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the Standard Model / SO(10) chiral gauge theory on the lattice

Schwinger-Keldysh formalism for lattice gauge theories

       real-time, non-equilibrium dynamics / finite-temperature・density

Lefschetz-Thimble methods   

       sign problem

       generalized method(GLTM),  tempered method(tLTM)
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Lattice Gauge Theory (QCD)
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No-Go Theorem  (Nielsen-Ninomiya)
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D̃(k) is a periodic and analytic function of momentum kµ1.
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Path Integral measure depends on the gauge field !
I change of the chiral basis by a unitary transformation
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cf. in Lattice QCD D[ ]D[ ̄] =
Y

x
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I Requirements for the measure
I Locality
I Gauge-invariance
I Integrability
I Lattice symmetries

* in sharpe contrast to the case of Dirac fermions in QCD-like theories
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variation of effective action & gauge anomaly
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Non-conservation of the Noether current 
associated to chiral gauge transformation

Q SO(10)

SO(10)

Action & Path Integral measure for the 16

Exact gauge-inv. & CP-inv.
Correct fermion # symm. breaking

[YK 2017 ]
the Standard Model / SO(10)

SU(3)xSU(2)xU(1) xU(1)B-L

 (3 ,2) 1/6                              (1,2) -1/2  

 (3*,1) -2/3  (3*,1) 1/3      (1,1) 1       (1,1) 0  

SO(10)

 16

Wilson-Dirac fermion

Sw = a4
∑

x

ψ̄(x)

(

γµ

1

2

(

∇µ −∇
†
µ

)

+
a

2

(

∇µ∇
†
µ

)

+ m0

)

ψ(x)

doubler mass : m0 +
∑

µ

a

2

(

2

a
sin

kµa

2

)2

≃ m0 +
2n

a
n = numbers of π

No-Go Theorem  (Nielsen-Ninomiya)

S = a4
∑

x

ψ̄(x) Dψ(x) =

∫ π/a

−π/a

d4k

(2π)4
ψ̄(−k) D̃(k)ψ(k)

D̃(k) is a periodic and analytic function of momentum kµ1.
2.
3.
4.

D̃(k) ∝ iγµkµ for |kµ| ≪ π/a

D̃(k) is invertible for all       except kµ kµ = 0

γ5D̃(k) + D̃(k)γ5 = 0

Explicit Breaking of 
chiral symmetry

∂l

∂kl
D̃(k) =

∑

x

e
ikx(ix)l

D(x) < ∞ =⇒ ∥D(x)∥ < Ce
−γ|x|analyticity & locality:

- -W

-

Path Integral quantization

ψ
−

(x) =
∑

i

vi(x)ci ψ̄
−

(x) =
∑

i

c̄iv̄i(x)

Z =

∫
D[ψ

−
]D[ψ̄

−
] e−a4

P

x
ψ̄

−
Dψ

−
(x)

=

∫ ∏
i

dci

∏
j

dc̄j e
−

P

ij c̄jMjici Mji = a
4
∑

x

v̄jDvi(x)

Path Integral measure depends on the gauge field !
I change of the chiral basis by a unitary transformation
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and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T
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TT aĒa(x)}P�

T for the anti-field  ̄+(x).7 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w

= 4!
1
X

k=0

wk

k!(k + 4)!
, (3.6)

where I
⌫

(w) is the modified Bessel function of the first kind. It has the integral represen-
tation as

F (w)
�

�

�

w=(1/2)ua

u

a

= (⇡5/12)�1

Z 10
Y

a=1

dea�(
p
ebeb � 1) ee

c

u

c

(3.7)

and allows us to prove the CP invariance of the effective action of the lattice model, as
discussed bellow.8

The partition function of our lattice model for the SO(10) chiral Gauge theory is then
given as follows,
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In the last equation, the integral representation of F (w) is used and the path-integrations
over the SO(10)-vector real spin fields with unit length, Ea(x) and Ēa(x), are introduced:
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7This point is crucial for our proposal and will be discussed later in relation to other formulations.
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P1
k=0

w

k

k!
. It also has the integral representation,

F (w)
���
w=(1/2)ua

u

a
= (2⇡)�5

Z 10Y

a=1

dx

a e�(1/2)xc
x

c+x

c
u

c

(3.8)

In this case, however, we do not succeed yet in proving the CP invariance of the effective action of the
lattice model.
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Partition function

+ +

x

Chiral Anomaly 
=> Zero modes  
=> ’t Hooft vertex VEV 
=> Fermion # violation

16 x 16 x 16 x 16   => 10 x 10 =>  1

We also introduce the overlap Dirac operator D acting on  (x) as
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where rµ is the covariant difference operator which acts on  (x) as rµ (x) = U(x, µ) (x+

µ̂)� (x) and 0 < m0 < 2. Under the admissibility condition, D is a local, gauge-covariant
lattice Dirac operator. It also satisfies the Ginsparg-Wilson relation,

�5D +D�̂5 = 0, (2.10)
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�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:
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Ta = C�a ; TaT = Ta (B.16)
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T3 = i(+i)(+i)(�i)(+i)(�i) ⌧1 ⇥ ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T4 = i(+1)(�i)(�i)(+i)(�i) ⌧2 ⇥ ⌧1 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T5 = i(+1)(+1)(�i)(+i)(�i) ⌧2 ⇥ I ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T6 = i(+1)(+1)(+1)(+i)(�i) ⌧2 ⇥ ⌧3 ⇥ I ⇥ ⌧2 ⇥ ⌧3,

T7 = i(+1)(+1)(+i)(+i)(�i) ⌧2 ⇥ ⌧3 ⇥ ⌧1 ⇥ ⌧2 ⇥ ⌧3,
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The reduced Clliford algebra of 2[9/2]

�a0 = �̌a0 ⇥ ⌧1 (a0 = 1, · · · , 9), (B.17)
C = Č⇥ ⌧2. (B.18)

The reduced T matrices

Ta0 = Ťa0 ⇥ ⌧3, (B.19)
T10 = Ť10 ⇥ I = Č⇥ I. (B.20)

T10†Ta0 = �10�a0 = �i �̌a0 ⇥ ⌧3. (B.21)

C Chiral basis in the weak coupling limit

H = �5(Dw �m0) =
1

L4

X

p

eip(x�y)

 

b(p)I c(p)

c†(p) �b(p)I

!

, (C.1)

where

b(p) =
�

X

µ

(1� cos pµ)�m0

 

, (C.2)

c(p) = I{i sin p0}�
X

k

�k sin pk. (C.3)
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Now we consider quarks and leptons in the Glashow-Weinberg-Salam model. For

simplicity, we consider the first family. We adopt the convention for the normalization

of the hyper-charges such that the Nishijima-Gell-Mann relation reads Q = T3 + 1
6Y . To

describe the left-handed quarks and leptons, which are SU(2) doublets, we introduce a

left-handed fermion ψ−(x) with the index α(= 1, . . . , 4), each component of which couples

to the SU(2) × U(1) gauge field, U (2)(x, µ) ⊗ {U (1)(x, µ)}Yα , with the hyper-charge Yα (

Y1,2,3 = 1 and Y4 = −3). Namely,

ψ−(x) = t
(

q1
−(x), q2

−(x), q3
−(x), l−(x)

)

. (2.16)

Similarly, to describe the right-handed quarks and leptons, which are SU(2) singlets, we

introduce a right-handed fermion ψ+(x) with the index β(= 1, . . . , 8), each component of

which couples to the U(1) gauge field, {U (1)(x, µ)}Yβ , with the hyper-charge Yβ (Y1,3,5 = 4,

Y2,4,6 = −2, Y7 = 0 and Y8 = −6). Namely,

ψ+(x) = t
(

u1
+(x), d1

+(x), u2
+(x), d2

+(x), u3
+(x), d3

+(x), ν+(x), e+(x)
)

. (2.17)

Then the action of quarks and leptons is given by

SF =
∑

x∈Γ

ψ̄−(x)DLψ−(x) +
∑

x∈Γ

ψ̄+(x)DLψ+(x). (2.18)

2.3 Higgs field and its Yukawa-couplings to quarks and leptons

Higgs field is a SU(2) doublet with the hyper-charge Yh = +6. The action of the Higgs

field may be given by

SH =
∑

x

[

∑

ν

(∇νφ(x))†∇νφ(x) +
λ

2

(

φ(x)†φ(x) − v2
)2

]

, (2.19)

where φ(x) couples to the gauge field U (2)(x, µ)⊗{U (1)(x, µ)}Yh and ∇ν is the SU(2)×U(1)

gauge-covariant difference operator. Yukawa couplings of the Higgs field to the quarks and

leptons may also be introduced as follows:8

SY =
∑

x

[

yu q̄i
−(x)φ̃(x)ui

+(x) + y∗u ūi
+(x)φ̃(x)†qi

−(x)

+yd q̄i
−(x)φ(x)di

+(x) + y∗d d̄i
+(x)φ(x)†qi

−(x)

+yl l̄−(x)φ(x)e+(x) + y∗l ē+(x)φ(x)†l−(x)
]

, (2.20)

where φ̃(x) is the SU(2) conjugate of φ(x).

Thus the total lattice action,

S = SG + SF + SH + SY , (2.21)

defines a classical theory of the Glashow-Weinberg-Salam model [30 – 32] on the lattice with

the first-family quarks and leptons. In this action, locality, gauge-invariance and lattice

8One may add the Dirac-type mass term for the neutrino,
P

x{yν l̄−(x)φ̃(x)ν+(x) +y∗
ν ν̄+(x)φ̃(x)†l−(x)}.
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γ5D + Dγ5 = 2aDγ5D

�b�a = 2�ab (a, b = 1, 2, · · · , 10). An explicit representation for {�a | a = 1, 2, · · · , 10} is
given in the appendix B. The link variables are then parametrized as

U(x, µ) = ei✓
ab(x,µ)⌃

ab

/2 2 Spin(10). (2.2)

We require the admissibility condition on the gauge field,

k1� P (x, µ, ⌫)k < ✏, (2.3)

for all x, µ, ⌫, where the plaquette variables are defined by

P (x, µ, ⌫) = U(x, µ)U(x+ µ̂, ⌫)U(x+ ⌫̂, µ)�1U(x, ⌫)�1. (2.4)

This condition ensures that the overlap Dirac operator[23, 25], which is assumed to act on
the fermion fields in the spinor representations of SO(10), is a smooth and local function
of the gauge field if ✏ < 1/30[27].

To impose the admissibility condition dynamically, we adopt the following action for
the gauge field:

SG =
1

g2

X

x2�

X

µ,⌫

tr{1� P̃ (x, µ, ⌫)}
h

1� tr{1� P̃ (x, µ, ⌫)}/10✏2
i�1

, (2.5)

where the SO(10) link variables are represented in the defining representation as the ten-
dimensional special orthogonal matrices, Ũ(x, µ) 2 SO(10). The generators of SO(10) in
the defining representation are given by {⌃̃

ab

}
cd

= i(�
ac

�
bd

� �
ad

�
bc

) and the link variables
are represented with the same parameters as

Ũ(x, µ) = ei✓
ab(x,µ)⌃̃

ab

/2 2 SO(10). (2.6)

2.2 Weyl field in 16-dimensional spinor representation of SO(10)

The left-handed Weyl field in the 16-dimensional (irreducible) spinor representation of
SO(10) is defined on the lattice ⇤ based on the Ginsparg-Wilson relation. First we in-
troduce a Dirac field on the lattice in the 16-dimensional spinor representation of SO(10),

 (x) = P+ (x),  ̄(x) =  ̄(x)P+, (2.7)

where
P+ =

1 + �11

2
, �11 = �i�1�2 · · ·�10. (2.8)

We also introduce the overlap Dirac operator D acting on  (x) as

D =
1

2

⇣

1 +X/
p
X†X

⌘

, X = �
µ

1

2

�

r
µ

�r†
µ

�

+
1

2
r

µ

r†
µ

�m0, (2.9)

where r
µ

is the covariant difference operator which acts on  (x) as r
µ

 (x) = U(x, µ) (x+

µ̂)� (x) and 0 < m0 < 2. Under the admissibility condition, D is a local, gauge-covariant
lattice Dirac operator. It also satisfies the Ginsparg-Wilson relation,

�5D +D�̂5 = 0, (2.10)
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where
�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:

 �(x) = P̂� (x),  ̄�(x) =  ̄(x)P+, (2.12)

where P̂± and P± are the chiral projection operators given by

P̂± =

✓

1± �̂5
2

◆

, P± =

✓

1± �5
2

◆

. (2.13)

We note that
⇥

P̂±,P±
⇤

= 0 and
⇥

P±,P±
⇤

= 0.
The action of the left-handed Weyl field in the 16-dimensional spinor representation of

SO(10) is given by

SW[ �,  ̄�] =
X

x2⇤
 ̄�(x)D �(x) =

X

x2⇤
 ̄(x)P+D (x). (2.14)

This action is manifestly invariant under the SO(10) lattice gauge transformations. It is
also invariant under the global U(1) transformation of the left-handed fields,

�
↵

 �(x) = i↵ �(x)
⇥

or � (x) = i↵ P̂� (x)
⇤

, (2.15)
�
↵

 ̄�(x) = �i↵  ̄�(x)
⇥

or � ̄(x) = �i↵  ̄(x)P+

⇤

. (2.16)

This global U(1) symmetry is broken due to the non-trivial transformation property of
the Weyl field path-integral measure, as we will see below, and the non-vanishing vacuum
expectation values of ’t Hooft vertices,

T�(x) =
1

2
V a

�(x)V
a

�(x), V a

�(x) =  �(x)
Ti�5CD

Ta �(x), (2.17)

T̄�(x) =
1

2
V̄ a

�(x)V̄
a

�(x), V̄ a

�(x) =  ̄�(x)i�5CD

Ta

† ̄�(x)
T, (2.18)

in the topologically nontrivial sectors of the gauge field. Here Ta (a = 1, 2, · · · , 10) are the
operators acting on the SO(10) spinor space, Ta = C�a. The explicit representations of C
and {Ta|a = 1, · · · , 10} are given in the appendix B. The action also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
charge conjugation. In particular, under P (space reflections) and C (charge conjugation)
the action is not invariant, while under CP the action is transformed into the same form,
but the definitions of the chiral projection for the fields and anti-fields are interchanged:

 �(x) = P̂� (x) )  �(x) = P� (x), (2.19)
 ̄�(x) =  ̄P+(x) )  ̄�(x) =  ̄{�5P̂+�5}(x). (2.20)

But the effective action of the gauge field turns out to be CP invariant. This CP transfor-
mation property of the model will be discussed below.
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where
�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:

 �(x) = P̂� (x),  ̄�(x) =  ̄(x)P+, (2.12)

where P̂± and P± are the chiral projection operators given by

P̂± =

✓

1± �̂5
2

◆

, P± =

✓

1± �5
2

◆

. (2.13)

We note that
⇥

P̂±,P±
⇤

= 0 and
⇥

P±,P±
⇤

= 0.
The action of the left-handed Weyl field in the 16-dimensional spinor representation of

SO(10) is given by

SW[ �,  ̄�] =
X

x2⇤
 ̄�(x)D �(x) =

X

x2⇤
 ̄(x)P+D (x). (2.14)

This action is manifestly invariant under the SO(10) lattice gauge transformations. It is
also invariant under the global U(1) transformation of the left-handed fields,

�
↵

 �(x) = i↵ �(x)
⇥

or � (x) = i↵ P̂� (x)
⇤

, (2.15)
�
↵

 ̄�(x) = �i↵  ̄�(x)
⇥

or � ̄(x) = �i↵  ̄(x)P+

⇤

. (2.16)

This global U(1) symmetry is broken due to the non-trivial transformation property of
the Weyl field path-integral measure, as we will see below, and the non-vanishing vacuum
expectation values of ’t Hooft vertices,

T�(x) =
1

2
V a

�(x)V
a

�(x), V a

�(x) =  �(x)
Ti�5CD

Ta �(x), (2.17)

T̄�(x) =
1

2
V̄ a

�(x)V̄
a

�(x), V̄ a

�(x) =  ̄�(x)i�5CD

Ta

† ̄�(x)
T, (2.18)

in the topologically nontrivial sectors of the gauge field. Here Ta (a = 1, 2, · · · , 10) are the
operators acting on the SO(10) spinor space, Ta = C�a. The explicit representations of C
and {Ta|a = 1, · · · , 10} are given in the appendix B. The action also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
charge conjugation. In particular, under P (space reflections) and C (charge conjugation)
the action is not invariant, while under CP the action is transformed into the same form,
but the definitions of the chiral projection for the fields and anti-fields are interchanged:

 �(x) = P̂� (x) )  �(x) = P� (x), (2.19)
 ̄�(x) =  ̄P+(x) )  ̄�(x) =  ̄{�5P̂+�5}(x). (2.20)

But the effective action of the gauge field turns out to be CP invariant. This CP transfor-
mation property of the model will be discussed below.
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the action is not invariant, while under CP the action is transformed into the same form,
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the square matrix of the fixed size n/2. Therefore these pfaffians do not vanish identically
in general and the path-integration of the pfaffians over the spin fields Ea(x) and Ēa(x)

gives a certain non-zero functional of the admissible link field U(x, µ).
The pfaffian of the second matrix eq. (3.26) turns out to be unity. This is because the
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Note that det(iČ†) and det
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are both equal to +1 and the latter, in
particular, is independent of Ēa(x). Then the path-integration over Ēa(x) simply gives
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Ta

†ĒaūT
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= 1. (3.29)

Thus the measure of the right-handed anti-field, D
?

[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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(3.30)

and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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0Ē
a(x0) (3.27)

for k = {x,�, t} and l = {x0,�0, t0}, in the bases �5 = diag(1, 1,�1,�1), ū
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general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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the square matrix of the fixed size n/2. Therefore these pfaffians do not vanish identically
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Thus the measure of the right-handed anti-field, D
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[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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i Ťa†Ēa(x)
�

=
Y

x

det
�
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inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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Ēa

0
(x)]

�

= 1. (3.28)

Note that det(iČ†) and det
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which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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D[Ē] pf
�
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which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
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general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
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�

[E10(x) + i�̌a

0
Ēa
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can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the

– 11 –

for all topological sectors

+
1

2
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+

[Eichten-Preskill(1986)]

where
�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:

 �(x) = P̂� (x),  ̄�(x) =  ̄(x)P+, (2.12)

where P̂± and P± are the chiral projection operators given by

P̂± =

✓

1± �̂5
2

◆

, P± =

✓

1± �5
2

◆

. (2.13)

We note that
⇥

P̂±,P±
⇤

= 0 and
⇥

P±,P±
⇤

= 0.
The action of the left-handed Weyl field in the 16-dimensional spinor representation of

SO(10) is given by

SW[ �,  ̄�] =
X

x2⇤
 ̄�(x)D �(x) =

X

x2⇤
 ̄(x)P+D (x). (2.14)

This action is manifestly invariant under the SO(10) lattice gauge transformations. It is
also invariant under the global U(1) transformation of the left-handed fields,

�
↵

 �(x) = i↵ �(x)
⇥

or � (x) = i↵ P̂� (x)
⇤

, (2.15)
�
↵

 ̄�(x) = �i↵  ̄�(x)
⇥

or � ̄(x) = �i↵  ̄(x)P+

⇤

. (2.16)

This global U(1) symmetry is broken due to the non-trivial transformation property of
the Weyl field path-integral measure, as we will see below, and the non-vanishing vacuum
expectation values of ’t Hooft vertices,

T�(x) =
1

2
V a

�(x)V
a

�(x), V a

�(x) =  �(x)
Ti�5CD

Ta �(x), (2.17)

T̄�(x) =
1

2
V̄ a

�(x)V̄
a

�(x), V̄ a

�(x) =  ̄�(x)i�5CD

Ta

† ̄�(x)
T, (2.18)

in the topologically nontrivial sectors of the gauge field. Here Ta (a = 1, 2, · · · , 10) are the
operators acting on the SO(10) spinor space, Ta = C�a. The explicit representations of C
and {Ta|a = 1, · · · , 10} are given in the appendix B. The action also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
charge conjugation. In particular, under P (space reflections) and C (charge conjugation)
the action is not invariant, while under CP the action is transformed into the same form,
but the definitions of the chiral projection for the fields and anti-fields are interchanged:

 �(x) = P̂� (x) )  �(x) = P� (x), (2.19)
 ̄�(x) =  ̄P+(x) )  ̄�(x) =  ̄{�5P̂+�5}(x). (2.20)

But the effective action of the gauge field turns out to be CP invariant. This CP transfor-
mation property of the model will be discussed below.
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A gauge invariant path-integral measure for 
the overlap Weyl  fermions in 16 of SO(10)

2.3 Topology of the SO(10) lattice gauge fields

The admissibility condition ensures that the overlap Dirac operator[23, 25] is a smooth and
local function of the gauge field [27]. Moreover, the Ginsparg-Wilson relation implies the
index theorem

IndexD = Tr�5(1�D). (2.21)

Then, through the lattice Dirac operator D, it is possible to define a topological charge of
the gauge fields [24, 29, 30, 32, 50]: for the admissible SO(10) gauge fields, one has

Q = �1

8
Tr�5(1�D) = �1

8

X

x2�
tr {�5(1�D)} (x, x), (2.22)

where D(x, y) is the kernel of the lattice Dirac operator D. (Our convention for the gamma
matrices is such that �0�1�2�3�5 = 1.) Then the admissible SO(10) gauge fields can be
classified by the topological numbers Q.6 We denote the space of the admissible SO(10)
gauge fields with a given topological charge Q by U[Q].

3 Path Integration – a proposal for the gauge-invariant measure

3.1 Definition of the path integration measures

The path-integral measures for the link field and the Weyl field are formulated as follows.
For the link field U(x, µ), it is defined with the group-invariant Haar measure as usual:

D[U ] ⌘
Y

x2⇤

3
Y

µ=0

dU(x, µ). (3.1)

For the Weyl field  �(x),  ̄�(x), it is defined by using the whole components of the original
Dirac field  

↵s

(x)(↵ = 1, · · · , 4; s = 1, · · · , 16) not as usual, but the right-handed part of
the measure is just saturated completely by inserting a suitable product of the ’t Hooft
vertexes in terms of the right-handed fields,

T+(x) =
1

2
V a

+(x)V
a

+(x), V a

+(x) =  +(x)
Ti�5CD

Ta +(x), (3.2)

T̄+(x) =
1

2
V̄ a

+(x)V̄
a

+(x), V̄ a

+(x) =  ̄+(x)i�5CD

Ta ̄+(x)
T. (3.3)

Namely, the Weyl field measure is defined as

D[ �]D[ ̄�] ⌘ D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)), (3.4)

where

D[ ]D[ ̄] ⌘
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d 
↵s

(x)
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ̄
↵s

(x), (3.5)

6 Strictly speaking, the complete topological classification of the space of admissible SO(10) gauge fields
is not known yet. We assume that it is classified with Q as in the continuum theory.
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and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T

+ i�5CD

T aEa(x)P̂+, not P̂ T

+{i�5C
d

P+T aEa(x)}P̂+, appears for the field  +(x),
while P�i�5CD

T aĒa(x)P�
T = P�{i�5CD

P�
TT aĒa(x)}P�

T for the anti-field  ̄+(x).7 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w

= 4!
1
X

k=0

wk

k!(k + 4)!
, (3.6)

where I
⌫

(w) is the modified Bessel function of the first kind. It has the integral represen-
tation as

F (w)
�

�

�

w=(1/2)ua

u

a

= (⇡5/12)�1

Z 10
Y

a=1

dea�(
p
ebeb � 1) ee

c

u

c

(3.7)

and allows us to prove the CP invariance of the effective action of the lattice model, as
discussed bellow.8

The partition function of our lattice model for the SO(10) chiral Gauge theory is then
given as follows,

Z ⌘
Z

D[U ] e�S

G

[U ]+�
W

[U ], (3.9)

where �
W

[U ] is the effective action induced by the path-integration of the Weyl field,

e�W

[U ] ⌘
Z

D[ �]D[ ̄�] e
�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)) e

�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]D[E]D[Ē] e�S

W

[ �, ̄�]+
P

x2⇤{Ea(x)V a

+(x)+Ē

a(x)V̄ a

+(x)}[ +, ̄+].

(3.10)

In the last equation, the integral representation of F (w) is used and the path-integrations
over the SO(10)-vector real spin fields with unit length, Ea(x) and Ēa(x), are introduced:

D[E] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dEa(x)�(
q

Eb(x)Eb(x)� 1) (3.11)

D[Ē] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dĒa(x)�(
q

Ēb(x)Ēb(x)� 1). (3.12)

7This point is crucial for our proposal and will be discussed later in relation to other formulations.
8One possible choice for F (w) is simply F (w) = ew =

P1
k=0

w

k

k!
. It also has the integral representation,

F (w)
���
w=(1/2)ua

u

a
= (2⇡)�5

Z 10Y

a=1

dx

a e�(1/2)xc
x

c+x

c
u

c

(3.8)

In this case, however, we do not succeed yet in proving the CP invariance of the effective action of the
lattice model.
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Ēb(x)Ēb(x)� 1). (3.12)

7This point is crucial for our proposal and will be discussed later in relation to other formulations.
8One possible choice for F (w) is simply F (w) = ew =

P1
k=0

w

k

k!
. It also has the integral representation,

F (w)
���
w=(1/2)ua

u

a
= (2⇡)�5

Z 10Y

a=1

dx

a e�(1/2)xc
x

c+x

c
u

c

(3.8)

In this case, however, we do not succeed yet in proving the CP invariance of the effective action of the
lattice model.

– 8 –

YK  (2017) 

2.3 Topology of the SO(10) lattice gauge fields

The admissibility condition ensures that the overlap Dirac operator[23, 25] is a smooth and
local function of the gauge field [27]. Moreover, the Ginsparg-Wilson relation implies the
index theorem

IndexD = Tr�5(1�D). (2.21)

Then, through the lattice Dirac operator D, it is possible to define a topological charge of
the gauge fields [24, 29, 30, 32, 50]: for the admissible SO(10) gauge fields, one has

Q = �1

8
Tr�5(1�D) = �1

8

X

x2�
tr {�5(1�D)} (x, x), (2.22)

where D(x, y) is the kernel of the lattice Dirac operator D. (Our convention for the gamma
matrices is such that �0�1�2�3�5 = 1.) Then the admissible SO(10) gauge fields can be
classified by the topological numbers Q.6 We denote the space of the admissible SO(10)
gauge fields with a given topological charge Q by U[Q].

3 Path Integration – a proposal for the gauge-invariant measure

3.1 Definition of the path integration measures

The path-integral measures for the link field and the Weyl field are formulated as follows.
For the link field U(x, µ), it is defined with the group-invariant Haar measure as usual:

D[U ] ⌘
Y

x2⇤

3
Y

µ=0

dU(x, µ). (3.1)

For the Weyl field  �(x),  ̄�(x), it is defined by using the whole components of the original
Dirac field  

↵s

(x)(↵ = 1, · · · , 4; s = 1, · · · , 16) not as usual, but the right-handed part of
the measure is just saturated completely by inserting a suitable product of the ’t Hooft
vertexes in terms of the right-handed fields,

T+(x) =
1

2
V a

+(x)V
a

+(x), V a

+(x) =  +(x)
Ti�5CD

Ta +(x), (3.2)

T̄+(x) =
1

2
V̄ a

+(x)V̄
a

+(x), V̄ a

+(x) =  ̄+(x)i�5CD

Ta ̄+(x)
T. (3.3)

Namely, the Weyl field measure is defined as

D[ �]D[ ̄�] ⌘ D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)), (3.4)

where

D[ ]D[ ̄] ⌘
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d 
↵s

(x)
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ̄
↵s

(x), (3.5)

6 Strictly speaking, the complete topological classification of the space of admissible SO(10) gauge fields
is not known yet. We assume that it is classified with Q as in the continuum theory.
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We also introduce the overlap Dirac operator D acting on  (x) as

D =
1

2

⇣

1 +X/
p
X†X

⌘

, X = �µ
1

2

�

rµ �r†
µ

�

+
1

2
rµr†

µ �m0, (2.9)

where rµ is the covariant difference operator which acts on  (x) as rµ (x) = U(x, µ) (x+

µ̂)� (x) and 0 < m0 < 2. Under the admissibility condition, D is a local, gauge-covariant
lattice Dirac operator. It also satisfies the Ginsparg-Wilson relation,

�5D +D�̂5 = 0, (2.10)

where
�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:

 �(x) = P̂� (x),  ̄�(x) =  ̄(x)P+, (2.12)

where P̂± and P± are the chiral projection operators given by

P̂± =

✓

1± �̂5
2

◆

, P± =

✓

1± �5
2

◆

. (2.13)

We note that
⇥

P̂±,P±
⇤

= 0 and
⇥

P±,P±
⇤

= 0.
The action of the left-handed Weyl field in the 16-dimensional spinor representation of

SO(10) is given by

SW[ �,  ̄�] =
X

x2⇤
 ̄�(x)D �(x) =

X

x2⇤
 ̄(x)P+D (x). (2.14)

This action is manifestly invariant under the SO(10) lattice gauge transformations. It is
also invariant under the global U(1) transformation of the left-handed fields,

�↵ �(x) = i↵ �(x)
⇥

or � (x) = i↵ P̂� (x)
⇤

, (2.15)
�↵ ̄�(x) = �i↵  ̄�(x)

⇥

or � ̄(x) = �i↵  ̄(x)P+

⇤

. (2.16)

This global U(1) symmetry is, as we will see below, broken due to the non-trivial trans-
formation property of the Weyl field path-integral measure and the non-vanishing vacuum
expectation values of ’t Hooft vertices,

T�(x) =
1

2
V a
�(x)V

a
�(x), V a

�(x) =  �(x)
Ti�5CDT

a �(x), (2.17)

T̄�(x) =
1

2
V̄ a
�(x)V̄

a
�(x), V̄ a

�(x) =  ̄�(x)i�5CDT
a† ̄�(x)

T, (2.18)

in the topologically nontrivial sectors of the gauge field. Here Ta (a = 1, 2, · · · , 10) are the
operators acting on the SO(10) spinor space, Ta = C�a. The explicit representations of C
and {Ta|a = 1, · · · , 10} are given in the appendix B. The action also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
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Ta = C�a ; TaT = Ta (B.16)

T1 = i(�i)(+i)(�i)(+i)(�i) ⌧3 ⇥ ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T2 = i(+1)(+i)(�i)(+i)(�i) I ⇥ ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T3 = i(+i)(+i)(�i)(+i)(�i) ⌧1 ⇥ ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T4 = i(+1)(�i)(�i)(+i)(�i) ⌧2 ⇥ ⌧1 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T5 = i(+1)(+1)(�i)(+i)(�i) ⌧2 ⇥ I ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T6 = i(+1)(+1)(+1)(+i)(�i) ⌧2 ⇥ ⌧3 ⇥ I ⇥ ⌧2 ⇥ ⌧3,

T7 = i(+1)(+1)(+i)(+i)(�i) ⌧2 ⇥ ⌧3 ⇥ ⌧1 ⇥ ⌧2 ⇥ ⌧3,

T8 = i(+1)(+1)(+1)(�i)(�i) ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧1 ⇥ ⌧3,

T9 = i(+1)(+1)(+1)(+1)(�i) ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ I ⇥ ⌧3,

T10 = i(+1)(+1)(+1)(+1)(+1) ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3 ⇥ I

The reduced Clliford algebra of 2[9/2]

�a0 = �̌a0 ⇥ ⌧1 (a0 = 1, · · · , 9), (B.17)
C = Č⇥ ⌧2. (B.18)

The reduced T matrices

Ta0 = Ťa0 ⇥ ⌧3, (B.19)
T10 = Ť10 ⇥ I = Č⇥ I. (B.20)

T10†Ta0 = �10�a0 = �i �̌a0 ⇥ ⌧3. (B.21)

C Chiral basis in the weak coupling limit

H = �5(Dw �m0) =
1

L4

X

p

eip(x�y)

 

b(p)I c(p)

c†(p) �b(p)I

!

, (C.1)

where

b(p) =
�

X

µ

(1� cos pµ)�m0

 

, (C.2)

c(p) = I{i sin p0}�
X

k

�k sin pk. (C.3)
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3 Path Integration – a proposal for the gauge-invariant measure

3.1 Definition of the path integration measures

The path-integral measures for the link field and the Weyl field are formulated as follows.
For the link field U(x, µ), it is defined with the group-invariant Haar measure as usual:

D[U ] ⌘
Y

x2⇤

3
Y

µ=0

dU(x, µ). (3.1)

For the Weyl field  �(x),  ̄�(x), it is defined by using all the components of the original
Dirac field  ↵s(x)(↵ = 1, · · · , 4; s = 1, · · · , 16) not as usual, but the right-handed part of
the measure is just saturated completely by inserting a suitable product of the ’t Hooft
vertexes in terms of the right-handed fields,

T+(x) =
1

2
V a
+(x)V

a
+(x), V a

+(x) =
1

2
 +(x)

Ti�5CDT
a +(x), (3.2)

T̄+(x) =
1

2
V̄ a
+(x)V̄

a
+(x), V̄ a

+(x) =
1

2
 ̄+(x)i�5CDT

a ̄+(x)
T. (3.3)

Namely, the Weyl field measure is defined as

D[ �]D[ ̄�] ⌘ D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)), (3.4)

where

D[ ]D[ ̄] ⌘
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ↵s(x)
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ̄↵s(x), (3.5)

and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T

+ i�5CDT
aEa(x)P̂+, not P̂ T

+{i�5CDP+T
aEa(x)}P̂+, appears for the field  +(x),

while P�i�5CDT
aĒa(x)P�

T = P�{i�5CDP�
TTaĒa(x)}P�

T for the anti-field  ̄+(x).8 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w
= 4!

1
X

k=0

wk

k!(k + 4)!
, (3.6)

8This point is crucial for our proposal. If one includes the factor P+ in the definition of the ’t Hooft
operator for the field  +(x), one has P̂

T

+ i�5CD

P+T
a

E

a(x)P̂+ = (1�D)T i�5CD

P+T
a

E

a(x)(1 � D). The
factor (1�D) projects out the modes with the momenta ⇡(A)

µ

(A = 1, · · · , 15), where ⇡(1) ⌘ (⇡, 0, 0, 0),⇡(2) ⌘
(0,⇡, 0, 0), · · · ,⇡(15) ⌘ (⇡,⇡,⇡,⇡). This type of the operator cannot saturate the right-handed part of the
measure completely. Therefore it is not acceptable for our purpose. This point will be discussed later in
relation to other formulations. See section 6.
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cf.

ψ+(x) = P̂+ψ(x) ψ̄(x)+ = ψ̄(x)P−

ū v̄ u v 8Q

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†
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and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T

+ i�5CD

T aEa(x)P̂+, not P̂ T

+{i�5C
d

P+T aEa(x)}P̂+, appears for the field  +(x),
while P�i�5CD

T aĒa(x)P�
T = P�{i�5CD

P�
TT aĒa(x)}P�

T for the anti-field  ̄+(x).7 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w

= 4!
1
X

k=0

wk

k!(k + 4)!
, (3.6)

where I
⌫

(w) is the modified Bessel function of the first kind. It has the integral represen-
tation as

F (w)
�

�

�

w=(1/2)ua

u

a

= (⇡5/12)�1

Z 10
Y

a=1

dea�(
p
ebeb � 1) ee

c

u

c

(3.7)

and allows us to prove the CP invariance of the effective action of the lattice model, as
discussed bellow.8

The partition function of our lattice model for the SO(10) chiral Gauge theory is then
given as follows,

Z ⌘
Z

D[U ] e�S

G

[U ]+�
W

[U ], (3.9)

where �
W

[U ] is the effective action induced by the path-integration of the Weyl field,

e�W

[U ] ⌘
Z

D[ �]D[ ̄�] e
�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)) e

�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]D[E]D[Ē] e�S

W

[ �, ̄�]+
P

x2⇤{Ea(x)V a

+(x)+Ē

a(x)V̄ a

+(x)}[ +, ̄+].

(3.10)

In the last equation, the integral representation of F (w) is used and the path-integrations
over the SO(10)-vector real spin fields with unit length, Ea(x) and Ēa(x), are introduced:

D[E] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dEa(x)�(
q

Eb(x)Eb(x)� 1) (3.11)

D[Ē] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dĒa(x)�(
q

Ēb(x)Ēb(x)� 1). (3.12)

7This point is crucial for our proposal and will be discussed later in relation to other formulations.
8One possible choice for F (w) is simply F (w) = ew =

P1
k=0

w

k

k!
. It also has the integral representation,

F (w)
���
w=(1/2)ua

u

a
= (2⇡)�5

Z 10Y

a=1

dx

a e�(1/2)xc
x

c+x

c
u

c

(3.8)

In this case, however, we do not succeed yet in proving the CP invariance of the effective action of the
lattice model.
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T aĒa(x)P�
T = P�{i�5CD

P�
TT aĒa(x)}P�

T for the anti-field  ̄+(x).7 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w

= 4!
1
X

k=0

wk

k!(k + 4)!
, (3.6)

where I
⌫

(w) is the modified Bessel function of the first kind. It has the integral represen-
tation as

F (w)
�

�

�

w=(1/2)ua

u

a

= (⇡5/12)�1

Z 10
Y

a=1

dea�(
p
ebeb � 1) ee

c

u

c

(3.7)

and allows us to prove the CP invariance of the effective action of the lattice model, as
discussed bellow.8

The partition function of our lattice model for the SO(10) chiral Gauge theory is then
given as follows,

Z ⌘
Z

D[U ] e�S

G

[U ]+�
W

[U ], (3.9)

where �
W

[U ] is the effective action induced by the path-integration of the Weyl field,

e�W

[U ] ⌘
Z

D[ �]D[ ̄�] e
�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)) e

�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]D[E]D[Ē] e�S
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with a local parameter ↵(x), and it gives rise to the non-trivial chiral anomaly in the U(1)
Ward-Takahashi relation. One may consider the similar global U(1) fermion symmetry of
the right-handed field  +(x),  ̄+(x), but it is broken explicitly by the ’t Hooft vertexes,
T+(x) and T̄+(x), down to Z4 ⇥ Z4, one Z4 for the field  +(x) and the other Z4 for the
anti-field  ̄+(x). The reason for the two independent Z4 is that the bilinear kinetic term of
the right-handed field,

P

x2⇤  ̄+(x)D +(x), is not introduced here. Conversely, this Z4 ⇥
Z4 symmetry prohibits such bilinear terms of the right-handed field to appear, as long as
it is not broken spontaneously.

3.2 Chiral determinant and ’t Hooft-vertex pfaffians

The path-integral weight for the effective action defined by eq. (3.10) consists of SW [ �,  ̄�],
the action of the left-handed fields, and

P

x2⇤{Ea(x)V a
+(x) + Ēa(x)V̄ a

+(x)}[ +,  ̄+], the ’t
Hooft vertex terms of the right-handed fields. These two terms can be written in terms of
the Dirac fields  (x),  ̄(x), as follows:

SW [ �,  ̄�]�
X

x2⇤
{Ea(x)V a

+(x) + Ēa(x)V̄ a
+(x)}[ +,  ̄+]

=
1

2

X

x2⇤

⇣

 T  ̄
⌘

(x)

 

�P̂ T
+ i�5CDT

aEaP̂+ �P̂ T
�DTP T

+

P+DP̂� �P�i�5CDT
a†ĒaP T

�

! 

 

 ̄T

!

(x).

(3.14)

Then the path-integration of the fermion fields with the Dirac field measure D[ ]D[ ̄] gives
rise to the pfaffian of the above gauge-covariant anti-symmetric operator,

pf

 

�P̂ T
+ i�5CDT

aEaP̂+ �P̂ T
�DTP T

+

P+DP̂� �P�i�5CDT
a†ĒaP T

�

!

. (3.15)

This pfaffian factorises into the chiral determinant of the left-handed fields and the ’t
Hooft-vertex pfaffians of the right-handed fields in the chiral bases for the field  (x) and
the anti-field  ̄(x) where �̂5 and �5 are diagonalized, respectively. One can introduce the
four-spinor vectors of the chiral bases as

P+ ⌦ P̂+ui(x) = ui(x) (i = 1, · · · , n/2� 8Q); (ui, uj) = �ij , (3.16)
P+ ⌦ P̂�vi(x) = vi(x) (i = 1, · · · , n/2 + 8Q); (vi, vj) = �ij , (3.17)

ūk(x)P� ⌦ P+ = ūk(x) (k = 1, · · · , n/2); (ūk, ūl) = �kl, (3.18)
v̄k(x)P+ ⌦ P+ = v̄k(x) (k = 1, · · · , n/2); (v̄k, v̄l) = �kl (3.19)

in the given topological sector U[Q], where n = dim⇤⇥4⇥16. The basis vectors ui(x) and
vi(x) depend on the gauge field through the chiral projectors P̂±, while the basis vectors
ūk(x) and v̄k(x) can be chosen so that they are independent of the gauge field. For example,
ūk(x)↵s = �xx0�↵,�+2�st for k = {x0 2 ⇤;� = 1, 2; t = 1, · · · , 16} and v̄k(x)↵s = �xx0�↵��st
for k = {x0 2 ⇤;� = 1, 2; t = 1, · · · , 16}, assuming �5 = diag(1, 1,�1,�1). One can always
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choose the bases of the Dirac fields, {uj(x), vj(x)}, and {ūk(x), v̄k(x)}, so that the jacobian
factors, det(uj(x), vj(x)), and det(ūj(x), v̄j(x)), are unity independent of the gauge field.
In this choice of the chiral bases, the pfaffian can be evaluated as

pf

 

�P̂ T
+ i�5CDT

aEaP̂+ �P̂ T
�DTP T

+

P+DP̂� �P�i�5CDT
a†ĒaP T

�

!

= pf

0

B

B

B

@

�(uT i�5CDT
aEau) 0 0 0

0 0 0 �(vTDT v̄T )

0 0 �(ū i�5CDT
a†ĒaūT ) 0

0 (v̄Dv) 0 0

1

C

C

C

A

(3.20)

= det(v̄Dv)⇥ pf(uT i�5CDT
aEau)⇥ pf(ū i�5CDT

a†ĒaūT ), (3.21)

where the matrices (v̄Dv), (uT i�5CDT
aEau) and (ū i�5CDT

a†ĒaūT) are given by

(v̄Dv)ki ⌘
X

x2⇤
v̄k(x)Dvi(x) (k = 1, · · · , n/2; i = 1, · · · , n/2 + 8Q),

(3.22)
�

uTi�5CDT
aEau

�

ij
⌘
X

x2⇤
ui(x)

Ti�5CDT
aEa(x)uj(x)

(i, j = 1, · · · , n/2� 8Q), (3.23)

�

ūi�5CDT
a†ĒaūT

�

kl
⌘
X

x2⇤
ūk(x)i�5CDT

a†Ēa(x)ūl(x)
T

(k, l = 1, · · · , n/2), (3.24)

and (uT i�5CDT
aEau) and (ū i�5CDT

a†ĒaūT) are anti-symmetric complex matrices.
Therefore, the effective action eq. (3.10) is now given by

e�W

[U ] = det(v̄Dv) ⇥
Z

D[Ē] pf(uT i�5CDT
aEau)

Z

D[Ē] pf(ū i�5CDT
a†ĒaūT ).

(3.25)

Thus the effective action �W [U ], with our definition of the Weyl field measure eq. (3.4), has
the extra factor of logarithm of the pfaffians, pf(uT i�5CDT

aEau) and pf
�

ū i�5CDT
a†ĒaūT

�

,
integrated over the auxiliary spin fields in addition to the usual effective action given by
the logarithm of the chiral determinant, ln det(v̄Dv) [30–32] [76, 77].

The first factor in the r.h.s. of eq. (3.25) is nothing but the chiral determinant in
the overlap formalism.[30–32] In the weak gauge-coupling limit, the matrix (v̄Dv) shows
the massless singularity associated with the free left-handed Weyl field. With the periodic
boundary condition, in particular, (v̄Dv) is not invertible because there appear the zero
modes in the eigenvalues of D, which have zero index n+�n� = 0. In the topologically non-
trivial sectors, the matrix (v̄kDvi) is not a square matrix and det(v̄Dv) vanishes identically.
This is due to the appearance of the chiral zero modes with a non-trivial index n+ � n� =

�8Q 6= 0. These zeromodes, saturated by the insetion of the ’t Hooft vertices in terms
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Defined with all components of the Dirac field  (x),  ̄(x), the Weyl field measure is
manifestly invariant under the SO(10) gauge transformation. It also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
charge conjugation. As to the global U(1) fermion symmetry of the left-handed field  �(x),
 ̄�(x), the fermionic measure transforms as

�
↵

D[ �]D[ ̄�] = �i
X

x2�
↵(x)tr{P̂� � P+}(x, x)⇥D[ �]D[ ̄�] (3.13)

with a local parameter ↵(x), and it gives rise to the non-trivial chiral anomaly in the U(1)
Ward-Takahashi relation. One may consider the similar global U(1) fermion symmetry of
the right-handed field  +(x),  ̄+(x), but it is broken explicitly by the ’t Hooft vertexes,
T+(x) and T̄+(x), down to Z4 ⇥ Z4, one Z4 for the field  +(x) and the other Z4 for the
anti-field  ̄+(x). The reason for the two independent Z4 is that the bilinear kinetic term of
the right-handed field,

P

x2⇤  ̄+(x)D +(x), is not introduced here. Conversely, this Z4 ⇥
Z4 symmetry prohibits such bilinear terms of the right-handed field to appear, as long as
it is not broken spontaneously.

3.2 The Weyl field measure in terms of chiral basis

In the definition of the Weyl field measure, eqs. (3.4) and (3.5), the part of the Dirac
field measure, D[ ]D[ ̄], may be formulated in chiral components by using the chiral bases
defined with the chiral projectors P̂± and P±. In the given topological sector U[Q], it reads

D
?

[ �]D?

[ ̄�]D?

[ +]D?

[ ̄+] =

n/2+8Q
Y

j=1

dc
j

n/2
Y

k=1

dc̄
k

n/2�8Q
Y

j=1

db
j

n/2
Y

k=1

db̄
k

, (3.14)

where n = dim⇤ ⇥ 4 ⇥ 16 and {c
j

, c̄
k

} and {b
j

, b̄
k

} are the Grassmann coefficients in the
expansion of the chiral component fields,

 �(x) =
X

j

v
j

(x)c
j

,  ̄�(x) =
X

k

c̄
k

v̄
k

(x), (3.15)

 +(x) =
X

j

u
j

(x)b
j

,  ̄+(x) =
X

k

b̄
k

ū
k

(x), (3.16)

in terms of the chiral orthonormal bases defined by

P+ ⌦ P̂�vi(x) = v
i

(x) (i = 1, · · · , n/2 + 8Q); (v
i

, v
j

) = �
ij

, (3.17)
v̄
k

(x)P+ ⌦ P+ = v̄
k

(x) (k = 1, · · · , n/2); (v̄
k

, v̄
l

) = �
kl

. (3.18)

P+ ⌦ P̂+ui(x) = u
i

(x) (i = 1, · · · , n/2� 8Q); (u
i

, u
j

) = �
ij

, (3.19)
ū
k

(x)P� ⌦ P+ = ū
k

(x) (k = 1, · · · , n/2); (ū
k

, ū
l

) = �
kl

. (3.20)

The basis vectors u
i

(x) and v
i

(x) depend on the gauge field through the chiral projectors
P̂±, while the basis vectors ū

k

(x) and v̄
k

(x) can be chosen so that they are independent
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of the gauge field. For example, ū
k

(x)
↵s

= �
xx

0�
↵,�+2�st for k = {x0 2 ⇤;� = 1, 2; t =

1, · · · , 16} and v̄
k

(x)
↵s

= �
xx

0�
↵�

�
st

for k = {x0 2 ⇤;� = 1, 2; t = 1, · · · , 16}, assuming
�5 = diag(1, 1,�1,�1). Since the original measure D[ ]D[ ̄] does not depend on the gauge
field, it follows that one can always choose the basis of the Dirac field, {u

j

(x), v
j

(x)}, so that
the jacobian factor, det(u

j

(x), v
j

(x)), is independent of the gauge field. For the infinitesimal
variation of the link field �

⌘

U(x, µ) = i⌘
µ

(x)U(x, µ), this condition is given by
X

j

(u
j

, �
⌘

u
j

) +
X

j

(v
j

, �
⌘

v
j

) = 0. (3.21)

Adjusting the overall constant phase factors of the Jacobian as det(u
j

(x), v
j

(x)) = 1, one
obtains

D
?

[ �]D?

[ ̄�]D?

[ +]D?

[ ̄+] = D[ ]D[ ̄]. (3.22)

Using this chiral decomposition of D[ ]D[ ̄] and the integral representation of F (w),
the Weyl field measure eq. (3.4) now reads

D[ �]D[ ̄�] = D
?

[ �]D?

[ ̄�] ⇥

D
?

[ +]D?

[ ̄+]

Z

D[E]D[Ē] e
P

x2⇤{Ea(x)V a

+(x)+Ē

a(x)V̄ a

+(x)}[ +, ̄+].

(3.23)

Then the path-integration over the right-handed fields  +,  ̄+ can be performed explicitly
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ūi�5CD

Ta

†ĒaūT
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We note that the first matrix eq. (3.25) changes its size as n/2 � 8Q depending on the
topological charge Q, but remains to be a square matrix, while the second one eq. (3.26) is
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⌫
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(3.7)

and allows us to prove the CP invariance of the effective action of the lattice model, as
discussed bellow.8
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7This point is crucial for our proposal and will be discussed later in relation to other formulations.
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P1
k=0

w

k
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. It also has the integral representation,

F (w)
���
w=(1/2)ua

u
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Z 10Y
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x

c+x

c
u

c

(3.8)

In this case, however, we do not succeed yet in proving the CP invariance of the effective action of the
lattice model.
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Chiral determinant and ’t Hooft vertex pfaffians

choose the bases of the Dirac fields, {uj(x), vj(x)}, and {ūk(x), v̄k(x)}, so that the jacobian
factors, det(uj(x), vj(x)), and det(ūj(x), v̄j(x)), are unity independent of the gauge field.
In this choice of the chiral bases, the pfaffian can be evaluated as

pf
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aEaP̂+ �P̂ T
�DTP T

+
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a†ĒaūT) are given by

(v̄Dv)ki ⌘
X

x2⇤
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Z
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Thus the effective action �W [U ], with our definition of the Weyl field measure eq. (3.4), has
the extra factor of logarithm of the pfaffians, pf(uT i�5CDT

aEau) and pf
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ū i�5CDT
a†ĒaūT

�

,
integrated over the auxiliary spin fields in addition to the usual effective action given by
the logarithm of the chiral determinant, ln det(v̄Dv) [30–32] [76, 77].

The first factor in the r.h.s. of eq. (3.25) is nothing but the chiral determinant in
the overlap formalism.[30–32] In the weak gauge-coupling limit, the matrix (v̄Dv) shows
the massless singularity associated with the free left-handed Weyl field. With the periodic
boundary condition, in particular, (v̄Dv) is not invertible because there appear the zero
modes in the eigenvalues of D, which have zero index n+�n� = 0. In the topologically non-
trivial sectors, the matrix (v̄kDvi) is not a square matrix and det(v̄Dv) vanishes identically.
This is due to the appearance of the chiral zero modes with a non-trivial index n+ � n� =

�8Q 6= 0. These zeromodes, saturated by the insetion of the ’t Hooft vertices in terms
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D[Ē] pf(uT i�5CDT
aEau)

Z
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a†ĒaūT ).

(3.25)

Thus the effective action �W [U ], with our definition of the Weyl field measure eq. (3.4), has
the extra factor of logarithm of the pfaffians, pf(uT i�5CDT

aEau) and pf
�
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a†ĒaūT ) 0

0 (v̄Dv) 0 0

1

C

C

C

A

(3.20)

= det(v̄Dv)⇥ pf(uT i�5CDT
aEau)⇥ pf(ū i�5CDT
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ūi�5CDT
a†ĒaūT
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ū v̄ u v

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

Ea(x)Ea(x) = 1

Khop = 0

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

− λ

24

[
ψ+(x)

T iγ5CDT
aψ+(x)

]2 − λ

24

[
ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]2 }

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(z−P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

−λ
[
ψ+(x)

T iγ5CDT
aψ+(x) + ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]
Ea(x)

}

1
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—> Right-handed parts : non-vanishing in all topological sec.
       “Saturation of the right-handed part of fermion measure” 

Narayanan-Neuberger(1997) 

Luscher (1999) 

3.6 Gauge field dependence of the Weyl field measure – Locality issue remain-
ing

The variation of the effective action �
W

[U ] w.r.t. the link field can be derived from the
path-integral definition eq. (3.10) as follows.

�
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�
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(3.70)

The first term can be rewritten further using the result of the two-point correlation function
of the left-handed fields eq. (3.67) as

Tr
�

P+�⌘D
⌦

 � ̄�
↵

F
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1
↵

F

= Tr{P+�⌘DD�1}. (3.71)

It is identified as the physical contribution of the left-handed Weyl fermions. The second
term, on the other hand, represents the gauge field dependence of the Weyl field measure
eq. (3.4) through the right-handed ’t Hooft vertices. It replaces the measure term �iL

⌘

=
P

j

(v
j

, �
⌘

v
j

)[56, 57]. So we denote this term with �iT
⌘

,
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⌘ �2Tr
�

�
⌘

P̂+

⌦

 +

⇥

 T
+i�5CD

TaEa

⇤↵

F

 �⌦

1
↵

F

. (3.72)

Then the variation of the effective action is written as

�
⌘

�
W

[U ] = Tr{P+�⌘DD�1}� iT
⌘

. (3.73)

For the gauge transformation, �
⌘

U(x, µ) = i{!(x)U(x, µ) � U(x, µ)!(x + µ̂)} and
⌘
µ

(x) = !(x) � U(x, µ)!(x + µ̂)U(x, µ)�1 = �D
µ

!(x), the first term gives the gauge
anomaly term,

Tr{P+�⌘DD�1}
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µ

!

= �iTr{!�5D}, (3.74)

where, in the weak gauge-coupling expansion, the leading non-trivial term is vanishing
because of the anomaly cancellation condition for the 16-dimensional (irreducible) spinor
representation of SO(10), Tr

�

P+⌃
a1b1 [⌃a2b2⌃a3b3+⌃

a3b3⌃a2b2 ]
 

= 0. The second term gives
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where the Schwinger-Dyson equations eqs. (3.66) and (3.68) are used at the last equality.
Thus we can check that the effective action is gauge-invariant.

The measure term �iT
⌘

is required to be a smooth and local function of the link field
variables, since it appears as an operator of the link field in the Schwinger-Dyson equation
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of the gauge field. For example, ū
k

(x)
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= �
xx

0�
↵,�+2�st for k = {x0 2 ⇤;� = 1, 2; t =

1, · · · , 16} and v̄
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= �
xx

0�
↵�

�
st

for k = {x0 2 ⇤;� = 1, 2; t = 1, · · · , 16}, assuming
�5 = diag(1, 1,�1,�1). Since the original measure D[ ]D[ ̄] does not depend on the gauge
field, it follows that one can always choose the basis of the Dirac field, {u

j

(x), v
j

(x)}, so that
the jacobian factor, det(u

j

(x), v
j

(x)), is independent of the gauge field. For the infinitesimal
variation of the link field �
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X

j

(u
j

, �
⌘

u
j

) +
X

j

(v
j

, �
⌘

v
j

) = 0. (3.21)

Adjusting the overall constant phase factors of the Jacobian as det(u
j

(x), v
j

(x)) = 1, one
obtains

D
?

[ �]D?

[ ̄�]D?

[ +]D?

[ ̄+] = D[ ]D[ ̄]. (3.22)

Using this chiral decomposition of D[ ]D[ ̄] and the integral representation of F (w),
the Weyl field measure eq. (3.4) now reads

D[ �]D[ ̄�] = D
?

[ �]D?

[ ̄�] ⇥

D
?

[ +]D?

[ ̄+]

Z

D[E]D[Ē] e
P

x2⇤{Ea(x)V a

+(x)+Ē

a(x)V̄ a

+(x)}[ +, ̄+].

(3.23)

Then the path-integration over the right-handed fields  +,  ̄+ can be performed explicitly
as

D[ �]D[ ̄�] = D
?

[ �]D?

[ ̄�] ⇥
Z

D[E] pf
�

uT i�5CD

TaEau
�

Z

D[Ē] pf
�

ū i�5CD

Ta

†ĒaūT
�

,

(3.24)

where (uT i�5CD

TaEau) and (ū i�5CD

Ta

†ĒaūT) are the anti-symmetric complex matrices
given by

�

uTi�5CD

TaEau
�

ij

⌘
X

x2⇤
u
i

(x)Ti�5CD

TaEa(x)u
j

(x)

(i, j = 1, · · · , n/2� 8Q), (3.25)

�

ūi�5CD

Ta

†ĒaūT
�

kl

⌘
X

x2⇤
ū
k

(x)i�5CD

Ta

†Ēa(x)ū
l

(x)T

(k, l = 1, · · · , n/2), (3.26)

and the symbol pf stands for the pfaffians of these anti-symmetric matrices.

3.3 Saturation of the right-handed part of the fermion measure by ’t Hooft
vertices

We note that the first matrix eq. (3.25) changes its size as n/2 � 8Q depending on the
topological charge Q, but remains to be a square matrix, while the second one eq. (3.26) is

– 10 –



Locality issue ?     the right-handed sector is a gapped system !
• Schwinger-Dyson eq. for link field:  local operator insertions!

• Fermion two-point correlation functions: short-range in the right-handed sector!

• SO(10)-vector spin field dynamics:  disordered!  (in a saddle point analysis)

• Link-field dependence of Effective action: should be local in the right-handed sector
 

3.5 Schwinger-Dyson equations and Correlation functions

The Schwinger-Dyson equations for the link field and the Weyl field can be derived from
the path-integral definition of the partition function, eqs. (3.9) and (3.10). With respect
to the local variation of the link field, �

⌘

U(x, µ) = i⌘
µ

(x)U(x, µ), the simplest non-trivial
example is given by

*

h

� �
⌘

S
G

[U ]�
X

x2⇤
 ̄(x)P+�⌘D (x) + 2

X

x2⇤
 TP̂ T

+ i�5CD

TaEa�
⌘

P̂+ (x)
i

+

= 0,

(3.63)

The operators in the bracket [· · · ] in the l.h.s. are all the local operators with respect to
the variation point x and therefore the equation of motion is local. We note that the third
term comes from the link field dependence of the Weyl field measure. With respect to the
local variations of the fermion fields � (x), � ̄(x) and of the spin field �Ea(x), one can
derive the following non-trivial examples.

D

 (y)
h

 ̄P+D(x)� 2 TP̂ T

+ i�5CD

TaEaP̂+(x)
i E

F

= �
xy

⌦

1
↵

F

, (3.64)
Dh

P+D (x)� 2P�i�5CD

Ta

†ĒaP�
T  ̄T(x)

i

 ̄(y)
E

F

= �
xy

⌦

1
↵

F

, (3.65)
D

 TP̂ T

+ i�5CD

C[⌃
bc

,�a]Ea(x)P̂+ 
E

F

= 0. (3.66)

The first two equations can be decomposed into the chiral components by noting P+D =

DP̂� and �
xy

= (P+ + P�)�xy = P̂+(x, y) + P̂�(x, y). We finally obtain

⌦

 �(x)  ̄�(y)
↵

F

= P̂�D
�1P+(x, y)

⌦

1
↵

F

, (3.67)
D

 +(y)
h

 T
+i�5CD

TaEaP̂+(x)
i E

F

= �1

2
P̂+(y, x)

⌦

1
↵

F

, (3.68)
Dh

P�i�5CD

Ta

†Ēa ̄T
+(x)

i

 ̄+(y)
E

F

= �1

2
P��xy

⌦

1
↵

F

, (3.69)

assuming that D is invertible.

As long as
⌦

1
↵

F

is finite and well-defined, these results imply the following facts
about the particle spectrum in the channel of the 16 representation of SO(10) symme-
try: the left-handed fields  �(x),  ̄�(x) support the massless Weyl fermions and have
long-range correlations, while the right-handed fields  +(x),  ̄+(x) are decoupled each
other and have short-range correlations of order the several lattice spacings with the com-
posite operators

⇥

 T
+i�5CD

TaEaP̂+(x)
⇤

and
⇥

P�i�5CD

Ta

†Ēa ̄T
+(x)

⇤

, respectively. As to
the right-handed field  +(x), however, the information of yet another correlation function
⌦

 +(y)
⇥

 T
+i�5CD

TaEaP̂�(x)
⇤ ↵

F

is also required before deducing a definite conclusion.
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Figure 6. The eigenvalue spectra of
�

u†�10�aEau
�

in the limit m0 ! ⌥0 with a randomly
generated spin configuration for the trivial link field. The interpolation parameter ✓↵ is chosen as
✓↵ = 0, 3⇡/12, 4⇡/12, 5⇡/12,⇡/2 for the top-left, bottom-left, bottom-middle, bottom-right, top-
right figures, respectively. The lattice size is L = 4 and the boundary condition for the fermion
field is periodic.

functions,
⌦

1
↵

E
=

Z

D[E] pf
�

uT i�5CDT
aEau

�

, (4.28)

⌦

1
↵

Ē
=

Z

D[Ē] pf
�

ū i�5CDT
a†ĒaūT

�

. (4.29)

It is important and useful to understand the dynamical nature of the path-integrations in
these spin models.

The second model for Ēa(x) is trivial. This is because the pfaffian weight is unity,
pf
�

ū i�5CDT
a†ĒaūT

�

= 1. Then the two-point correlation function is given by
⌦

Ēa(x)Ēb(y)
↵

Ē
=

1

10
�xy�

ab
⌦

1
↵

Ē
(
⌦

1
↵

Ē
= 1) (4.30)

and the spin field is completely disordered.
The first model for Ea(x) is quite non-trivial. The pfaffian weight is the rather com-

plicated (non-local) function of the spin field variables, which can be chosen to be real
and positive semi-definite for the background link fields in the SO(9) subgroup, as we have
argued, but is complex in general. The mass parameter m0 is the only parameter to con-
trol the strength of the coupling of the spin field.12 One may regard the number of the

12The kinetic term for the spin field E

a(x) such as �K

P
x,µ

E

a(x)Ea(x+µ̂) can be added for the analysis.
We omit this term for simplicity.
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Figure 7. The eigenvalue spectra of
�

u†�10�aEau
�

in the limit m0 ! ⌥0 with a spin field
configuration in the class Ea

⇤ (x) for the trivial link field. The interpolation parameter ✓↵ is chosen
as ✓↵ = 0, 3⇡/12, 4⇡/12, 5⇡/12,⇡/2 for the top-left, bottom-left, bottom-middle, bottom-right, top-
right figures, respectively. The lattice size is L = 4 and the boundary condition for the fermion
field is periodic.

spin components N(= 10) as another parameter and consider the large N method. In
order to get insights into the dynamical nature of this spin model, one needs to apply the
methods such as Monte Carlo simulations and the saddle point analysis in the large N

expansion.[247, 248]
In the following, we apply the saddle point analysis in the spirit of the large N expansion

to the model with the trivial link field background (in the weak gauge-coupling limit). For
this purpose, we introduce the unconstraint (linearized) field Xa(x) and the Lagrange-
multiplier field �(x) to impose the constraint Xa(x)Xa(x) = 1, and rewrite the original
path integration eq. (4.28) as follows,

⌦

1
↵

E
=

Z

D[X]D[�] pf
�

uT i�5CDT
aXau

�

ei
P

x

�(x)(Xa(x)Xa(x)�1). (4.31)

Then the field variables are decomposed into the modes with zero-momentum and other
modes of fluctuation as

Xa(x) = Xa
0 + X̃a(x),

X

x

X̃a(x) = 0, (4.32)

�(x) = �0 + �̃(x),
X

x

�̃(x) = 0, (4.33)
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Figure 8. f(m0) vs. m0 : The consistency condition for the SO(10) symmetry breaking in the
spin model of Ea(x) within the saddle point analysis in the spirit of the large N expansion.

where the leading results, �i�0 = 8/Xc
0X

c
0 and Xc

0X
c
0 = 1, are substituted in the terms

suppressed by the factor N/2
N

2 (' 9/32). The r.h.s. of the condition eq. (4.43) is required
to be positive for Xa

0 6= 0. It is plotted in fig. 8 as the function of m0,

f(m0) ⌘ 1� 9

32

1

V

X

k 6=0

4

�D̃(k) + 2
. (4.44)

One can see that f(m0)  0 for m0 < 2 and it is in contradiction with the assumption
Xa

0 6= 0. In this region of the mass prameter m0, the fluctuation of the spin field Ea(x) is
too large to maintain the non-zero expectation value of the spin field hEa(x)i. The region
includes the positive region 0  m0 < 2 and it also extends to the negative region m0  0

all the way down to m0 ! �1.
The above result supports the following picture on the dynamical nature of the spin

model. The spin model for Ea(x) is well-defined for all values of m0 in the region [�1, 2).
For m0 2 [�1, 2), the spin model is in the single disordered phase. In the limit m0 ! �1,
in particular, the pfaffian is unity and the spin field is completely disordered, having the
vanishing correlation length, ⇠E = 0. The correlation length ⇠E is a monotonically increasing
function of m0. And SO(10) global symmetry in the weak gauge-coupling limit as well as
Z4 ⇥ Z4 discrete symmetries are not broken spontaneously in the thermodynamic limit
L ! 1.

For our purpose to formulate the Weyl field measure, the spin model for Ea(x) should
be in the positive disordered region m0 2 (0, 2), while the spin model for Ēa(x) is equivalent
to the model in the limit m0 ! �1. Thus the both spin models have the disorder nature,
which are actually in the same disordered phase.

4.6 A summary

Based on the above analytical and numerical results, we argue that in these two cases of
the trivial link field and of the SU(2) link fields with Q( 6= 0), the path-integration of the
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3.7 Gauge field dependence of the Weyl field measure – Locality issue remain-
ing

The variation of the effective action �W [U ] w.r.t. the link field can be derived from the
path-integral definition eq. (3.10) as follows.

�⌘�W [U ] =
D

�
X

x2⇤
 ̄(x)P+�⌘D (x) +

X

x2⇤
 T(x)P̂ T

+ i�5CDT
aEa�⌘P̂+ (x)

E

F

�⌦

1
↵

F

= Tr
�

P+�⌘D
⌦

 � ̄�
↵

F

 �⌦

1
↵

F
� Tr

�

�⌘P̂+

⌦

 +

⇥

 T
+i�5CDT

aEa
⇤↵

F

 �⌦

1
↵

F
.

(3.76)

The first term can be rewritten further using the result of the two-point correlation function
of the left-handed fields eq. (3.73) as

Tr
�

P+�⌘D
⌦

 � ̄�
↵

F

 �⌦

1
↵

F
= Tr{P+�⌘DD�1}. (3.77)

It is identified as the physical contribution of the left-handed Weyl fermions. The second
term, on the other hand, represents the gauge field dependence of the Weyl field measure
eq. (3.4) through the right-handed ’t Hooft vertices. It replaces the measure term �iL⌘ =
P

j(vj , �⌘vj)[76, 77]. So we denote this term with �iT⌘,

� iT⌘ ⌘ �Tr
�

�⌘P̂+

⌦

 +

⇥

 T
+i�5CDT

aEa
⇤↵

F

 �⌦

1
↵

F
. (3.78)

Then the variation of the effective action is written as

�⌘�W [U ] = Tr{P+�⌘DD�1}� iT⌘. (3.79)

For the gauge transformation, �⌘U(x, µ) = i{!(x)U(x, µ) � U(x, µ)!(x + µ̂)} and
⌘µ(x) = !(x) � U(x, µ)!(x + µ̂)U(x, µ)�1 = �Dµ!(x), the first term gives the gauge
anomaly term,

Tr{P+�⌘DD�1}
�

�

⌘
µ

=�D
µ

!
= �iTr{!�5D}, (3.80)

where, in the weak gauge-coupling expansion, the leading non-trivial term is vanishing
because of the anomaly cancellation condition for the 16-dimensional (irreducible) spinor
representation of SO(10), Tr

�

P+⌃a1b1 [⌃a2b2⌃a3b3+⌃a3b3⌃a2b2 ]
 

= 0. The second term gives

�iT⌘

�

�

⌘
µ

=�D
µ

!
= �iTr

�

[!, P̂+]
⌦

 +

⇥

 T
+i�5CDT

aEa
⇤↵

F

 �⌦

1
↵

F

=
⇣

� i
1

2
Tr
�⌦

 +

⇥

 T
+i�5CDC[�

a,!]Ea
⇤↵

F

 

+iTr
�⌦

 +

⇥

 T
+i�5CDT

aEaP̂+

⇤↵

F
!
 

⌘

�⌦

1
↵

F

= +iTr{!�5D}, (3.81)

where the Schwinger-Dyson equations eqs. (3.72) and (3.74) are used at the last equality.
Thus we can check that the effective action is gauge-invariant.

The measure term �iT⌘ is required to be a smooth and local function of the link field
variables, since it appears as an operator of the link field in the Schwinger-Dyson equation

– 20 –

3.7 Gauge field dependence of the Weyl field measure – Locality issue remain-
ing

The variation of the effective action �W [U ] w.r.t. the link field can be derived from the
path-integral definition eq. (3.10) as follows.

�⌘�W [U ] =
D

�
X

x2⇤
 ̄(x)P+�⌘D (x) +

X

x2⇤
 T(x)P̂ T

+ i�5CDT
aEa�⌘P̂+ (x)

E

F

�⌦

1
↵

F

= Tr
�

P+�⌘D
⌦

 � ̄�
↵

F

 �⌦

1
↵

F
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�

�⌘P̂+

⌦
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⇥
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+i�5CDT

aEa
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F

 �⌦

1
↵

F
.

(3.76)

The first term can be rewritten further using the result of the two-point correlation function
of the left-handed fields eq. (3.73) as

Tr
�

P+�⌘D
⌦

 � ̄�
↵

F

 �⌦

1
↵

F
= Tr{P+�⌘DD�1}. (3.77)

It is identified as the physical contribution of the left-handed Weyl fermions. The second
term, on the other hand, represents the gauge field dependence of the Weyl field measure
eq. (3.4) through the right-handed ’t Hooft vertices. It replaces the measure term �iL⌘ =
P

j(vj , �⌘vj)[76, 77]. So we denote this term with �iT⌘,

� iT⌘ ⌘ �Tr
�

�⌘P̂+

⌦
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⇥

 T
+i�5CDT

aEa
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F

 �⌦

1
↵

F
. (3.78)

Then the variation of the effective action is written as

�⌘�W [U ] = Tr{P+�⌘DD�1}� iT⌘. (3.79)

For the gauge transformation, �⌘U(x, µ) = i{!(x)U(x, µ) � U(x, µ)!(x + µ̂)} and
⌘µ(x) = !(x) � U(x, µ)!(x + µ̂)U(x, µ)�1 = �Dµ!(x), the first term gives the gauge
anomaly term,

Tr{P+�⌘DD�1}
�

�

⌘
µ

=�D
µ

!
= �iTr{!�5D}, (3.80)

where, in the weak gauge-coupling expansion, the leading non-trivial term is vanishing
because of the anomaly cancellation condition for the 16-dimensional (irreducible) spinor
representation of SO(10), Tr

�

P+⌃a1b1 [⌃a2b2⌃a3b3+⌃a3b3⌃a2b2 ]
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⇥
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1
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F
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where the Schwinger-Dyson equations eqs. (3.72) and (3.74) are used at the last equality.
Thus we can check that the effective action is gauge-invariant.

The measure term �iT⌘ is required to be a smooth and local function of the link field
variables, since it appears as an operator of the link field in the Schwinger-Dyson equation
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3.6 Gauge field dependence of the Weyl field measure – Locality issue remain-
ing

The variation of the effective action �
W

[U ] w.r.t. the link field can be derived from the
path-integral definition eq. (3.10) as follows.
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(3.70)

The first term can be rewritten further using the result of the two-point correlation function
of the left-handed fields eq. (3.67) as
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P+�⌘D
⌦

 � ̄�
↵

F

 �⌦

1
↵

F

= Tr{P+�⌘DD�1}. (3.71)

It is identified as the physical contribution of the left-handed Weyl fermions. The second
term, on the other hand, represents the gauge field dependence of the Weyl field measure
eq. (3.4) through the right-handed ’t Hooft vertices. It replaces the measure term �iL

⌘

=
P

j

(v
j

, �
⌘

v
j

)[56, 57]. So we denote this term with �iT
⌘

,
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. (3.72)

Then the variation of the effective action is written as

�
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W
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. (3.73)

For the gauge transformation, �
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⌘
µ

(x) = !(x) � U(x, µ)!(x + µ̂)U(x, µ)�1 = �D
µ

!(x), the first term gives the gauge
anomaly term,

Tr{P+�⌘DD�1}
�

�

⌘

µ

=�D

µ

!

= �iTr{!�5D}, (3.74)

where, in the weak gauge-coupling expansion, the leading non-trivial term is vanishing
because of the anomaly cancellation condition for the 16-dimensional (irreducible) spinor
representation of SO(10), Tr

�

P+⌃
a1b1 [⌃a2b2⌃a3b3+⌃

a3b3⌃a2b2 ]
 

= 0. The second term gives
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F

= +iTr{!�5D}, (3.75)

where the Schwinger-Dyson equations eqs. (3.66) and (3.68) are used at the last equality.
Thus we can check that the effective action is gauge-invariant.

The measure term �iT
⌘

is required to be a smooth and local function of the link field
variables, since it appears as an operator of the link field in the Schwinger-Dyson equation
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cf. measure term
   (local counter terms)

?

w = w̄ and consider the following model.

S̃EP/WY =
X

x2⇤

�

 ̄(x)�µP�([rµ �r†
µ]/2) (x) + z+ ̄(x)�µP+([rµ �r†

µ]/2) (x)
 

�
X

x2⇤
y Ea(x) { T(x)i�5CDT

aP+ (x) +  ̄(x)P�i�5CDT
a† ̄(x)T }

�
X

x2⇤
wEa(x) { T(x)i�5CDT

a(rµr†
µ/2)P+ (x)

+ ̄(x)P�i�5CDT
a†(rµr†

µ/2) ̄(x)
T }. (6.57)

In this model, the consistency condition for hXa(x)i 6= 0 is given by

f(m0, z+, y, w) ⌘ 1� 9

32

1

V

X

k 6=0

4

�D̃0(k ;X0) + D̃0(k0 ;X0)

�

�

�

�

Xc

0X
c

0=1

> 0, (6.58)

where k0µ = 0 or ⇡(15)µ depending on the value of the couplings z+, y, w. D̃(k ;X0) is the
fourier transform of the kinetic operator,

D0(x� y ;X0) = Xc
0X

c
0B

0(x� y) + (z+/2)
2A0(x� y), (6.59)

where B0(x� y) and A0(x� y) are defined by

B0(x� y) =
1

V

X

k

eikx
1

V

X

q

n

W̃ (q + k)2 + W̃ (q)2 + 2W̃ (q + k)W̃ (q)
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⇥

W̃ (q + k)

Xa
0X

a
0 W̃ (q + k)2 + (z+/2)2 sin2(q + k)
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a
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(6.60)

A0(x� y) =
1

V

X
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eikx
1

V

X
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n

W̃ (q + k)2 + W̃ (q)2 + 2W̃ (q + k)W̃ (q)
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sin(q + k)µ

Xa
0X

a
0 W̃ (q + k)2 + (z+/2)2 sin2(q + k)

sin qµ
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0X

a
0 W̃ (q)2 + (z+/2)2 sin2(q)

,

(6.61)

and W = y + (w/2)r†
µrµ. In fig. 11, f(m0, z+, y, w) is plotted as the function of z+ for

y = w = 1 and m0 = 1. The singular behavior of the plots around z+ ' 1.4 indicates the
fact that at a certain critical value z+ = zc+(' 1.4) the kinetic operator degenerates: D̃0(0) =

D̃0(k) = D̃0(⇡(15)), where D̃0(k) ⌘ D̃0(k ;X0)
�

�

X2
0=1

. For z+ < zc+, D̃0(k)  D̃0(⇡(15)) and
the saddle point is assumed to be Anti-Ferromagnetic, hXa(x)i = Xa

0 (�1)xµ . For z+ > zc+,
D̃0(k)  D̃0(0) and the saddle point is assumed to be Ferromagnetic, hXa(x)i = Xa

0 . In
both cases, f(m0, z+, y, w) < 0 and the fluctuation of the spin field Ea(x) is too large to
maintain the non-zero expectation value of the spin field hEa(x)i. Thus the model is in the
PMS phase in the entire region of the coupling z+ (y = 1) up to z+ ' 15.

In the case of the model S̃Ov, we found that D̃(k)  D̃(0) for the entire region z+ � 0,
where D̃(k) ⌘ D̃(k ;X0)

�

�

X2
0=1

. And the saddle point is assumed to be Ferromagnetic,
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Eichten-Preskill model   (species doublers)
Mirror Fermion model  (mirror modes) 

   realized by the Overalp Fermions/GW rel.

[Eichten-Preskill(1986)]

cf. [Poppitz et al (2006)]

[Montvay(1987)]The above action SOv can be regarded as a certain limit of the following action of the
SO(10)-invariant chiral Yukawa model in the framework of the Ginsparg-Wilson fermion,

SOv/Mi[ ,  ̄, X
a, X̄a] =

X

x2⇤

�

 ̄�(x)D �(x) + z+ ̄+(x)D +(x)
 

�
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{y Xa(x) T

+(x)i�5CD
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Ta

† ̄+(x)
T }

+ S
X

[Xa], (6.5)
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X
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2
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2
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�̄
X

µ

X̄a(x)X̄a(x+ µ̂) +
1

2
X̄a(x)X̄a(x) +

�̄0

2
(X̄a(x)X̄a(x)� v̄2)2

)

.

(6.6)

The limit to the original action SOv is achieved by

y = ȳ,
z+p
yȳ

! 0, (6.7)

v = v̄ = 1, �0 = �̄0 ! 1, (6.8)
 = ̄! 0. (6.9)

In the lattice model defined with the action, SOv/Mi, the global U(1) symmetry of the right-
handed fields is broken to Z4 by the Yukawa couplings y and ȳ. But the proof of the CP
symmetry is not successful so far.11

6.1 cf. Eichten-Preskill model

The SO(10) invariant interaction terms of the ’t Hooft vertex were first used by Eichten
and Preskill[81] to decouple the species doublers in their formulation of chiral lattice gauge

11 In the other limit as

�

0 = �̄

0 ! 0, (6.10)

 = ̄! 0, (6.11)

it reduces to the model with quartic interaction of the ’t Hooft vertices,

SOv/EP[ ,  ̄] =
X

x2⇤

�
 ̄�(x)D �(x) + z+ ̄+(x)D +(x)

 

�
X

x2⇤

{y2 1
2

⇥
 

T
+(x)i�5CD

Ta

 +(x)
⇤2

+ ȳ

2 1
2
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 ̄+(x)i�5CD
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†
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T

⇤2}. (6.12)

This action (in the limit z+ ! 0) corresponds to the other choice of the product function F (!) as F (!) = e

!.
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3 Path Integration – a proposal for the gauge-invariant measure

3.1 Definition of the path integration measures

The path-integral measures for the link field and the Weyl field are formulated as follows.
For the link field U(x, µ), it is defined with the group-invariant Haar measure as usual:

D[U ] ⌘
Y

x2⇤

3
Y

µ=0

dU(x, µ). (3.1)

For the Weyl field  �(x),  ̄�(x), it is defined by using all the components of the original
Dirac field  ↵s(x)(↵ = 1, · · · , 4; s = 1, · · · , 16) not as usual, but the right-handed part of
the measure is just saturated completely by inserting a suitable product of the ’t Hooft
vertexes in terms of the right-handed fields,

T+(x) =
1

2
V a
+(x)V

a
+(x), V a

+(x) =
1

2
 +(x)

Ti�5CDT
a +(x), (3.2)

T̄+(x) =
1

2
V̄ a
+(x)V̄

a
+(x), V̄ a

+(x) =
1

2
 ̄+(x)i�5CDT

a ̄+(x)
T. (3.3)

Namely, the Weyl field measure is defined as

D[ �]D[ ̄�] ⌘ D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)), (3.4)

where

D[ ]D[ ̄] ⌘
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ↵s(x)
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ̄↵s(x), (3.5)

and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T

+ i�5CDT
aEa(x)P̂+, not P̂ T

+{i�5CDP+T
aEa(x)}P̂+, appears for the field  +(x),

while P�i�5CDT
aĒa(x)P�

T = P�{i�5CDP�
TTaĒa(x)}P�

T for the anti-field  ̄+(x).8 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w
= 4!

1
X

k=0

wk

k!(k + 4)!
, (3.6)

8This point is crucial for our proposal. If one includes the factor P+ in the definition of the ’t Hooft
operator for the field  +(x), one has P̂

T

+ i�5CD

P+T
a

E

a(x)P̂+ = (1�D)T i�5CD

P+T
a

E

a(x)(1 � D). The
factor (1�D) projects out the modes with the momenta ⇡(A)

µ

(A = 1, · · · , 15), where ⇡(1) ⌘ (⇡, 0, 0, 0),⇡(2) ⌘
(0,⇡, 0, 0), · · · ,⇡(15) ⌘ (⇡,⇡,⇡,⇡). This type of the operator cannot saturate the right-handed part of the
measure completely. Therefore it is not acceptable for our purpose. This point will be discussed later in
relation to other formulations. See section 6.
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cf.

The above action SOv can be regarded as a certain limit of the following action of the
SO(10)-invariant chiral Yukawa model in the framework of the Ginsparg-Wilson fermion,

SOv/Mi[ ,  ̄, X
a, X̄a] =

X

x2⇤

�

 ̄�(x)D �(x) + z+ ̄+(x)D +(x)
 

�
X

x2⇤
{y Xa(x) T

+(x)i�5CD

Ta +(x) + ȳ X̄a(x) ̄+(x)i�5CD

Ta

† ̄+(x)
T }

+ S
X

[Xa], (6.5)

where

S
X

[Xa] =
X

x2⇤

(

�
X

µ

Xa(x)Xa(x+ µ̂) +
1

2
Xa(x)Xa(x) +

�0

2
(Xa(x)Xa(x)� v2)2

�̄
X

µ

X̄a(x)X̄a(x+ µ̂) +
1

2
X̄a(x)X̄a(x) +

�̄0

2
(X̄a(x)X̄a(x)� v̄2)2

)

.

(6.6)

The limit to the original action SOv is achieved by

y = ȳ,
z+p
yȳ

! 0, (6.7)

v = v̄ = 1, �0 = �̄0 ! 1, (6.8)
 = ̄! 0. (6.9)

In the lattice model defined with the action, SOv/Mi, the global U(1) symmetry of the right-
handed fields is broken to Z4 by the Yukawa couplings y and ȳ. But the proof of the CP
symmetry is not successful so far.11

6.1 cf. Eichten-Preskill model

The SO(10) invariant interaction terms of the ’t Hooft vertex were first used by Eichten
and Preskill[81] to decouple the species doublers in their formulation of chiral lattice gauge

11 In the other limit as

�

0 = �̄

0 ! 0, (6.10)

 = ̄! 0, (6.11)

it reduces to the model with quartic interaction of the ’t Hooft vertices,

SOv/EP[ ,  ̄] =
X

x2⇤

�
 ̄�(x)D �(x) + z+ ̄+(x)D +(x)

 

�
X

x2⇤

{y2 1
2

⇥
 

T
+(x)i�5CD

Ta

 +(x)
⇤2

+ ȳ

2 1
2

⇥
 ̄+(x)i�5CD

Ta

†
 ̄+(x)

T

⇤2}. (6.12)

This action (in the limit z+ ! 0) corresponds to the other choice of the product function F (!) as F (!) = e

!.
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Decoupling limit of the mirror
 (right-handed) Overlap Weyl fermions

(PMS phase)In this formula eq. (6.1), the total action of the model, including the ’t Hooft vertex terms,
can be defined as

SOv[ ,  ̄, E
a, Ēa] =

X

x2⇤
 ̄�(x)D �(x)

�
X

x2⇤
{Ea(x) T

+(x)i�5CD

Ta +(x) + Ēa(x) ̄+(x)i�5CD

Ta

† ̄+(x)
T }.

(6.2)

Here the right-handed Weyl fields are introduced explicitly, trying to make the path-integral
measure of the left-handed Weyl fields in 16 simplified and manifestly gauge-invariant. The
SO(10) invariant ’t Hooft vertex operators of the right-handed fields are used to saturate
completely the right-handed part of the fermion measure. The short range correlations of
order the lattice spacing are required for the the right-handed Weyl fields and the aux-
iliary spin fields so that they are decoupled from physical degrees of freedom, preserving
the symmetries and leaving only the smooth and local terms of the link fields. These
features/requirements are actually shared with other various approaches and proposals to
decouple the species doubling or mirror modes of models.

An important technical difference lies on the fact that the path-integral measure of the
right-handed Weyl fields, i.e. the right-handed part of the chiral decomposition of Dirac
field measure, are formulated with the non-trivial chiral basis {u

i

(x) |P+ ⌦ P̂+ui = u
i

, i =

1, · · · , n/2� 8Q }, {ū
k

(x) | ū
k

P� ⌦ P+ = u
k

, k = 1, · · · , n/2 }, which depends on the gauge
field, as given by eq. (3.14),

 +(x) =
X

i

u
i

(x)b
i

,  ̄+(x) =
X

k

b̄
k

ū
k

(x), (6.3)

D
?

[ +]D?

[ ̄+] =

n/2�8Q
Y

j=1

db
j

n/2
Y

k=1

db̄
k

. (6.4)

We need to make sure the locality of this right-handed-measure contribution to the induced
effective action.

Another important technical difference is that we choose the product function for the ’t
Hooft vertices F (!) as given by eq. (3.6) and therefore use the unit SO(10)-vector spin fields,
Ea(x) and Ēa(x) with the constraints Ea(x)Ea(x) = 1 and Ēa(x)Ēa(x) = 1, omitting their
kinetic(hopping) terms. This choice allows us to prove the CP symmetry. It is also relevant
for preserving the (global) SO(10) symmetry in the thermodynamic limit.

In the following, we discuss the relations to Eichten-Preskill model, Ginsparg-Wilson
Mirror-fermion model, Domain wall fermion model with the boundary Eichten-Preskill
term, 4D Topological Insurators/Superconductors with gapped boundary phases, and the
recent studies on the Paramagnetic Strong-coupling (PMS) phase/Mass without symmetry
breaking, trying to clarify the similarity and the difference in technical detail and to show
that our proposal is a well-defined testing ground for that basic question.
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SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

Ea(x)Ea(x) = 1

κ = 0

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

− λ

24

[
ψ+(x)

T iγ5CDT
aψ+(x)

]2 − λ

24

[
ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]2 }

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

−λ
[
ψ+(x)

T iγ5CDT
aψ+(x) + ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]
Ea(x)

}

1

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

Ea(x)Ea(x) = 1

Khop = 0

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

− λ

24

[
ψ+(x)

T iγ5CDT
aψ+(x)

]2 − λ

24

[
ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]2 }

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

−λ
[
ψ+(x)

T iγ5CDT
aψ+(x) + ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]
Ea(x)

}

1



4+1 dim. DWF w/ boundary Eichten-Preskill term
4dim. TI/TSC    w/ gapped boundary phase

 —>  Low energy effective local lattice model  through appropriate boundary terms

[Kaplan(1992), Creutz et al (1997)] 

 [Wen(2013),  You-BenTov-Xu(2014), 
                              You-Xu (2015)]

choose the bases of the Dirac fields, {uj(x), vj(x)}, and {ūk(x), v̄k(x)}, so that the jacobian
factors, det(uj(x), vj(x)), and det(ūj(x), v̄j(x)), are unity independent of the gauge field.
In this choice of the chiral bases, the pfaffian can be evaluated as

pf

 

�P̂ T
+ i�5CDT

aEaP̂+ �P̂ T
�DTP T

+

P+DP̂� �P�i�5CDT
a†ĒaP T

�

!

= pf

0

B

B

B

@

�(uT i�5CDT
aEau) 0 0 0

0 0 0 �(vTDT v̄T )

0 0 �(ū i�5CDT
a†ĒaūT ) 0

0 (v̄Dv) 0 0

1

C

C

C

A

(3.20)

= det(v̄Dv)⇥ pf(uT i�5CDT
aEau)⇥ pf(ū i�5CDT

a†ĒaūT ), (3.21)

where the matrices (v̄Dv), (uT i�5CDT
aEau) and (ū i�5CDT

a†ĒaūT) are given by

(v̄Dv)ki ⌘
X

x2⇤
v̄k(x)Dvi(x) (k = 1, · · · , n/2; i = 1, · · · , n/2 + 8Q),

(3.22)
�

uTi�5CDT
aEau

�

ij
⌘
X

x2⇤
ui(x)

Ti�5CDT
aEa(x)uj(x)

(i, j = 1, · · · , n/2� 8Q), (3.23)

�

ūi�5CDT
a†ĒaūT

�

kl
⌘
X

x2⇤
ūk(x)i�5CDT

a†Ēa(x)ūl(x)
T

(k, l = 1, · · · , n/2), (3.24)

and (uT i�5CDT
aEau) and (ū i�5CDT

a†ĒaūT) are anti-symmetric complex matrices.
Therefore, the effective action eq. (3.10) is now given by

e�W

[U ] = det(v̄Dv) ⇥
Z

D[Ē] pf(uT i�5CDT
aEau)

Z

D[Ē] pf(ū i�5CDT
a†ĒaūT ).

(3.25)

Thus the effective action �W [U ], with our definition of the Weyl field measure eq. (3.4), has
the extra factor of logarithm of the pfaffians, pf(uT i�5CDT

aEau) and pf
�

ū i�5CDT
a†ĒaūT

�

,
integrated over the auxiliary spin fields in addition to the usual effective action given by
the logarithm of the chiral determinant, ln det(v̄Dv) [30–32] [76, 77].

The first factor in the r.h.s. of eq. (3.25) is nothing but the chiral determinant in
the overlap formalism.[30–32] In the weak gauge-coupling limit, the matrix (v̄Dv) shows
the massless singularity associated with the free left-handed Weyl field. With the periodic
boundary condition, in particular, (v̄Dv) is not invertible because there appear the zero
modes in the eigenvalues of D, which have zero index n+�n� = 0. In the topologically non-
trivial sectors, the matrix (v̄kDvi) is not a square matrix and det(v̄Dv) vanishes identically.
This is due to the appearance of the chiral zero modes with a non-trivial index n+ � n� =

�8Q 6= 0. These zeromodes, saturated by the insetion of the ’t Hooft vertices in terms
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’t Hooft vertices around the “right-handed wall’’
　4+1dim. DWF  class AII [Z]  —> class DIII(BdG) [0]

kinetic term z+ —> 0  (-m0 —> 0, 0 —> + m0)

πd(S9) = 0  (d=0, …,9) 
   No topological obstructions/singularity 
   No massless excitations around topol. singularity

 [Wen(2013), Furusaki et al (2015)]

1dim. Majorana chain x 8
   Refinement of free fermion classification 
   of  TI/TSC due to interactions: Z → Z8, Z16

 [Fidkowski-Kitaev (2010)]

Dai-Freed anomaly 
     Ωspin5(BSpin(10)) = 0, 
     Ω5(Spin(5)xSpin(10)/Z2) = Z2

 [Garcia-Etxebarria&Montero,  Wang-Wen-Witten (2018)]

✲ x5 = ta5
✑

✑
✑

✑
✑

✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

t = −N + 1 t = N

ΨL(x) ΨR(x)−m0 (+m0)(+m0)

1

We also introduce the overlap Dirac operator D acting on  (x) as

D =
1

2

⇣

1 +X/
p
X†X

⌘

, X = �µ
1

2

�

rµ �r†
µ

�

+
1

2
rµr†

µ �m0, (2.9)

where rµ is the covariant difference operator which acts on  (x) as rµ (x) = U(x, µ) (x+

µ̂)� (x) and 0 < m0 < 2. Under the admissibility condition, D is a local, gauge-covariant
lattice Dirac operator. It also satisfies the Ginsparg-Wilson relation,

�5D +D�̂5 = 0, (2.10)

where
�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:

 �(x) = P̂� (x),  ̄�(x) =  ̄(x)P+, (2.12)

where P̂± and P± are the chiral projection operators given by

P̂± =

✓

1± �̂5
2

◆

, P± =

✓

1± �5
2

◆

. (2.13)

We note that
⇥

P̂±,P±
⇤

= 0 and
⇥

P±,P±
⇤

= 0.
The action of the left-handed Weyl field in the 16-dimensional spinor representation of

SO(10) is given by

SW[ �,  ̄�] =
X

x2⇤
 ̄�(x)D �(x) =

X

x2⇤
 ̄(x)P+D (x). (2.14)

This action is manifestly invariant under the SO(10) lattice gauge transformations. It is
also invariant under the global U(1) transformation of the left-handed fields,

�↵ �(x) = i↵ �(x)
⇥

or � (x) = i↵ P̂� (x)
⇤

, (2.15)
�↵ ̄�(x) = �i↵  ̄�(x)

⇥

or � ̄(x) = �i↵  ̄(x)P+

⇤

. (2.16)

This global U(1) symmetry is, as we will see below, broken due to the non-trivial trans-
formation property of the Weyl field path-integral measure and the non-vanishing vacuum
expectation values of ’t Hooft vertices,

T�(x) =
1

2
V a
�(x)V

a
�(x), V a

�(x) =  �(x)
Ti�5CDT

a �(x), (2.17)

T̄�(x) =
1

2
V̄ a
�(x)V̄

a
�(x), V̄ a

�(x) =  ̄�(x)i�5CDT
a† ̄�(x)

T, (2.18)

in the topologically nontrivial sectors of the gauge field. Here Ta (a = 1, 2, · · · , 10) are the
operators acting on the SO(10) spinor space, Ta = C�a. The explicit representations of C
and {Ta|a = 1, · · · , 10} are given in the appendix B. The action also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and

– 6 –

+ + +



• manifestly gauge-invariant by using full Dirac-field measure, but saturating the 
right-handed part with ’t Hooft vertices completely !

• all possible topological sectors 

• zero modes, ’t Hooft vertex VEV,  fermion number non-conservation 

• CP invariance 

• locality/smoothness Issues

Testable:  To see if it works, examine  

MC studies in weak gauge-coupling limit feasible without sign problem

Analytic studies desirable

• >>> SU(5),  SU(4) x SU(2)L x SU(2)R,  SU(3)c x SU(2)L x U(1)Y  (+ νR)

• Making the ’t Hooft vertex terms well-defined in large coupling limit, 

Established  the relations with GW Mirror-fermion model

                                                  DW fermion with boundary EP terms

                                                  4D TI/TSC with Gapped boundary phase  explicitly  

3.5 Schwinger-Dyson equations and Correlation functions

The Schwinger-Dyson equations for the link field and the Weyl field can be derived from
the path-integral definition of the partition function, eqs. (3.9) and (3.10). With respect
to the local variation of the link field, �

⌘

U(x, µ) = i⌘
µ

(x)U(x, µ), the simplest non-trivial
example is given by

*

h

� �
⌘

S
G

[U ]�
X

x2⇤
 ̄(x)P+�⌘D (x) + 2

X

x2⇤
 TP̂ T

+ i�5CD

TaEa�
⌘

P̂+ (x)
i

+

= 0,

(3.63)

The operators in the bracket [· · · ] in the l.h.s. are all the local operators with respect to
the variation point x and therefore the equation of motion is local. We note that the third
term comes from the link field dependence of the Weyl field measure. With respect to the
local variations of the fermion fields � (x), � ̄(x) and of the spin field �Ea(x), one can
derive the following non-trivial examples.

D

 (y)
h

 ̄P+D(x)� 2 TP̂ T

+ i�5CD

TaEaP̂+(x)
i E

F

= �
xy

⌦

1
↵

F

, (3.64)
Dh

P+D (x)� 2P�i�5CD

Ta

†ĒaP�
T  ̄T(x)

i

 ̄(y)
E

F

= �
xy

⌦

1
↵

F

, (3.65)
D

 TP̂ T

+ i�5CD

C[⌃
bc

,�a]Ea(x)P̂+ 
E

F

= 0. (3.66)

The first two equations can be decomposed into the chiral components by noting P+D =

DP̂� and �
xy

= (P+ + P�)�xy = P̂+(x, y) + P̂�(x, y). We finally obtain

⌦

 �(x)  ̄�(y)
↵

F

= P̂�D
�1P+(x, y)

⌦

1
↵

F

, (3.67)
D

 +(y)
h

 T
+i�5CD

TaEaP̂+(x)
i E

F

= �1

2
P̂+(y, x)

⌦

1
↵

F

, (3.68)
Dh

P�i�5CD

Ta

†Ēa ̄T
+(x)

i

 ̄+(y)
E

F

= �1

2
P��xy

⌦

1
↵

F

, (3.69)

assuming that D is invertible.

As long as
⌦

1
↵

F

is finite and well-defined, these results imply the following facts
about the particle spectrum in the channel of the 16 representation of SO(10) symme-
try: the left-handed fields  �(x),  ̄�(x) support the massless Weyl fermions and have
long-range correlations, while the right-handed fields  +(x),  ̄+(x) are decoupled each
other and have short-range correlations of order the several lattice spacings with the com-
posite operators

⇥

 T
+i�5CD

TaEaP̂+(x)
⇤

and
⇥

P�i�5CD

Ta

†Ēa ̄T
+(x)

⇤

, respectively. As to
the right-handed field  +(x), however, the information of yet another correlation function
⌦

 +(y)
⇥

 T
+i�5CD

TaEaP̂�(x)
⇤ ↵

F

is also required before deducing a definite conclusion.
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The SM / SO(10)  chiral lattice  gauge theory with 16s
in the framework of overlap fermion/the Ginsparg-Wilson rel.

sample

June 26, 2018

1 Introduction

a

4
X

x

 ̄(x)D (x) = a

4
X

x

�
 ̄(x)P+DP̂� (x) +  ̄(x)P�DP̂+ (x)

 
(1)

�̂5 = �5(1� 2aD) �̂5
2 = I (2)

n = 4⇥ 16⇥ L

4 (3)

�
W

[UCP] = �
W

[U ] (4)

1



[Eichten-Preskill(1986)]

Explicit breaking of chiral symmetry 
by ’t Hooft vertices

The limit to the original action SOv is achieved by

y = ȳ,
z+p
yȳ

! 0, (6.7)

v = v̄ = 1, �0 = �̄0 ! 1, (6.8)
 = ̄! 0. (6.9)

In the lattice model defined with the action, SOv/Mi, the global U(1) symmetry of the right-
handed fields is broken to Z4 by the Yukawa couplings y and ȳ. But the proof of the CP
symmetry is not successful so far.13

6.1 cf. Eichten-Preskill model

The SO(10) invariant interaction terms of the ’t Hooft vertex were first used by Eichten
and Preskill[79] to decouple the species doublers in their formulation of chiral lattice gauge
theories based on the generalized Wilson term:

SEP =
X

x2⇤

�

 ̄(x)�µP�([rµ �r†
µ]/2) (x) + z+ ̄(x)�µP+([rµ �r†

µ]/2) (x)
 

�
X

x2⇤
{ �
24

⇥

 T
+(x)i�5CDT

a +(x)
⇤2

+
�

24

⇥

 ̄+(x)i�5CDT
a† ̄+(x)

T
⇤2}

�
X

x2⇤
{ r

48
�
⇥

 T(x)i�5CDT
aP+ (x)

⇤2
+

r

48
�
⇥

 ̄(x)P�i�5CDT
a† ̄(x)T

⇤2},

(6.13)

where

�{A(x)B(x)C(x)D(x)}

⌘ +
1

2

X

µ

n

�

rµr†
µA(x)

�

B(x)C(x)D(x) +A(x)
�

rµr†
µB(x)

�

C(x)D(x)

+A(x)B(x)
�

rµr†
µC(x)

�

D(x) +A(x)B(x)C(x)
�

rµr†
µD(x)

�

o

. (6.14)

In this action, the right(left)-handed Weyl fields are formulated by the naive chiral projec-
tors as P+ (x),  ̄(x)P� (P� (x),  ̄(x)P+). The global U(1) symmetry of the right-handed

13 In the other limit as

�

0 = �̄

0 ! 0, (6.10)

 = ̄! 0, (6.11)

it reduces to the model with quartic interaction of the ’t Hooft vertices,

SOv/EP[ ,  ̄] =
X

x2⇤

�
 ̄�(x)D �(x) + z+ ̄+(x)D +(x)

 

�
X

x2⇤

{y2 1
2

⇥
 

T
+(x)i�5CD

Ta

 +(x)
⇤2

+ ȳ

2 1
2

⇥
 ̄+(x)i�5CD

Ta

†
 ̄+(x)

T

⇤2}. (6.12)

This action (in the limit z+ ! 0) corresponds to the other choice of the product function F (!) as F (!) = e

!.
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generalized Wilson-term

resolve the degenerated physical and species-doubling modes
    { (16)-  + (16)+ } x 8  —>  light (16)-   +  heavy  { (16)- x 7  + (16)+ x 8}

fine-tune to the massless limit within a SO(10)-symmetric phase

Eichten-Preskill model revisited

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
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S ′
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∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†
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−y
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aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)
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ψ−(x)

T iγ5CDT
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T
]
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}
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∑

x
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(∇µ −∇†

µ)ψ(x) +
w
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T
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1



Wilson-Yukawa-type model  [Golterman-Petcher-Rivas(1986)]
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]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

Ea(x)Ea(x) = 1

κ = 0

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

− λ

24

[
ψ+(x)

T iγ5CDT
aψ+(x)

]2 − λ

24

[
ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]2 }

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

−λ
[
ψ+(x)

T iγ5CDT
aψ+(x) + ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]
Ea(x)

}

1

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)
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Khop = 0
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ψ+(x)
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Mirror-Fermion-type model

Integrate out the right-
handed Mirror modesS ′

EP/Mi =
∑

x

{
z− ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)
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△ψ−(x)
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T
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∫
D[E] pf

(
−2w′2σ2△ · T aEa ·△ z−σT

µ ∇̄µ

z−σµ∇̄µ −2w′2σ2△ · T a†Ea ·△

)

≃ det(w′2△2)32 (z− → 0)

ψ+(x) = P+ψ(x) ψ̄+(x) = ψ̄(x)P−

ψ+(x) = P̂+ψ(x) ψ̄+(x) = ψ̄(x)P−

T ≤ 4β
T → ∞

⟨J̄k(t,x)⟩β [V0]

⟨J̄k(t,x)⟩β [V0] ≃
∑

t′x′

GR(t,x; t
′,x′)A0(t

′,x′)

V0(t,x) = eie0A0(t,x) ⇐⇒ J0(t,x)

Vµ(t,x) = eie0Aµ(t,x) ⇐⇒ Jµ(t,x)

GR(x, x
′) = iθ(t− t′)

〈[
J̄k(t,x), J̄0(t

′,x′)
]〉
β

p0 ∈
[
− π

a0
,+ π

a0

]

2

SEP =
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x
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ψ̄(x)γµP−
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2
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(not explored by GPV)



cf. [Golterman-Petcher-Rivas(1986)]

w = w̄ and consider the following model.

S̃EP/WY =
X

x2⇤

�

 ̄(x)�µP�([rµ �r†
µ]/2) (x) + z+ ̄(x)�µP+([rµ �r†

µ]/2) (x)
 

�
X

x2⇤
y Ea(x) { T(x)i�5CDT

aP+ (x) +  ̄(x)P�i�5CDT
a† ̄(x)T }

�
X

x2⇤
wEa(x) { T(x)i�5CDT

a(rµr†
µ/2)P+ (x)

+ ̄(x)P�i�5CDT
a†(rµr†

µ/2) ̄(x)
T }. (6.57)

In this model, the consistency condition for hXa(x)i 6= 0 is given by

f(m0, z+, y, w) ⌘ 1� 9

32

1

V

X

k 6=0

4

�D̃0(k ;X0) + D̃0(k0 ;X0)

�

�

�

�

Xc

0X
c

0=1

> 0, (6.58)

where k0µ = 0 or ⇡(15)µ depending on the value of the couplings z+, y, w. D̃(k ;X0) is the
fourier transform of the kinetic operator,

D0(x� y ;X0) = Xc
0X

c
0B

0(x� y) + (z+/2)
2A0(x� y), (6.59)

where B0(x� y) and A0(x� y) are defined by

B0(x� y) =
1

V

X

k

eikx
1

V

X

q

n

W̃ (q + k)2 + W̃ (q)2 + 2W̃ (q + k)W̃ (q)
o

⇥

W̃ (q + k)

Xa
0X

a
0 W̃ (q + k)2 + (z+/2)2 sin2(q + k)

W̃ (q)

Xa
0X

a
0 W̃ (q)2 + (z+/2)2 sin2(q)

,

(6.60)

A0(x� y) =
1

V

X

k

eikx
1

V

X

q
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W̃ (q + k)2 + W̃ (q)2 + 2W̃ (q + k)W̃ (q)
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⇥

sin(q + k)µ

Xa
0X

a
0 W̃ (q + k)2 + (z+/2)2 sin2(q + k)

sin qµ

Xa
0X

a
0 W̃ (q)2 + (z+/2)2 sin2(q)

,

(6.61)

and W = y + (w/2)r†
µrµ. In fig. 11, f(m0, z+, y, w) is plotted as the function of z+ for

y = w = 1 and m0 = 1. The singular behavior of the plots around z+ ' 1.4 indicates the
fact that at a certain critical value z+ = zc+(' 1.4) the kinetic operator degenerates: D̃0(0) =

D̃0(k) = D̃0(⇡(15)), where D̃0(k) ⌘ D̃0(k ;X0)
�

�

X2
0=1

. For z+ < zc+, D̃0(k)  D̃0(⇡(15)) and
the saddle point is assumed to be Anti-Ferromagnetic, hXa(x)i = Xa

0 (�1)xµ . For z+ > zc+,
D̃0(k)  D̃0(0) and the saddle point is assumed to be Ferromagnetic, hXa(x)i = Xa

0 . In
both cases, f(m0, z+, y, w) < 0 and the fluctuation of the spin field Ea(x) is too large to
maintain the non-zero expectation value of the spin field hEa(x)i. Thus the model is in the
PMS phase in the entire region of the coupling z+ (y = 1) up to z+ ' 15.

In the case of the model S̃Ov, we found that D̃(k)  D̃(0) for the entire region z+ � 0,
where D̃(k) ⌘ D̃(k ;X0)

�

�

X2
0=1

. And the saddle point is assumed to be Ferromagnetic,
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w = w̄ and consider the following model.
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where k0µ = 0 or ⇡(15)µ depending on the value of the couplings z+, y, w. D̃(k ;X0) is the
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and W = y + (w/2)r†
µrµ. In fig. 11, f(m0, z+, y, w) is plotted as the function of z+ for

y = w = 1 and m0 = 1. The singular behavior of the plots around z+ ' 1.4 indicates the
fact that at a certain critical value z+ = zc+(' 1.4) the kinetic operator degenerates: D̃0(0) =

D̃0(k) = D̃0(⇡(15)), where D̃0(k) ⌘ D̃0(k ;X0)
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0=1

. For z+ < zc+, D̃0(k)  D̃0(⇡(15)) and
the saddle point is assumed to be Anti-Ferromagnetic, hXa(x)i = Xa

0 (�1)xµ . For z+ > zc+,
D̃0(k)  D̃0(0) and the saddle point is assumed to be Ferromagnetic, hXa(x)i = Xa

0 . In
both cases, f(m0, z+, y, w) < 0 and the fluctuation of the spin field Ea(x) is too large to
maintain the non-zero expectation value of the spin field hEa(x)i. Thus the model is in the
PMS phase in the entire region of the coupling z+ (y = 1) up to z+ ' 15.

In the case of the model S̃Ov, we found that D̃(k)  D̃(0) for the entire region z+ � 0,
where D̃(k) ⌘ D̃(k ;X0)
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. And the saddle point is assumed to be Ferromagnetic,
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=>

No SO(10) symmetry breaking !
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Figure 11. f(m0, z+, y, w) vs. z+ (y = w = 1): The consistency condition for the SO(10)
symmetry breaking in the effective spin model of S̃EP/WY within the saddle point analysis in the
spirit of the large N expansion.

hXa(x)i = Xa
0 . Therefore the coupling-constant space of the model S̃Ov should correspond

to the region of the weaker Majorana-Yukawa coupling, z+ > zc+, within the coupling-
constant space of the model S̃EP/WY. This fact is also supporting the picture that the PMS
phase extends all the way to the limit of the weak Majorana-Yukawa coupling y/z+ = 0 in
our SO(10) model S̃Ov.
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Figure 12. f(m0, z+, y) and f(m0, z+, y, w) vs. z+ (y = 1 and y = w = 1, respectively): The
consistency condition for the SO(6) symmetry breaking in the effective spin models of S̃Ov and
S̃EP/WY in the cases with the reduced symmetry SO(6).

One may study these models, S̃Ov and S̃EP/WY, as the counter part of the reduced stag-
gered fermion model with the SU(4)/SO(4) and Z4 symmetries by reducing SO(10) sym-
metry to SO(6)(Spin(6)=SU(4)) and SO(4)(=SU(2)+ ⇥ SU(2)�) (or SO(3)(=SU(2)+)).14

In fig. 12, the results of the similar saddle point analysis for the models with the SO(6)
symmetry are shown in comparison with those with the SO(10) symmetry. In the model

14For the models with the symmetries reduced from SO(10), one may reformulate the model SOv more
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1)Phase transitions, Phase structures                in EW theory & GUT theories 

2)Realizations of gauge and flavors symmetries in EW theory & GUT theories

3)Baryon & Lepton numbers generations 

a. B symmetry violation/chiral anomaly, CP violation, non-equilibrium process

b. Chern# diffusion process, Spharelon process

4)Phase transitions in the early Universe, Dynamics of Inflation

       and so on

applications of lattice Standard Model/ SO(10) CGTs

Schwinger-Keldysh formalism for lattice gauge theories
       real-time, non-equilibrium dynamics / finite-temperature・density

Lefschetz-Thimble methods   

       sign problem
       generalized method(GLTM),  tempered method(tLTM)
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⟨Ô(t)⟩ ≡ Tr
[{

T̂+1

}β {
T̂−i

}T {
T̂+i

}T−t
Ô
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Ô
{
T̂+1

}τ] /
Z(β, µ)

T̂+1 = e−a0Ĥ
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ρ̂
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Ĥ − µN̂ = E(b̂†b̂+ d̂†d̂)− µ(b̂†b̂− d̂†d̂)

Z[β, µ] = Tr e−β(Ĥ−µN̂)
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=

∫
D[b, b†]D[d, d†] e−S[b,b†,d,d†]

2NT∏

s=0

detαs∆s

I =

∫
D[b, b†]D[d, d†]|b, d⟩ e−(b†b+d†d) ⟨b†d†|

S[b, b†, d, d†] =
∑

τ

{
b†t(bt − e−a0(E−µ)bt−1)− dt(d

†
t − e−a0(E+µ)d†t+1)

}

τ = 0, 1, 2, · · · , Nβ − 1

s = 0, 1, 2, · · · , NT − 1,

NT , · · · , 2NT − 1,

2NT , · · · , 2NT +Nβ − 1

τ = 0, 1, 2, · · · , Nβ − 1

t = 0, 1, 2, · · · , NT − 1

3

Closed Time Path

∆s =

⎧
⎨

⎩

+i+ ϵ s = 0, · · · , NT − 1
−i+ ϵ s = NT , · · · , 2NT − 1
+1 s = 2NT , · · · , 2NT +Nβ

∆s =

⎧
⎨

⎩

+i+ ϵ
−i+ ϵ
+1

S[∆]
B =

∑

s,x

{
1

∆s
φ(s)†∂†s∂sφ(s) +

(
∆s +∆s+1

2

)(
m2

0φ(s)
†φ(s) +

λ0
2
(φ(s)†φ(s))2

)}

Z [∆]
B (β, T ) = ZB(β)

TB(∆) · TB(−∆) = 1

∆ = ±i

S[∆]
W =

∑

s,x

ψ̄(τ, x)D[∆]
W ψ(s, x)

=
∑

s,s′,x

ψ̄(s, x)

{
−
(
1− γ0

2

)
δs+1,s′ e

−µ −
(
1 + γ0

2

)
δs,s′+1 e

+µ

+

(
1 + a0

[
γk

1

2

(
∇k −∇†

k

)
+

1

2
∇k∇

†
k +m

])
Vs,s′

}
ψ(s′, x)

Vs,s′ =
∆s + 1

2

(
1− γ0

2

)
δs,s′−1 +

∆s−1 + 1

2

(
1 + γ0

2

)
δs,s′+1

+

[
∆s − 1

2

(
1 + γ0

2

)
+

∆s−1 − 1

2

(
1− γ0

2

)]
δs,s′

4

* to recover in the continuum limit
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T̂−iT̂+i = I, T̂−i = Â
{
T̂+i

}†
Â−1

T̂+1T̂±i − T̂±iT̂+1 ̸= 0

T̂−iT̂+i = I, T̂±i = Â Û±i Â
−1

T̂+1T̂±i − T̂±iT̂+1 ̸= 0

ρ̂

⟨Ô(t)⟩ ≡ Tr
[
ρ̂
{
T̂−i

}T {
T̂+i

}T−t
Ô
{
T̂+i

}t
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Z

⟨Ô(t)⟩ ≡ Tr
[{

T̂+1

}β {
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}T {
T̂+i

}T−t
Ô
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}t
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Z

Z[β] = Tr e−βĤ

=

∫
D[A]D[ψ]D[ψ̄] e−S[A,ψ,ψ̄]

Ak(τ + β,x) = Ak(τ,x)

ψ(τ + β,x) = −ψ(τ,x)

β = Nβa0
a0 = a = 1

2

Construct Transfer matrixes for 
Scalar, Link and Wilson fermion fields so that

 [Alexandru et al.(2016)] [Fujii, Hoshina & YK]



Schwinger-Keldysh formalism for Lattice Gauge Theory(QCD)
[Fujii, Hoshina & YK]

U0(x, s) = 1 (s = 0, · · · , 2NT +Nβ − 2), U0(x, 2NT +Nβ − 1) = P (x)
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∑
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∆
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∏
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∏
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r
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2
)}∆

Trr{UkU
′
k
†}×

e
−
∑

x

∑
kl

∆
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(10)

where we use the character expantion

e
− 1

g2
Tr{2−U−U†}

= e
− 2Nc
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2
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Trr{U} (11)

e
− 1

g2
{1−cos θ}
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∏
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∆s =

⎧
⎨

⎩

+i+ ϵ s = 0, · · · , NT − 1
−i+ ϵ s = NT , · · · , 2NT − 1
+1 s = 2NT , · · · , 2NT +Nβ
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⎧
⎨

⎩

+i+ ϵ
−i+ ϵ
+1
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B =
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φ(s)†∂†s∂sφ(s) +

(
∆s +∆s+1

2

)(
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0φ(s)
†φ(s) +
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2
(φ(s)†φ(s))2
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Z [∆]
B (β, T ) = ZB(β)

TB(∆) · TB(−∆) = 1
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W =

∑
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ψ̄(τ, x)D[∆]
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∑
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(
1− γ0

2

)
δs+1,s′ e

−µ −
(
1 + γ0

2

)
δs,s′+1 e

+µ

+

(
1 + a0

[
γk

1

2

(
∇k −∇†

k

)
+

1

2
∇k∇

†
k +m

])
Vs,s′

}
ψ(s′, x)

S[∆]
W =

∑

s,s′,x

ψ̄(s, x)
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1− γ0

2
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−µ −
(
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2

)
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+µ + δss′
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γk

1

2

(
∇k −∇†

k

)
+

1

2
∇k∇

†
k +m

]
Vs,s′

}
ψ(s′, x)
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2
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1
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]
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U0(x, s) = 1 (s = 0, · · · , 2NT +Nβ − 2), U0(x, 2NT +Nβ − 1) = P (x)
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)]
δs,s′

ZG[β, T ] = ZG[β]

TG(∆) · TG(−∆) = 1

5

Uµ(τ,x) → Uµ(τ,x) e
−µ

Flat[β, µ] = − 1

β
lnZlat[β, µ] ≃ c0

1

a2
µ+ c1µ

3 + · · ·

c0 = 0

Ĥ − µN̂ = E(b̂†b̂+ d̂†d̂)− µ(b̂†b̂− d̂†d̂)

Z[β, µ] = Tr e−β(Ĥ−µN̂)

= Tr {e−a0(Ĥ−µN̂)}Nβ

=

∫
D[b, b†]D[d, d†] e−S[b,b†,d,d†]

2NT∏

s=0

detαs∆s

I =

∫
D[b, b†]D[d, d†]|b, d⟩ e−(b†b+d†d) ⟨b†d†|

S[b, b†, d, d†] =
∑

τ

{
b†t(bt − e−a0(E−µ)bt−1)− dt(d

†
t − e−a0(E+µ)d†t+1)

}

τ = 0, 1, 2, · · · , Nβ − 1

s = 0, 1, 2, · · · , NT − 1,

NT , · · · , 2NT − 1,

2NT , · · · , 2NT +Nβ − 1

τ = 0, 1, 2, · · · , Nβ − 1

t = 0, 1, 2, · · · , NT − 1

3

Closed Time Path
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Spectral function

Responce to time-dependent external source

Conductivity & Kubo’s responce function

p0 ∈
[
− π

a0
,+ π

a0

]
a0 = 1

ρ(p, β)T =
∑

x,t

eip0t−ipx
〈[
φ(t+ T/2,x),φ(T/2,0)

]〉
β

GR(x, x
′) = θ(t− t′)

〈[
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]〉
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T̂+i

}†
= A T̂−i A

−1,

T̂+1T̂±i − T̂±iT̂+1 ̸= 0

ρ̂
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conserved U(1) current
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1

⟨J̄k(t,x)⟩β [V0]

⟨J̄k(t,x)⟩β [V0] ≃
∑

t′x′

GR(t,x; t
′,x′)A0(t

′,x′)

V0(t,x) = eie0A0(t,x) ⇐⇒ J0(t,x)

GR(x, x
′) = iθ(t− t′)

〈[
J̄k(t,x), J̄0(t

′,x′)
]〉
β

p0 ∈
[
− π

a0
,+ π

a0

]

ρ(p, β)T ≡
∑

x,t

eip0t−ipx
〈[
φ(t+ T/2,x),φ(T/2,0)

]〉
β

t > t′

GK
kl(x, x

′) =
1

Nβ

−Nβ−t′∑

s′=t′

∑

x

〈[
J̄k(t,x), J̄l(s

′,x′)
]〉
β

σ =
1

d

T∑

t=t′0

−Nβ−t′0∑

s′=t′0

∑

x

〈[
J̄k(t,x), J̄k(s

′,x′)
]〉
β
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)

– 1 –

Morse function:

h ≡ −ReS[z]. (1.5)

the flow equation:

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ R. (1.6)

h is monotonically decreasing along the flow:

d

dt
h = −1

2

{
∂S[z]

∂z
· d

dt
z(t) +

∂S̄[z̄]

∂z̄
· d

dt
z̄(t)

}
= −

∣∣∣∣
∂S[z]

∂z

∣∣∣∣
2

≤ 0. (1.7)

a critical point σ:

∂S[z]

∂z

∣∣∣∣
z=zσ

= 0. (1.8)

A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,

∂S[z]

∂z

∣∣∣∣
z=0

= 0, (1.9)

there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]

∂zi∂zj

∣∣∣∣
z=0

. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)
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critical points zσ :

are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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1 Equi-phase contour of the Path-Integration

x ∈ CR (⊆ Rn) −→ x+ iy = z ∈ Cn (1.1)

Let us consider a system with a complex action,

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.2)

The partition function is defined by the path-integration as

Z =

∫

CR
D[x] exp{−S[x]}, (1.3)

where the measure and the contour of the path-integration are specified as D[x] = dnx and

CR = Rn.

We then introduce a complexified model by the analytic continuation of the variable

xi ∈ R to the complex number zi = xi + iyi ∈ C, z ∈ Cn. Accordingly, the action of

the complexified model, S[z], is defined as the holomorphic extension of S[x]. Then, the

path-integration for the partition function may be defined along a certain complex contour

C in Cn by the analytic continuation of CR,

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}. (1.4)

We choose the contour C so that the imaginary part of the action, ImS[z], is constant

along the contour. Since the variation of ImS[z] is given by

δImS[z] =
1

2i

{
∂S[z]

∂z
· δz − ∂S̄[z̄]

∂z̄
· δ̄z

}
(1.5)

for z → z + δz, such a contour can be defined by the differential equations,

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ [−∞,+∞]. (1.6)
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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Lefschetz thimble         (    )  (n-dim. real mfd.)
= the union of all down(up)ward flows which 
   trace back to zσ in the limit t goes to -∞

are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =
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CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that ⟨CR,Kσ⟩ = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that ⟨CR,Kσ⟩ = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

⟨O[z]⟩ = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ ⟨O[z]⟩Jσ , (2.6)

where

⟨O[z]⟩Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

⟨O[z]⟩ = ⟨O[z]⟩Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While ⟨O[z]⟩Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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Morse function:

h ≡ −ReS[z]. (1.5)

the flow equation:

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ R. (1.6)

h is monotonically decreasing along the flow:

d

dt
h = −1

2

{
∂S[z]

∂z
· d

dt
z(t) +

∂S̄[z̄]

∂z̄
· d

dt
z̄(t)

}
= −

∣∣∣∣
∂S[z]

∂z

∣∣∣∣
2

≤ 0. (1.7)

a critical point σ:

∂S[z]

∂z

∣∣∣∣
z=zσ

= 0. (1.8)

A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,

∂S[z]

∂z

∣∣∣∣
z=0

= 0, (1.9)

there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]

∂zi∂zj

∣∣∣∣
z=0

. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.
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Z =
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where the measure is given by D[x] = dnx.
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the associate gradient (downward) flow equation is given by7
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Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that
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{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
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∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i
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∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
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1 Equi-phase contour of the Path-Integration

x ∈ CR (⊆ Rn) −→ x+ iy = z ∈ Cn (1.1)

Let us consider a system with a complex action,

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.2)

The partition function is defined by the path-integration as

Z =

∫

CR
D[x] exp{−S[x]}, (1.3)

where the measure and the contour of the path-integration are specified as D[x] = dnx and

CR = Rn.

We then introduce a complexified model by the analytic continuation of the variable

xi ∈ R to the complex number zi = xi + iyi ∈ C, z ∈ Cn. Accordingly, the action of

the complexified model, S[z], is defined as the holomorphic extension of S[x]. Then, the

path-integration for the partition function may be defined along a certain complex contour

C in Cn by the analytic continuation of CR,

Z =

∫
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D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}. (1.4)

We choose the contour C so that the imaginary part of the action, ImS[z], is constant

along the contour. Since the variation of ImS[z] is given by

δImS[z] =
1

2i

{
∂S[z]

∂z
· δz − ∂S̄[z̄]

∂z̄
· δ̄z

}
(1.5)

for z → z + δz, such a contour can be defined by the differential equations,

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ [−∞,+∞]. (1.6)
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Since the Gaussian fixed point z = 0 is usually a critical point,
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there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]
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. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that ⟨CR,Kσ⟩ = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that ⟨CR,Kσ⟩ = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

⟨O[z]⟩ = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ ⟨O[z]⟩Jσ , (2.6)

where

⟨O[z]⟩Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

⟨O[z]⟩ = ⟨O[z]⟩Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While ⟨O[z]⟩Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While ⟨O[z]⟩Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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Morse function:

h ≡ −ReS[z]. (1.5)

the flow equation:

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ R. (1.6)

h is monotonically decreasing along the flow:

d

dt
h = −1

2

{
∂S[z]

∂z
· d

dt
z(t) +

∂S̄[z̄]

∂z̄
· d

dt
z̄(t)

}
= −

∣∣∣∣
∂S[z]

∂z

∣∣∣∣
2

≤ 0. (1.7)

a critical point σ:

∂S[z]

∂z

∣∣∣∣
z=zσ

= 0. (1.8)

A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,

∂S[z]

∂z

∣∣∣∣
z=0

= 0, (1.9)

there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]

∂zi∂zj

∣∣∣∣
z=0

. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)
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are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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Path-integral on Lefschetz thimbles



And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that ⟨CR,Kσ⟩ = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that ⟨CR,Kσ⟩ = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

⟨O[z]⟩ = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ ⟨O[z]⟩Jσ , (2.6)

where

⟨O[z]⟩Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

⟨O[z]⟩ = ⟨O[z]⟩Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While ⟨O[z]⟩Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.

– 4 –

Partition function

are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a
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∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −
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∂S[z]
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while the imaginary part of the action stays constant,

d
dt

ImS[z] =
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dt

z(t)− ∂S̄[z̄]
∂z̄

· d
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}
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that ⟨CR,Kσ⟩ = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that ⟨CR,Kσ⟩ = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

⟨O[z]⟩ = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ ⟨O[z]⟩Jσ , (2.6)

where

⟨O[z]⟩Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

⟨O[z]⟩ = ⟨O[z]⟩Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While ⟨O[z]⟩Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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Observables

Monte Carlo on Lefschetz Thimbles:  
no `local’ sign-problem, but huge numerical cost
multiple Thimbles may constribute,

    then `global’ sign-problem may remains
simple Thimble structure in SK formalism

one-site Hubbard, 0,1,2+1 massive Thirring,  1+1 massive Schwinger model 
0,1,3+1 λφ4 μ model,  1+1 massless Schwinger model

generalized LTM: 
GLTM(contraction algo.) 
tLTM  (parallel tempering)

[Alexandru et al.(2016)]
[Fukuma & Umeda(2017)]



Summary

the Standard Model / SO(10) chiral gauge theory on the lattice

Schwinger-Keldysh formalism for lattice gauge theories

       real-time, non-equilibrium dynamics / finite-temperature・density

Lefschetz-Thimble methods !?   

       to overcome the sign problem

       generalized method(GLTM),  tempered method(tLTM)



両手の鳴る音は知る。
片手の鳴る音はいかに？
　　　　　　　ー 禅の公案 ー

What is the sound of 
one hand clapping?


