Frontiers in Lattice QCD and related topics Axial U(1) symmetry in high temperature phase of two-flavor QCD

Kei Suzuki (JAEA)

from JLQCD Collaboration: Sinya Aoki (YITP), Yasumichi Aoki (RIKEN R-CCS), Guido Cossu (Edinburgh), Hidenori Fukaya (Osaka U.), Shoji Hashimoto (KEK)

U(1)_A symmetry (in vacuum, broken by anomaly) is restored above Tc?

Above Tc, chiral symmetry breaking by ⟨*q̄q*⟩ is restored
 ⇒How about <u>U(1)_A symmetry?</u>

Cf.) S. Aoki, H. Fukaya, and Y. Taniguchi, PRD86 Colombia plot is modified?

U(1)_A symmetry above Tc ⇒Long-standing problem in QCD

- Gross-Pisarski-Yaffe (Dilute instanton gas model, 1981) restored at enough high T
- Cohen (1996) w/o zero mode (or instanton)⇒restored
- Aoki-Fukaya-Taniguchi (theory, 2012) <u>zero mode suppressed, restored in chiral limit</u> <u>at N_f = 2</u>
- HotQCD (DW, 2012) broken
- JLQCD (topology fixed overlap, 2013) restored
- TWQCD (optimal DW, 2013) restored
- LLNL/RBC (DW, 2014) broken (restored at higher T?)
- Dick et al. (overlap on HISQ, 2015) broken
- Sharma et al. (overlap on DW, 2015,2016,2018) broken
- Brandt et al. (Wilson, 2016) restored
- Ishikawa et al. (Wilson, 2017) restored
- JLQCD (reweighted overlap on DW, 2016) restored
- Gomez Nicola-Ruiz de Elvira (theory, 2017) restored
- Rohrhofer et al. (DW, 2017) restored

⇒ Many suggestions from lattice QCD (and models)...

U(1)_A symmetry restoration <u>by JLQCD Collaboration</u> ⇒overlap fermion (exact chiral symmetry on the lattice)

	valence/sea quark	Setup
G. Cossu et al. PRD87 (2013)	OV on OV (Topology fixed sector)	
A. Tomiya et al. PRD96 (2017)	DW on DW OV on DW OV on (reweighted) OV	1/a=1.7GeV (a=0.11fm)
<u>In progress</u>	OV on DW OV on (reweighted) OV	1/a=2.6GeV (a=0.076fm) <u>(Finer lattice)</u>

Outline

- 1. Introduction
- 2. $U(1)_A$ and topology from Dirac spectra
- 3. Results
 - 3-1: $U(1)_A$ susceptibility at finite T
 - 3-2: Topological susceptibility at finite T

 $\langle \overline{q}q \rangle$

 $\langle \overline{q}q \rangle$

 $\langle \bar{q}q \rangle$

 $\langle \overline{q}q \rangle$

- 3-3: Mesonic correlators at finite T
- 4. Summary

 $Q_t = 1$

Chiral condensate and **Dirac spectra**

Banks-Casher relation:

$$\langle \bar{q}q \rangle = \lim_{m \to 0} \int_{0}^{\infty} d\lambda \rho(\lambda) \frac{2m}{\lambda^{2} + m^{2}}$$

$$\rho(\lambda) \equiv \lim_{v \to \infty} \frac{1}{v} \Sigma_{\lambda'} < \delta(\lambda - \lambda') > 0$$
with interaction
$$\rho(\lambda) \sqrt{\langle \bar{q}q \rangle} \langle \bar{q}q \rangle$$
with interaction
$$\rho(\lambda) - \langle \bar{q}q \rangle \langle \bar{q}q \rangle$$
Chiral condensate
induced by low modes
$$\rho(\lambda) - \langle \bar{q}q \rangle / \pi$$
w/o interaction
$$\lambda$$

G. Cossu et al. (JLQCD) PRD87 (2013), 114514

T-dependence of **Dirac spectra**

U(1)_A susceptibility and low modes of Dirac spectra

A. Tomiya et al. (JLQCD) PRD96 (2017), 034509 Note: $U(1)_A$ susc.=Low modes+Zero mode? $\Delta_{\pi-\delta} = \int_0^\infty d\lambda \,\rho(\lambda) \,\frac{2m^2}{(\lambda^2 + m^2)^2} \,\square \,\Delta_{\pi-\delta}^{\rm ov} \equiv \frac{1}{V(1-m^2)^2} \sum_i \frac{2m^2(1-\lambda_{\rm ov}^{(i)2})^2}{\lambda^{(i)4}}$ $ho(\lambda_{
m ov})$ integrated up to $\lambda=0$ The factor of $1/\lambda^4$ enhances zero-mode contribution? subtracted zero mode In $V \rightarrow \infty$ limit, we know zeromode contribution is suppressed: $\Delta_{0-mode}^{\rm ov} = \frac{2N_0}{Vm^2} (\propto 1/\sqrt{V})$

S. Aoki, H. Fukaya, and Y. Taniguchi PRD86 (2012), 114512

New order parameter: we subtract zero mode

$$\overline{\Delta}_{\pi-\delta}^{\rm ov} \equiv \Delta_{\pi-\delta}^{\rm ov} - \frac{2N_0}{Vm^2}$$

Overlap Dirac spectra at T = 220MeV

$U(1)_A$ susceptibility at T = 220MeV

 \Rightarrow At $m_q = 2.6$ MeV, we found suppression of 10^{-4} GeV²

U(1)_A susceptibility (Volume dependence)

 \Rightarrow For small m_q , V-dependence seems to be small

U(1)_A susceptibility (T=220, 330MeV)

 \Rightarrow With increasing T, <u>U(1)_A is more resotored</u>

Top. susceptibility at T = 220MeV

⇒For small m_q , $\chi_t = 0$ ⇒Around m_q ~10MeV, we found a jump (critical mass?) Cf.) S. Aoki, H. Fukaya, and Y. Taniguchi PRD86 (2012), 114512

Top. susceptibility (Volume depend.)

 \Rightarrow For small m_q , <u>no volume dependence</u>

18/Apr/2019

Top. susceptibility (T=220, 260, 330MeV)

\Rightarrow With increasing T, χ_t is more suppressed

18/Apr/2019

YITP workshop

PS-S(Connected) **Correlators:** U(1)_A partners

 \Rightarrow Small m_q : U(1)_A restoration, Large m_q : U(1)_A breaking

PS-S(Connected) **Correlators:** U(1)_A partners

 \Rightarrow Small m_q : U(1)_A restoration, Large m_q : U(1)_A breaking

V-AV Correlators: Chiral partners

 \Rightarrow Small m_q : Chiral restoration, Large m_q : Chiral breaking

V-AV Correlators: Chiral partners

 \Rightarrow Small m_q : Chiral restoration, Large m_q : Chiral breaking

Correlator ratios(C_S/C_{PS}, C_{AV}/C_V)

PS(Disconnected) Correlator

from Dirac modes

 \Rightarrow Large m_q : Correlation becomes strong \Rightarrow screening masses?

PS(Disconnected) screening mass

 \Rightarrow Small m_q : $m_{PS}^{dis} \sim m_{PS}^{con}$

 \Rightarrow Large m_q : m_{PS}^{dis} [~420MeV] $< m_{PS}^{con}$ [~700MeV]

Scalar(Disconnected) correlator

from Dirac modes

Small m_q :

Large m_q :

 ⇒Large m_q: m^{dis}_S~300MeV < m^{dis}_{PS}~420MeV !?
 ⇒Long-distance correlations by scalar particle? (Finite volume effect between L=24 [~1.8fm] and L=32 [~2.4fm]?)

PS Conn. (π) – **PS Disc.** = η ' correlation

S Conn. (δ) – **S** Disc. = σ correlation

Summary: $U(1)_A$ and correlators

Summary and Outlook

- In high-temperature phase $(T > T_c)$ at $N_f = 2$, we found that
- U(1)_A susceptibility is <u>strongly suppressed in the</u> <u>chiral limit</u> (for T=220-330MeV)
- Top. susceptibility shows <u>a critical m_q in a few 10</u> <u>MeV</u> (for T=220-330MeV)
- Long-distance (disc.) correlations at large m_q
- Another symmetry for mesonic correlators
 ⇒Next talk (by C. Rohrhofer)
- Near T_c ($N_t = 14$?, chiral transition?)
- $N_f = 2 + 1$ sector

Backup

Valence quark And Sea quark

DW/OV reweighting removes fake zero-modes

YITP workshop

U(1)_A susceptibility (DW/OV reweighting)

⇒DW/OV reweighting is crucial in small m region

18/Apr/2019

YITP workshop

S. Aoki, H. Fukaya, and Y. Taniguchi PRD86 (2012), 114512 A. Tomiya et al. (JLQCD) PRD96 (2017), 034509

Note 1: U(1)_A susc.=Low modes+Zero mode?

$$\begin{split} \Delta_{\pi-\delta} &\equiv \int_{0}^{\infty} d\lambda \,\rho(\lambda) \, \frac{2m^{2}}{(\lambda^{2}+m^{2})^{2}} \\ \rho_{0-mode}(\lambda) &= \frac{1}{V} \sum_{0-mode} \delta(\lambda) \\ \Delta_{zero} &= \int_{0}^{\infty} d\lambda \, \frac{1}{V} \sum_{0-mode} \delta(\lambda) \frac{2m^{2}}{(\lambda^{2}+m^{2})^{2}} \\ &= \frac{1}{V} \sum_{0-mode} \frac{2m^{2}}{m^{4}} \\ &= \frac{1}{V} \sum_{0-mode} \frac{2}{m^{2}} = \frac{2N_{0}}{Vm^{2}} \left\| \begin{array}{c} \langle N_{L+R}^{2} \rangle = \mathcal{O}(V) \\ \langle N_{L+R} \rangle = \mathcal{O}(\sqrt{V}) \end{array} \right\| \quad \sum_{V \to \infty} \Delta_{zero} = 0 \end{split}$$

Zero mode contributions in $\Delta_{\pi-\delta}$ will be suppressed in $V \to \infty$ limit

18/Apr/2019

YITP workshop

Note 2: $U(1)_A$ susc. = Physics + Ultraviolet divergence?

We assume valence quark mass dependence of $\Delta_{\pi-\delta}$ (for small m):

 $\Delta_{\pi-\delta}^{\rm ov} \propto m^2 \ln \Lambda + \cdots$

The term depends on cutoff Λ and valence quark mass m

$$\rho(\lambda_{ov})$$

⇒ From 3 eqs. for $\Delta_{\pi-\delta}(m_1)$, $\Delta_{\pi-\delta}(m_2)$, $\Delta_{\pi-\delta}(m_3)$, *a* and *c* are eliminated ⇒ $\Delta_{\pi-\delta} \sim b + O(m^4)$ (, that depends on sea quark mass)