fermion

Massless Dirac
fermion localized at
3-dim edge.

Dpw =D + MG(.CE4)

No gauge anomaly,
but T (or parity)

T4 anomaly.

e(ry) = sgnzy good model for

topological insulator.



Atiyah-Patodi-Singer index theorem

Index on a manifold with boundary,

1 'DSD
Alim Tl"%eDiD/AQ = 392 d4.f13€'u1/po'tr[F'ul/Fpa]—77(Z ; )
e [ x4>0
integer | |
non-integer non-integer

U(ZDgD) _ Zreg . Z reg __ Zregsgn)\

A>0 A<0 A

[Atiyah-Patodi-Singer 1975]



APS Index in topological insulator

Witten 2015 : APS index is a key to understand
bulk-edge correspondence in symmetry protected
topological insulator:

fermion Liedge X eXp(_mn(iDSD)/z) T-anomalous

path integrals .

Ziu ] d*xe,, o tr[FHY FP°
bulk X €Xp <Z7T327T2 L4>0 L€, po tT| ])
T-anomalous

ZedgeZbulk X ( ) - Tis protected !

1 i D3P)
3272 2

S
x4>0

[Related works: Metlitski 15, Seiberg-Witten 16, Tachikawa-Yonekura 16, Freed-
Hopkins 16, Witten 16, Yonekura 16...]
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What puzzled us

1. APS boundary condition is non-local, while that of
topological matter is local.

2. APS is for massless fermion but bulk fermion of
topological insulator is massive (gapped).

3. No “physicist-friendly” description in the literature

[except for Alvarez-Gaume et al. 1985 (bulk part is limitted
to an integer due to adiabatic approximation, and boundary
condition is obscure.)]
— We launched a study group reading original APS
paper and it took 3 months to translate it into “physics
language”, and we propose an alternative expression.
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Difficulty with boundary

If we impose local and Lorentz (rotation)

invariant boundary condition, + and —
chirality sectors do not decouple any more.

- . [ | angular momentum is
N conserved

ni+, n— and the index do not make sense.



Atiyah-Patodi-Singer boundary

condition [Atiyah, Patodi, Singer 75]

Gives up the locality and rotational symmetry
but keeps the chirality.

Eg. 4 dim x* > 0 A, =0 gauge
D =y*ds+y'D; = y*(04 + y*y' D)

» |

[

n 4 f—
They impose a non-local 4 & undory

b.cC.
(A+1ADYIw0=0 _

> But physicist-

index = n4 —N—  nfriendly.



Locality >> chirality for physicists

Locality (=causality) 1s essential.

We cannot accept APS condition even if it is
beautiful.

<=0
non-local hit!
boundary Information propagates

faster than speed of light.

iInformation




Locality >> chirality for physicists

Locality (=causality) is essential.
We cannot accept APS condition even If It Is beautiful.

— need to give up chirality and consider L/R mixing
(massive case)

1 D3P
M - / d* € potr[FHY FP7]— neD )
327T2 x4>0 2
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Locality >> chirality for physicists

Locality (=causality) Is essential.
We cannot accept APS condition even if it is beautiful.

— need to give up chirality and consider L/R mixing

(massive case) ] 13D
— 4 UV mpo _77(’& )
M 3272 [, >0 A 2w po T F LT 2

Can we still make a fermionic integer (even if it is ugly)?

Our answer iIs “Yes, we can’.
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Massive Dirac operator

M  Drp )

D+ M= ( Dur M

RN

Anti-Hermitian Hermitian

Let's consider a Hermitian operator:

H =~5(D+ M) V5 = 1Y1Y2Y374-
on a manifold without boundary.



Zero-modes & non-zero modes

H =~5(D+ M)
Zero-modes of D = still eigenstates of H:

Hpg = vs Moo = M.
Non-zero modes make % pairs

Hop; = \@;
HDo; = —DHb; = —\; Do,




Eta invariant of massive Dirac operator

H) = SEN\;
) Z H = ~5(D + M)
— 4 of +M — # of —M
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Eta invariant of massive Dirac operator

U(H):ngn)\z‘ H = ~5(D + M)

1

= of +M — # of —M
coincides with the original AS index!

In fact, we need a factor 1/2.

1
Index(D) = 577(H)T69.



n(H) always jumps by 2. _

O
H = ’y5(D 1+ M) ® paired

To Increase + modes,
we have to borrow
one from - (UV) modes.

Good regularizations
(e.g. Pauli-Villars, lattice)
respect this fact.

> !

Index(D) = 577(]{)




Perturbative “pI‘OOf“ (in physics sense)

using Pauli-Villars regulator

1 Ny 1 H:’Y5(D—|—M)
SH)™ = S () = n(Hpv)l- g by n), A M

: H 1
N(H) = oy Tr(\/ﬁ)ws T

— %/ dt/t/—l/QTr% (sgnM + BA/Ltt/DTD/MQGt/’
T Jo

)/ Fujikawa-method

/ altt_Uz'l’lf[iffﬂq2
0

does not contribute.
/d4x €pvpotte FHY FP7 + O(1/M?).

(t' = M>t
1

327

= sgnM 5
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_
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More physical set-up?
In physics,

1. Any boundary has “outside”: manifold +
boundary — domain-wall.

2. Boundary should not preserve helicity but keep
angular-mom: massless — massive (in bulk)

3. Boundary condition should not be put by hand
— but automatically chosen.

4. Edge-localized modes play the key role.



Domain-wall Dirac operator

I [Jackiw-Rebbi 1976,
Let us COnSIder Callan-Harvery 1985,

Kaplan 1992 ]

Dyp + Me(zy), €(xyq) = sgnay
on a closed maniftold
with sign flipping mass,
without assuming any
boundary condition

(we expect it dynamically given.).



“new” APS Index [F-Onogi-Yamaguchi 2017]

;U(W5(D+M = AS Index -

-

1

10D+ Me()"
H — Do+ M

B %”(HDw) - %H(HPV) pw = 75(Dap (z4))
Hpy = v5(Dap — M>)

We will show this coincides with APS index!



PV part = Atiyah-Singer index

. Hpy 1
n(Hpy) = lim Tr - —
s=0 (., /H]%V)1+s VT

]. > D ' T T2 /
) D)ot

00
/ dtt_l/QTerve_tH%V
0

y Fujikawa-method " does not contribute.
(t’ _ M2t) _ _3217(-2 /d4£13 EMVpatch“VFpa 4 O(l/MZ)

Hpy = v5(D4p — M)



Domain-wall fermion part

Now let’s compute

: Hpw : 1 ~ —1)/2 —tH?
n(Hpw) = lim Tr = lim - / dtt' TrHpwe "pw
s=0  (\/HZ,,)l*s  s=0 F(l%) 0

Hpw = v5(Dap + Me(z4))
In the free fermion case,
H%W — —82 -+ MQ—Q.]\/{”Y45(.I'4).

— eigenvalue problem = Schrodinger
equation with © -function-like potential.



Complete set in the free case

Solutions to  (—9;, + w” — 2M~46(x4))p = 0

are
1

90;):,0(3:4) — \/E

Spuzljz,e(x4> —

(6zwac4 L e—zw:c4) ’

1
Vam(w? + M?
edge

P8 (w4)= vV Me M4l mm) [Edge mode appears !

; ((zw T M)el®al 4 (jw + M)e_w"“') :

w,edge |  w,edge

Where W = \/p2 + M= — >‘421D and 7490:&,6/0 _ ‘:¢i,e/o

3D direction = conventional plane waves.



“Automatic” boundary condition

We didn’t put any boundary condition by hand. But

8 w,e e w
[— + M€<$4)] Qﬁi”edg (5134) — O, Spj:,o(xll = O) = ().

8334

£C4=0

Is automatically satisfied due to the 0 -function-
like potential.

This condition is LOCAL and PRESERVES angular-
momentum in X4 direction but DOES NOT keep

chirality.



Fujikawa-method

1 > s—1 D ! 72 2 /
How) = oty [ 0T T (o) + 4 ) e M
F(1'5) 0 M \
Perturbative
expansion

w,edge

We insert our complete set {¢7" 15" (z4) X e'P®}

( See our paper for the details.)) 100% edge-

mode effect

1
3272

/d4az €(24)€uppotrc P EFPT — 77(2'D3D)

€(r4) = sgnay (C'S mod integer)



Total index

n(Hpw)) n(Hpv)
2 2
1] 1 4 UV T po - 73D
5 | 39,2 d*x €(T4)€pppotrc FH FPT —n(iD”")
1 4 % o
| 393 /d T €y pott FHYFP
1

T 3972

T =

1 ‘
/ d*z €, potr P FP7 — 577(71D‘5D)
x4>0
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We don’t need any boundary

condition.

The kink structure automatically
chooses a local and rotationally
symmetric boundary condition,

and extension from AS index I1s simple:

%U(%(D + M)) — %n(%(D + Me(x)))



massive fermion = chiral
symmetry is NOT important.

The lattice fermion “knew” this fact:

1 Doy 1 H
[’nd(DOU) = §Tr”75 (1 — - 9 ) D,y = E (1 + V5 = )

v Hyy
1, H 1
=—5 T %%v = —5n((Dw — M))!
It the original AS index were given by
1
—51(s(D — M))

%
we should have known the lattice index

theorem much before Hasenfratz 1998.



Massless vs. massive

iIndex theorem with massless

AS
APS

continuum

Dirac
attice

Ty e~ D° /M

Try° (1 — aDyy /2)

Tr’y5e_D2/M2W/ APS b.c.

not known.

iIndex theorem with massive Dirac

AS
APS

continuum

lattice

1

—51((D — M))

—%n(%(Dw — M))

1

—577(75(17 — Me(x)))

1

—5 (s (Dw — Me(2)))?

v
we will report at Lat19, Wuhan
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Summary

1.

APS index describes bulk-edge correspondence
(of anomaly) of topological insulators.

APS (as well as AS) index can be reformulated as
the eta-invariant of massive domain-wall Dirac
operator.

Eta-invarant with massive Dirac operator gives a
united view of inde theorems, where chiral
symmetry Is not important.



O

The original APS and Domain-
wall fermion are totally different !

APS

. massless Dirac

(even in bulk)

non-local boundary cond. 2
3.

(depending on gauge fields)

SO(2) rotational sym. on
boundary is lost.

no edge mode appears.
manifold + boundary

1.

A

5.

Domain-wall fermion

massive Dirac in bulk
(massless mode at edge)

local boundary cond.

SO(2) rotational sym. on
boundary is kept.

Edge mode describes eta-
Invariant.

closed manifold + domain-wall



O

Next talk by Furuta-san =
A mathematical proof for

]nd(DAps)

]‘ T e
_W(HDf/qV)

2

on general even-dimensional manifold.

APS

. massless Dirac

(even in bulk)

non-local boundary cond.
(depending on gauge fields)

SO(2) rotational sym. on
boundary is lost.

no edge mode appears.
manifold + boundary

o1

Domain-wall fermion

. massive Dirac in bulk  (massless mode

at edge)
local boundary cond.

SO(2) rotational sym. on boundary is
kept.

Edge mode describes eta-invariant.
closed manifold + domain-wall



Backup slides



Example : 1+1d bulk + O+1d edge
Majorana fermion coupled to gravity

APS Index tells
N
4 X exp (2mg>
consistent with Zs classification

of Kitaev's interacting Majorana
chain.



Eta invariant = Chern Simons term +
integer (non-local effect)

n(tD3?) CS .
— - 1integer
2 2T
CS = L d’x tr, |e AYOP A7 + ﬁA”A"A"'
A Jy N 3 ’

= surface term.
~ 1 4 1% o U(Z‘DSD)
J = 353 /334>Od L€, po tT | FHY FP7| 5




