#### Decuplet-Decuplet interaction and recent development of partial wave decomposition on lattice

#### Shinya Gongyo (RIKEN)

SG, K.Sasaki + (HAL QCD Coll.), PRL 120 (2018) 212001 T. Miyamoto, et al. (HAL QCD Coll.), in preparation

#### HAL QCD Collaboration

K.Sasaki(YITP), S. Aoki (YITP), Y. Akahoshi (YITP),
T. Doi (RIKEN), F. Etiminan (Birjand U.),
T. Hatsuda (RIKEN), Y. Ikeda (YITP), T. Inoue (Nihon U.),
T. Iritani (RIKEN), N. Ishii (RCNP), T. Miyamoto (YITP), H. Nemura (RCNP)



Apr. 24, 2019@FLQCD

# Outline

#### First part: Dec-Dec interaction from lattice QCD

- Introduction: Dibaryon candidates and model studies
- Results at heavy quark masses for  $\Delta\Delta(^7S_3)$
- Results at (almost) physical quark masses for  $\Omega\Omega(^{1}S_{0})$

Second part: Partial wave decomposition on lattice

- fixed-r method
- Misner's method
- numerical test and application to ΛcN system

# Introduction



Dibaryon = two baryon bound state or resonance



In decuplet baryons, only  $\Omega$  is stable under strong decay. In the case of heavier pion mass, Delta baryons

become stable.



#### Introduction: SU(3) classification for Dibaryon



Δ-

udd



#### Introduction: SU(3) classification for Dibaryon



Δ-

udd



## d\*(2380) resonance

WASA@COSY, PRL 106, 242302 (2011)

d\* (2380) observed by WASA@COSY col. π  $p + n(d) \rightarrow d + \pi^0 + \pi^0(+p_{\text{spectator}})$ d\* m~ 2.38 GeV,  $\Gamma$  ~ 70 MeV,  $~J^{\pi}$  = 3+, I=0 π 0.5 σ **[mb]** d\* resonance pn  $\rightarrow d\pi^0 \pi^0$ m~2.38 GeV 0.4 **Γ~70 MeV** 0.3 0.2  $\Delta\Delta$  contributions  $d\pi\pi$  threshold 0.1 2.4 2.6 2.2 √s [GeV]

### Baryon-Baryon interaction from lattice QCD -HAL method-

Aoki, Hatsuda, Ishii, PTP123, 89 (2010)

c.f. anothor method: Luscher's direct method

Nambu-Bethe-Salpeter (NBS) w.f.  $\Psi_n\left(\vec{r}\right)e^{-E_nt}$ 

 $= \sum \langle 0 | B_1(t, \vec{r} + \vec{x}) B_2(t, \vec{x}) | E_n \rangle$ 

$$B_1, B_2 \rightarrow D_{\mu\alpha} = \epsilon_{abc} \left( q^{aT} C \gamma_{\mu} q^b \right) q^c_{\alpha}$$

Schroedinger type equation is satisfied

$$\left(\vec{p}_n^2 + \nabla^2\right)\Psi_n\left(\vec{r}\right) = 2\mu \int d\vec{r'} U(\vec{r}, \vec{r'})\Psi_n(\vec{r'})$$

The potential is extracted from this equation

DOT.

#### **I.** $\Delta\Delta$ system with J=3

# Nf = 2+1 full QCD with L = 1.93fm, SU(3) limit (CP-PACS Conf)



#### SG and K. Sasaki **10** plet in decuplet-decuplet system Nf = 2+1 full QCD with L = 1.93fm, $m_{\pi}$ =1015MeV, SU(3) limit

 $\Delta\Delta$  in  $J^{p}(I) = 3^{+}(O)$ 

 $m_{\Delta} \simeq 2225 \mathrm{MeV}$ 



- In short range, there is no repulsive core
- Deep bound state is found d\* is supported from lattice QCD

## II. $\Omega\Omega$ system

### Numerical Setup at (almost) physical mass

2+1 flavor gauge configurations

- Iwasaki gauge action & O(a) improved Wilson quark action
- a= 0.0846 [fm], a<sup>-1</sup> = 2333 [MeV]
- 96<sup>3</sup>x96 lattice, L = 8.1[fm]
- 400 confs x 48 source positions x 4 rotations

Wall source is employed. only S-wave state is produced.

|   | [MeV] | phys. |
|---|-------|-------|
| π | 146   | 8%    |
| K | 525   | 6%    |
| Ν | 964   | 3%    |
| Ω | 1712  | 2%    |



SG, K.Sasaki + (HAL QCD Coll.), PRL 2018

#### ΩΩ in J = 0

#### "most strange dibaryon"

14

#### 3)Nf=2+1 full QCD with L = 8.1fm, $m_{\pi}$ = 146MeV



- Short range repulsive core and attractive pocket are found
- Phase shift shows the presence of a bound state
- The state is very close to the unitary region (r/a<1)</li>

SG and K. Sasaki et.al.(HAL), PRL(2018)

# $\Omega\Omega$ in J = 0Binding energy and the Coulomb effect

"most strange dibaryon"



## Conservative estimate at exact phys. pt.

 $m_{\pi=}146 \text{ MeV} \rightarrow 135 \text{ MeV}, m_{\Omega}= 1712 \text{MeV} \rightarrow 1672 \text{ MeV}$ 



conservative estimate:

only change the mass of kinetic term

 $(B_{\Omega\Omega}^{(\text{QCD})}, B_{\Omega\Omega}^{(\text{QCD+Coulomb})}) = (1.6(6) \text{MeV}, 0.7(5) \text{MeV})$  $\rightarrow (1.3(5) \text{MeV}, 0.5(5) \text{MeV})$ These changes are within errors

# Summary in first part

- heavy pion masses:  $\Delta\Delta$  interaction in <sup>7</sup>S<sub>3</sub>
  - shows only attractive region
  - bound state in J=3 channel (=d\* resonance)
- physical pion masses: di-Omega  $\Omega\Omega$  interaction in  ${}^{1}S_{0}$ 
  - short range repulsive and attractive pocket
  - a very shallow bound state [di-Omega]



#### Dibaryon (B=2) Deutero

# Deuteron(1930s) + d\*(2380) resonance <= supported</pre>

+ di-Omega (bound) <= predicted

found in future HIC ? (LHC RUN3/FAIR/J-PARC)

#### Recent development of partial wave decomposition on lattice

#### T. Miyamoto, et al. (HAL QCD), in preparation

# Origin of comb-like behavior



If higher partial wave components were negligible, the wave function and its potential should have been isotropic.

The comb-like behavior = higher partial wave contributions



Using the different values, we can extract each component from A<sub>1</sub>+ projected NBS wave function.

2

1

0

1

2

5 (H)

6 (I)

#### Naive treatment: Decomposition at fixed r

After A<sub>1</sub>+ projection

$$\begin{split} \psi^{A_1^+}(\overrightarrow{x}) &\equiv P^{A_1^+}\psi(\overrightarrow{x}) \\ &= Y_{00}^{A_1^+}(\theta,\phi)g_{00}(r) + \sum_{m=0,\pm 4} Y_{4m}^{A_1^+}(\theta,\phi)g_{4m}(r) + \cdots, \end{split}$$

$$Y_{00}^{A_1^+}(x, y, z) = Y_{00}(x, y, z) = \frac{1}{\sqrt{4\pi}},$$

$$Y_{40}^{A_{1}^{+}}(x,y,z) = \frac{7}{8\sqrt{\pi}} \frac{x^{4} + y^{4} + z^{4} - 3(x^{2}y^{2} + y^{2}z^{2} + z^{2}x^{2})}{r^{4}}, \quad Y_{4,+4}^{A_{1}^{+}}(x,y,z) = Y_{4,-4}^{A_{1}^{+}}(x,y,z) = \sqrt{\frac{5}{14}} Y_{40}^{A_{1}^{+}}(x,y,z)$$

Suppose  $l \ge 6$  components are neglected.

At  $x_1, x_2$ , the eq. is written as

$$\begin{pmatrix} \psi^{A_1^+}(\vec{x}_1) \\ \psi^{A_1^+}(\vec{x}_2) \end{pmatrix} = \begin{pmatrix} Y_{00}^{A_1^+} Y_{40}^{A_1^+}(\vec{x}_1) \\ Y_{00}^{A_1^+} Y_{40}^{A_1^+}(\vec{x}_2) \end{pmatrix} \begin{pmatrix} g_{00}(R) \\ g_4(R) \end{pmatrix} \qquad g_4(r) \equiv g_{40}(r) + \sqrt{\frac{5}{14}}(g_{44}(r) + g_{4-4}(r))$$

 $g_{00}(R),g_4(R)$  are obtained

#### Naive treatment: Decomposition at fixed r



In general case: spherical functions up to  $Y_{n0}$ 

Consider N points s.t.  $|x_1| = |x_2| = \cdots = |x_N| = R$ 

$$\begin{pmatrix} \psi^{A_1^+}(\vec{x}_1) \\ \vdots \\ \psi^{A_1^+}(\vec{x}_N) \end{pmatrix} = \begin{pmatrix} Y_{00}^{A_1^+} & Y_{40}^{A_1^+}(\vec{x}_1) & Y_{60}^{A_1^+}(\vec{x}_1) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ Y_{00}^{A_1^+} & Y_{40}^{A_1^+}(\vec{x}_N) & Y_{60}^{A_1^+}(\vec{x}_N) & \cdots \end{pmatrix} \begin{pmatrix} g_{00}(R) \\ g_4(R) \\ g_6(R) \\ \vdots \end{pmatrix}$$

- Using SVD, the components  $g_l$  are extracted from N points
- At least # points (N) ≥ # spherical functions (n)
- #points (N) at fixed r is not large.

# Misner's method in continuum space

Charles. W. Misner, Class. Ouantum Grav. 21 (2004) S243-S247

 $P_n(x)$ 

 $\frac{1}{2}(3x^2-1)$ 

 $\frac{1}{2}(5x^3-3x)$ 

 $\frac{1}{2}(35x^4-30x^2+3)$ 

 $rac{1}{8}\left(63x^5-70x^3+15x
ight)$ 

 $\frac{1}{16}\left(231x^6-315x^4+105x^2-5
ight)$ 

 $rac{1}{16} \left(429 x^7-693 x^5+315 x^3-35 x
ight)$ 

 $rac{1}{128} \left( 6435 x^8 - 12012 x^6 + 6930 x^4 - 1260 x^2 + 35 
ight)$ 

Sr,∆

To overcome this problem, we utilize points inside a spherical shell.

Let us first consider continuum space.

A complete orthonormal set of functions on the shell  $S_{R,\Delta} = \{\vec{x} \mid R - \Delta \leq |\vec{x}| \leq R + \Delta\}$  $\mathcal{Y}_{nlm}^{R,\Delta}(r,\theta,\phi) \equiv G_n^{R,\Delta}(r)Y_{lm}(\theta,\phi)$  $\int_{R}^{R+\Delta} dr \ r^2 \ G_n^{R,\Delta}(r) G_m^{R,\Delta}(r) = \delta_{nm}$  $G_n^{R,\Delta}(r) \equiv P_n\left(\frac{r-R}{\Delta}\right)\frac{1}{r}\sqrt{\frac{2n+1}{2\Delta}}$ n0 Legendre polynomial 1  $\mathbf{2}$  $\int_{S_{R,\Delta}} d^3x \, \mathcal{Y}_{nlm}^{R,\overline{\Delta}}(\theta,\phi) \mathcal{Y}_{n'l'm'}^{R,\Delta}(r,\theta,\phi) = \delta_{nn'} \delta_{ll'} \delta_{mm'}$ 3 4  $\mathbf{5}$ 6 7 8  $rac{1}{128}\left(12155x^9-25740x^7+18018x^5-4620x^3+315x
ight)$  $rac{1}{256} \left(46189 x^{10}-109395 x^8+90090 x^6-30030 x^4+3465 x^2-63
ight)$ 23 10

# Misner's method in continuum space

Charles. W. Misner, Class. Quantum Grav. 21 (2004) S243-S247

#### Inside the shell, the wave function is expanded by

$$\psi(r,\theta,\phi) = \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{nlm}^{R,\Delta} \mathcal{Y}_{nlm}^{R,\Delta}(r,\theta,\phi)$$
$$= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} g_{lm}(r) Y_{lm}(\theta,\phi)$$

 $c_{nlm}^{R,\Delta}$  is determined by the integration over

SR,A R

the shell:

$$c_{nlm}^{R,\Delta} = \int_{S_{R,\Delta}} d^3x \ \overline{\mathcal{Y}_{nlm}^{R,\Delta}(r,\theta,\phi)} \ \psi(r,\theta,\phi) \qquad S_{R,\Delta} = \{\vec{x} \mid R - \Delta \le |\vec{x}| \le R + \Delta\}$$

$$\mathcal{Y}_{nlm}^{R,\Delta}(r,\theta,\phi) \equiv G_n^{R,\Delta}(r)Y_{lm}(\theta,\phi)$$

The components of the partial wave inside the shell are obtained by

$$g_{lm}(r) = \sum_{n=0}^{\infty} c_{nlm}^{R,\Delta} G_n^{R,\Delta}(r)$$
<sup>24</sup>

# Misner's method in discrete space

 $\omega(\vec{x})$ 

Charles. W. Misner, Class. Quantum Grav. 21 (2004) S243-S247

The volume integration is replaced by



An approximate choice of the weight function

$$\omega^{R,\Delta}(\vec{x}) = \begin{cases} a^3 & \text{for } |r-R| < \Delta - \frac{1}{2}a \\ 0 & \text{for } |r-R| > \Delta + \frac{1}{2}a \\ a^2 \left(\Delta + \frac{1}{2}a - |R-r|\right) & \text{otherwise} \end{cases}$$

overlap region between the shell and a lattice cube

The inner product on lattice

$$\langle f|g\rangle_{S_{R,\Delta}} \equiv \sum_{\vec{x}} \omega^{R,\Delta}(\vec{x}) \ \overline{f(\vec{x})} \ g(\vec{x})$$

## Misner's method in discrete space

Charles. W. Misner, Class. Quantum Grav. 21 (2004) S243-S247

Because of finite points, orthonormality is broken:  $\langle \mathcal{Y}_{nlm}^{R,\Delta} | \mathcal{Y}_{n'l'm'}^{R,\Delta} \rangle_{S_{R,\Delta}} \neq \delta_{n,n'} \delta_{l,l'} \delta_{m,m'}$ 

 $\langle \mathcal{Y}_A^{R,\Delta} | \mathcal{Y}_B^{R,\Delta} \rangle_{S_{R,\Delta}} = \mathcal{G}_{AB}$ 

To get  $\mathcal{G}_{BA}^{-1}$ , the restriction of summation (I<sub>max</sub>, n<sub>max</sub>) is introduced.

This satisfies orthonormality for  $\mathbf{I} \leq \mathbf{I}_{\max}$ ,  $\mathbf{n} \leq \mathbf{n}_{\max}$ ;  $\langle \tilde{\mathcal{Y}}_{A}^{R,\Delta} | \mathcal{Y}_{B}^{R,\Delta} \rangle_{S_{R,\Delta}} = \sum_{C}' \mathcal{G}_{AC}^{-1} \langle \mathcal{Y}_{C}^{R,\Delta} | \mathcal{Y}_{B}^{R,\Delta} \rangle_{S_{R,\Delta}} = \sum_{C}' \mathcal{G}_{AC}^{-1} \mathcal{G}_{CB} = \delta_{AB}$ 

## Misner's method in discrete space

Charles. W. Misner, Class. Quantum Grav. 21 (2004) S243-S247

Suppose that the components higher than  $I_{max}$ ,  $n_{max}$  are negligibly small:

$$\psi(\vec{x}) \simeq \sum_{n=0}^{n_{\max}} \sum_{l=0}^{l_{\max}} \sum_{m=-l}^{l} c_{nlm}^{R,\Delta} \mathcal{Y}_{nlm}^{R,\Delta}(r,\theta,\phi)$$

 $c_{nlm}^{R,\Delta}$  are obtained from

$$c_{nlm}^{R,\Delta} = \langle \tilde{\mathcal{Y}}_{nlm}^{R,\Delta} | \psi \rangle_{S_{R,\Delta}}.$$

#### Components of partial wave expansion in the shell are

$$g_{lm}(r) \simeq \sum_{n=0}^{n_{\max}} c_{nlm}^{R,\Delta} G_n^{R,\Delta}(r), \quad R - \Delta < r < R + \Delta$$

Using this form, Laplacian can be calculated analytically

$$\vec{\nabla}^2 g_{lm}(r) = \sum_{n=0}^{n_{\max}} c_{nlm}^{R,\Delta} \frac{1}{r} \frac{\partial^2}{\partial r^2} \left[ r G_n^{R,\Delta}(r) \right] \quad G_n^{R,\Delta}(r) \equiv P_n \left( \frac{r-R}{\Delta} \right) \frac{1}{r} \sqrt{\frac{2n+1}{2\Delta}}$$

# Misner's method vs fixed-r method

A = n, l, m

#### Zero-shell limit (fixed-r limit) for Misner method

$$\mathcal{Y}_{nlm}^{R,\Delta}(r,\theta,\phi) \equiv G_n^{R,\Delta}(r)Y_{lm}(\theta,\phi)$$

$$\mathcal{G}_{AA'} \equiv \langle \mathcal{Y}_A^{R,\Delta} | \mathcal{Y}_{A'}^{R,\Delta} \rangle_{S_{R,\Delta}} \to G_{lm,l'm'} \equiv \langle Y_{lm} | Y_{l'm'} \rangle$$

$$\langle f|g\rangle_{S_{R,\Delta}} = \sum_{\vec{x}} \omega^{R,\Delta}(\vec{x}) \ \overline{f(\vec{x})} \ g(\vec{x}) \to \langle f|g\rangle_{|\vec{x}|=R} = \sum_{|\vec{x}|=R} \ \overline{f(\vec{x})} \ g(\vec{x})$$

$$Dual \text{ basis } \quad \tilde{\mathcal{Y}}_A^{R,\Delta}(\vec{x}) \to \tilde{Y}_{lm}(\theta,\phi) \equiv \sum_{l',m'}' Y_{l'm'}(\theta,\phi) \ G_{l'm',lm}^{-1}$$

$$q_{lm} = \langle \tilde{Y}_{lm} | \psi \rangle_{|\vec{x}|=R}$$

$$\Psi^{A_{1}^{+}}(\vec{x}_{1}) = \begin{pmatrix} Y_{00}^{A_{1}^{+}} & Y_{40}^{A_{1}^{+}}(\vec{x}_{1}) & Y_{60}^{A_{1}^{+}}(\vec{x}_{1}) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ Y_{00}^{A_{1}^{+}}(\vec{x}_{N}) \end{pmatrix} = \begin{pmatrix} Y_{00}^{A_{1}^{+}} & Y_{40}^{A_{1}^{+}}(\vec{x}_{1}) & Y_{60}^{A_{1}^{+}}(\vec{x}_{1}) & \cdots \\ \vdots & \vdots & \vdots \\ Y_{00}^{A_{1}^{+}} & Y_{40}^{A_{1}^{+}}(\vec{x}_{N}) & Y_{60}^{A_{1}^{+}}(\vec{x}_{N}) & \cdots \end{pmatrix} \begin{pmatrix} g_{00}(R) \\ g_{4}(R) \\ g_{6}(R) \\ \vdots \end{pmatrix}$$
Eived-r method

# Misner's method vs fixed-r method

A = n, l, m

#### Zero-shell limit (fixed-r limit) for Misner method

$$\mathcal{Y}_{nlm}^{R,\Delta}(r,\theta,\phi) \equiv G_n^{R,\Delta}(r)Y_{lm}(\theta,\phi)$$

$$\mathcal{G}_{AA'} \equiv \langle \mathcal{Y}_A^{R,\Delta} | \mathcal{Y}_{A'}^{R,\Delta} \rangle_{S_{R,\Delta}} \to G_{lm,l'm'} \equiv \langle Y_{lm} | Y_{l'm'} \rangle$$

$$\langle f|g\rangle_{S_{R,\Delta}} = \sum_{\vec{x}} \omega^{R,\Delta}(\vec{x}) \ \overline{f(\vec{x})} \ g(\vec{x}) \to \langle f|g\rangle_{|\vec{x}|=R} = \sum_{|\vec{x}|=R} \ \overline{f(\vec{x})} \ g(\vec{x})$$

$$\mathbf{Dual \ basis} \quad \tilde{\mathcal{Y}}_A^{R,\Delta}(\vec{x}) \to \tilde{Y}_{lm}(\theta,\phi) \equiv \sum_{l',m'}' Y_{l'm'}(\theta,\phi) \ G_{l'm',lm}^{-1}$$

$$g_{lm} = \langle \tilde{Y}_{lm} | \psi \rangle_{|\vec{x}|=R}$$

$$\left( \begin{array}{c} \psi^{A_1^+(\vec{x}_1)} \\ \psi^{A_1^+(\vec{x}_1)} \end{array} \right) \ \left( \begin{array}{c} Y_{00}^{A_1^+} & Y_{40}^{A_1^+}(\vec{x}_1) & Y_{60}^{A_1^+}(\vec{x}_1) & \cdots \end{array} \right) \left( \begin{array}{c} g_{00}(R) \\ g_{4}(R) \end{array} \right)$$

Misner's method= extension of fixed-r method to include points inside shell

#### test calculation 1: check the decomposition

#### Ex)

$$\psi_0(r) \equiv 2 - e^{-\frac{r^2}{60}}$$
$$\psi_4(r) \equiv \frac{\sin(r/3)}{r}$$
$$\psi_6(r) \equiv \frac{\sin(r/2)}{r}$$

$$\psi(\vec{r}) \equiv \psi_0(r) Y_{0,0}(\vec{r}) + \alpha \psi_4(r) Y_{4,0}(\vec{r}) + \beta \psi_6(r) Y_{6,0}(\vec{r})$$
$$(\alpha = 0.2, \beta = 0.1)$$

We apply Misner's method with  $\Delta = a$ , n<sub>max</sub>=2, I<sub>max</sub>=6 to this wave function.

#### All components were reproduced by Misner's method



#### test calculation 2: solve Hamiltonian



#### test calculation 2: solve Hamiltonian



# **Application to NBS wave functions**



- I≥4 contributions for A<sub>1</sub>+ projected R-correlator can be found
- The comb-like behavior is removed by Misner's method

# **Application to Laplacian term**



- Laplacian=> a finite second-order difference => comb-like fluctuation due to l≥4 is enhanced
- Misner method:

Laplacian=> analytically calculable after I=0 extraction

=> The fluctuation is removed

$$\vec{\nabla}^2 g_{lm}(r) = \sum_{n=0}^{n_{\max}} c_{nlm}^{R,\Delta} \frac{1}{r} \frac{\partial^2}{\partial r^2} \left[ r G_n^{R,\Delta}(r) \right]$$
<sup>34</sup>



- Conventional method: Enhancement of the fluctuation of laplacian due to l≥4 contributions
   => Potential has large fluctuation (comb-like behavior)
- Misner method: The fluctuation is removed because of I=0 extraction.

# Fit results



The fluctuation is not affected the fit results largely.

Fit to pot. from A1 proj. = Fit to pot. from Misner method



#### The phase shifts are identical with each other.

# Summary

# We have succeeded in L=0 extraction

# **Future works**

# Use Misner method to extract higher partial waves

# Many systems couple to higher partial waves