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■ Electric Dipole Moment  d  
Energy shift of a spin particle in an electric field  

■ Non-zero EDM : P&T (CP through CPT) violation  
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Introduction

→ HEDM is CP-odd !

→ HEDM is P-odd



■ Origin of EDM: CP-violating (CP-odd) interactions 

SM contribution (3-loop diagram) 
Ref: [A. Czarnecki and B. Krause ’97]

CKM: CP violating interaction in SM   
But, electron and quark EDM’s are zero at 1 and 2 loop level. 
at least three loops to get non-zero EDM’s. 
EDM’s are very small in the standard model. 
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nucleon EDM  from CKM : ~ 10-32   [e cm]

CP violation (CPV) in SM is not sufficient to  
reproduce matter/antimatter asymmetry. 
Large CPV beyond SM is required. (Sakharov’s 
three conditions)

•http://www.esa.int/ESA
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SM prediction

Observation
photon: matter
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meson-baryon couplings. From the large Nc analysis, this error is estimated to be
O(100%). The accuracy of the contribution of the |∆S| = 1 four-quark interac-
tions to the |∆S| = 1 interbaryon potential is expected to be improved through
the phenomenological and EFT analyses of the nonleptonic weak decays of hyper-
ons130, 140–143 and hypernuclei.144–150

The nucleon EDM contribution to the nuclear EDM is also an important source
of uncertainty. The long distance effect of the nucleon EDM from the CKM CP
phase was estimated to be O(10−32)e cm in many previous works,151–154 an order
of magnitude smaller than the EDM of light nuclei (see Table 5). The contribution
of the nucleon EDM is not enhanced inside the nucleus, due to the spin quenching
factor smaller than one (see Section 3). The uncertainty is however enlarged due to
unknown relative sign with the nuclear EDM.154

We should note that the tree level CKM contribution with higher dimension op-
erators was also evaluated, yielding a nucleon EDM of dn ∼ O(10−31)e cm.155 There
the baryon matrix elements were estimated using the naive dimensional analysis,
with a suppression factor of 1

3 due to the strange quark. However, from recent lat-
tice QCD analyses of nucleon matrix elements such as the nucleon strange content
or the axial charge, it is known that the strange quark effect is smaller by one or
two orders of magnitude.156–168 This result for the nucleon EDM should therefore
be recognized as the upper limit of the theoretical uncertainty.

8. Prospects for the search of new physics beyond standard model

8.1. Prospects for several candidate models

(a) (b) (c) (d)

Fig. 9. Diagrammatic representation of several known important elementary level CP violating
processes contributing to the nuclear EDM. The dashed lines denote the boson of new physics
BSM. (a) One-loop level quark chromo-EDM, (b) Barr-Zee type two-loop level diagram, (c) CP-
odd four-quark interaction, (d) Weinberg operator.

Let us now see the prospects for the discovery of new physics BSM. After the
integration of new particles, the CP violation BSM generates several dimension-six

Origin of EDM: CP-violating (CP-odd) BSM physics
BSM particles

CPV int.

CP-odd four-quark Weinberg op.

EDM is usually measured using composite particles (neutron, atoms, etc)

[N. Yamanaka, et al. Eur. Phys. J. A53 (2017) 54, Ginges and Flambaum Phys. Rep. 397, 63, 2004]

BSM may induce EDM in lower loop level: a good probe of new physics

EDM effects may be enhanced in the composite system.

S

nucleon
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(θ-term)(PQM)
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BSM physics:

Fig. 1. Flow diagram of the dependence of the elementary level P,CP-odd processes on the EDMs of composite systems, whose
EDMs can be measurable. “RGE” means renormalization group evolution and “PQM” means Peccei-Quinn mechanism.

negligible due to the small neutrino mass. If the neutrinos are
Majorana fermions the effect of additional CP phases can gen-
erate the electron EDM from the two-loop level, and a larger
value will be allowed for de [62,63,64,65].

Purely gluonic CP-odd processes such as the θ-term or the
Weinberg operator are also known to be very small. The θ-term
generated by the CKM phase is θ̄ ∼ 10−17 [66,67], which yields
a nucleon EDM of |dN | ∼ 10−33e cm. The Weinberg operator
gives an even smaller nucleon EDM, of order 10−40e cm [68].

In the strongly interacting sector, the most widely accepted
leading hadronic CP violation due to the CP phase of the CKM
matrix is generated by the long distance effect. The long dis-
tance contribution of the CKM phase arises from the interfer-
ence between the tree level strangeness violating |∆S| = 1 W
boson exchange process and the penguin diagram (see Fig. 2),
which forms the Jarlskog invariant (7). From a naive dimen-
sional analysis, the nucleon and nuclear EDMs are estimated
as d ∼ O(αs

4πG
2
FJΛ

3
QCD) ∼ 10−32e cm, which is larger than the

contribution from the short distance processes (quark EDM,
chromo-EDM, Weinberg operator, etc). Previous calculations
of the nucleon EDM are in good agreement with this estima-
tions [69,70,71,72,73,74,75,76,77,78].

The CP violating effects in the SM exhibit an EDM well
smaller than the experimental detectability, and a large room
is left for the discovery of new source of CP violation BSM.
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Fig. 2. Tree level |∆S| = 1 W boson exchange diagram (left)
and the penguin diagram (right).

2.3 Sources of CP violation from BSM physics

In many scenarios of BSM, large EDMs are predicted, because
of higher order contributions that can arise at the one- or
two-loop levels. These contributions are overwhelmingly ex-
ceed over the loop suppressed SM contribution. In Fig. 4, we
present the typical lowest order CP violating processes of BSM
contributing to the EDMs at the elementary level. In this sub-
section, we would like to elaborate several such well motivated
candidates of BSM which can generate EDMs.

�6

•Nucleon EDM 

Role of (lattice) QCD : connect quark/gluon-level (effective) operators to 
hadron/nuclei matrix elements and interactions (Form factor, dn) 

Non-perturbative determination is important → Lattice QCD calculation!

Important bottleneck 
of the EDM calculation!

[N. Yamanaka, et al. Eur. Phys. J. A53 (2017) 54, Ginges and Flambaum Phys. Rep. 397, 63, 2004]



199
Hg spin precession (UW) [Graner et al, 2016] 

Ultracold Neutrons in a trap (ILL) [Baker 2006]   

SM nucleon EDMs expectation is 

much smaller than the current bound.  

•Nucleon EDM Experiments

|dHg| < 7.4⇥ 10�30 e · cm
|dn| < 2.6⇥ 10�26 e · cm

Current nEDM limits:

■ Several experimental projects are on going. 
nucleon, charged hadrons, lepton,  
PSI EDM, Munich FRMII, SNS nEDM, RCNP/TRIUMF, J-PARC etc…

Neutron	EDM	Searches	
•  Predic.ons	

–  Standard	Model		
|dn|	∼	10-31	e⋅cm	

–  Supersymmetry		
|dn|	∼	10-25	–	10-28	e⋅cm	

•  Experiments	targe.ng	
5�10-28	e⋅cm	precision	
–  PSI	EDM	
– Munich	FRMII	
–  RCNP/TRIUMF	
–  SNS	nEDM	
–  JPARC	
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[B. Yoon, talk at Lattice 2017]



dim=4,

•Effective CPV operators

✓QCD

dim=6, Weinberg three gluon

dim=5, e, quark EDM

dim=5, chromo EDM

                        :  Strong CP problem 
Dim=5 operators suppressed by             -> effectively dim=6,  
quark EDM … the most accurate lattice data for EDM (~5% for u,d) 
Others are not well determined. cEDM, Weinberg ops just started. 

+
X

C(4q)
i O

(4q)
i

dim=6, Four-quark operators

✓̄  O(10�10)
mq/⇤
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                  induced Nucleon EDMs

[E. Shintani, T. Blum, T. Izubuchi, A. Soni, PRD93, 094503(2015)]

[1] M. Pospelov, A. Ritz, Nuclear Phys. B 573 (2000) 177,  
[2] M. Pospelov, A. Ritz, Phys. Rev. Lett. 83 (1999) 2526,  
[3] J. Hisano, J.Y. Lee, N. Nagata, Y. Shimizu, Phys. Rev. D 
85 (2012) 114044.

✓QCD
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FIG. 11. EDM summary plot for the neutron (top) and proton (bottom) for 2 and 3 flavor QCD.

Triangles denote results of the current study and include statistical and systematic errors, as

described in the text. Results for other methods are also shown: external electric field (�E) [46],

and imaginary ✓ (F3(i✓))[44, 45]. Previous results show statistical errors only. Right-triangle is

result in Nf = 2+ 1+ 1 TM fermion [42] which is including systematic error. The cross symbol in

top panel denotes a range of values from model calculations of neutron EDM based on the baryon

chiral perturbation theory [7, 17, 20].
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method value
ChPT/NDA ⇠ 0.002 e fm
QCD sum rules [1,2] 0.0025± 0.0013 e fm
QCD sum rules [3] 0.0004+0.0003

�0.0002 e fm

Phenomenological estimates Lattice calculations

Phenomenology: |dn| ~ θQCD 10^{-3} e fm -> |θQCD| < 10^{-10} 
Lattice : |dn| ~  θQCD 10^-2 e fm -> severer constraint on |θQCD| 

Problem: a spurious mixing between EDM and magnetic moments in all 
previous lattice computations of nucleon form factor.



Parity mixing problem  
on  

the CP-violating nucleon form factors

M. Abramczyk, S. Aoki, T. Blum, T. Izubuchi, H. Ohki, and S. Syritsyn, 
Lattice calculation of electric dipole moments and form factors of the nucleon  
Phys.Rev. D96 (2017) no.1, 014501, selected editor’s suggestions

https://inspirehep.net/record/1510883


Nucleon form factor in C, P-symmetric world (CP-even) 

(q = p0 � p, Q2 = �q2)

hp0,�0|Jµ|p,�i = ūp0,�0


F1(Q

2)�µ + F2(Q
2)
i�µ⌫q⌫
2mN

�
up,�

(/p�mN )up = 0

up : spinor wave function for the nucleon ground state |p,σ> 

N N

J : electromagnetic current

Definition of nucleon form factors



Nucleon form factor in CP-broken world

hp0,�0|Jµ|p,�i = ūp0,�0


F1(Q

2)�µ + F2(Q
2)
i�µ⌫q⌫
2mN

� F3(Q
2)
�5�µ⌫q⌫
2mN

�
up,�

P, T even P, T odd

The same spinor up (F1, F2 are same as CP-even case.)    
Non-zero F3 is a signature of the CP violation (F3= 0 -> CP-even) 
permanent EDM:  

Definition of nucleon form factors

Refs. [many textbooks, e.g. Itzykson, Zuber, “Quantum Field Theory“]

All previous lattice studies (prior to 2017) use a different spin structure for 
the form factors.



revisit of the nucleon CP-odd (EDM) form 



Lattice nucleon operator for sink and source N = u[uTC�5d]

h0|N |p,�iCP�even = Zup,� Nucleon ground state in CP-even vacuum

up is a solution spinor of the free Dirac equation: (/p�mN )up = 0

Nucleon 2 point function in CP-conserving theory

C2pt(~p; t)CP�even = hN(~p; t)|N̄(~p; 0)iCP�even

= hN(~p, t)

2

4
X

k,�

|k,�ihk,�|
2Ek

3

5 N̄(~p; 0)iCP�even + (excited states)

!
t!1

|Z|2 e
�Ept

2Ep
(
X

�

up,�ūp,�)

= |Z|2e�EptmN � i/p

2Ep

Completeness condition for free Dirac 
spinor

(From now on excited states are omitted.)



Nucleon ground state in CP-broken vacuum

is a solution spinor of the free Dirac equation: 

Completeness condition for free Dirac 
spinor

h0|N |p,�i��CP = Zũp,�

Asymptotic state is modified: (CP-violating) γ5 mass is allowed in general.

ũp (/p�mNe�2i↵�5)ũp = 0

C2pt(~p; t)��CP = hN(~p; t)|N̄(~p; 0)i��CP

= |Z|2 e
�Ept

2Ep
(
X

�

ũp,�
¯̃up,�)

= |Z|2e�EptmNe2i↵�5 � i/p

2Ep

ũp = ei↵�5up is a solution to the above Dirac equation.
X

�

ũp,�
¯̃up,� = ei↵�5(

X

�

up,�ūp,�)e
i↵�5 = mNe2i↵�5 � i/p

[Completeness condition for free Dirac spinor with γ5 mass]

Nucleon 2 point function in CP-broken theory



①

C3pt(~p0, t; ~p, ⌧)��CP =
X

~y,~z

e�i~p0·~y+i~p·~zhN(~y, t)Jµ(~z, ⌧)N̄(0)i��CP

= |Z|2 e
�Ep0 (t�⌧)�Ep(⌧)

4Ep0Ep

X

�,�0

hN(p0)|p0,�i��CP hp0,�|Jµ|p,�0i��CP hp,�0|N(p)i��CP

② ③

h0|N |p,�i��CP = Zũp,�① & ③:

②:

: defined in the rotated spinor basis       F̃1, F̃2, F̃3 (ũ)

(
F2(Q2) 6= F̃2(Q2)

F3(Q2) 6= F̃3(Q2)

hp0,�0|Jµ|p,�i��CP = ¯̃up0,�0


F̃1(Q

2)�µ + F̃2(Q
2)
i�µ⌫q⌫
2mN

� F̃3(Q
2)
�5�µ⌫q⌫
2mN

�
ũp,�

(ũ)(u)

Calculation of 3 point function in CP-broken theory

Refs: original works since 2005

“All” previous (prior 2017) lattice studies:

Two form factors are different!



There is a spurious contribution of order (α F2) to the previous lattice results. 
In other words, CP violation effects come from both tilde{F3} and α, not only tilde{F3}. 

(F2 + iF3�5) = e2i↵�5(F̃2 + iF̃3�5), ,
(
F̃2 = cos (2↵)F2 + sin (2↵)F3

F̃3 = � sin (2↵)F2 + cos (2↵)F3

[textbook]

¯̃up0,�0


F̃1�

µ + (F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
ũp,� = ūp0,�0


F̃1�

µ + e2i↵�5(F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
up,�

⌘ ūp0,�0


F1�

µ + (F2 + iF3�5)
i�µ⌫q⌫
2mN

�
up,�[conventional “lattice” parametrization 

since 2005]

Relation between two spinor basis

This mixing angle α has to be calculated, and rotated away to get “net” CP-violation effect. 

Similar issues in the ChPT (perturbative) calculations? (α may appear in the mass correction.)

{F1, F2, F3} {F̃1, F̃2, F̃3}Relation between                          and



Numerical check using the chromo EDM operator 

Form factor method  
vs  

Energy shift method

Computational resources : ACCC HOKUSAI greatwave, Fermilab, JLab [USQCD project]

Nucleon EDMs on a Lattice  
at the Physical Point

Sergey N. Syritsyn,  
Stony Brook University & RIKEN / BNL Research Center 

together with LHP and RBC collaborations

LATTICE 2018 
East Lansing, MI, July 22-28, 2018

Nucleon EDMs on a Lattice  
at the Physical Point

Sergey N. Syritsyn,  
Stony Brook University & RIKEN / BNL Research Center 

together with LHP and RBC collaborations

LATTICE 2018 
East Lansing, MI, July 22-28, 2018



How to calculate CP-odd interaction on a lattice

Linearization of CP-odd interaction (e.g.：θ-EDM)

e�SQCD�i✓Q = e�SQCD
⇥
1� i✓Q+O(✓2)

⇤

hOi��CP = hOiCP�even � i✓hQ · OiCP�even +O(✓2)

(CP-even) (CP-odd)

CPV operator : Q, cEDM, etc…,   θ << 1 

Original (CP-even) gauge configurations can be used. No sign problem.

c.f. Dynamical simulation including CP-odd interactions

Non-perturbative treatment of CP-odd interactions. 
Analytic continuation to imaginary θ. 
Need additional simulation for ensemble generations to get non-zero topological sector. 
Check linearity of θ  (ensemble generation for various imaginary θ)

hOi✓ ⇠

Z
DU(O)e�SQCD�✓imagQ [R. Horsley et al.  (2008); H. K. Guo, et al., 2015)]



•Chromo EDM operator 

Dimention 5 CP violating operator, mixing with dim-3 pseudo scalar operator. 

Beyond standard model origin 

Chiral symmetry is important.  
The clover term in Wilson-type action = Chromo-magnetic dipole moment 
(chromo-MDM). 

In presence of CPv, additional operator mixing of chromo-MDM appears. 

➡We use chirally symmetric domain wall fermion  
(gauge ensemble by RBC-UKQCD 

Nucleon EDMs on a Lattice at the Physical Point LATTICE2018, East Lansing, MI, July 22-28

    

Sergey N. Syritsyn

Quark Chromo-EDM on a Lattice

Chiral symmetry is important: 
O(a) clover term in, e.g., Wilson fermion action ≣ chromo-magnetic DM

Lclover = a
c

4
q̄ [Gµ⌫�

µ⌫ ] q

LcEDM =
X

q=u,d

�̃q
2
q̄ [Gµ⌫�

µ⌫�5] q

In presense of CPv,  condensate is realigned  q ! ei�5⌦q

hvac|Lm + L��CP |⇡ai = 0so that

leading to mixing (chromo)EDM ⟺(chromo)MDM:
�LcEDM = �(q̄ [D̃qGµ⌫�

µ⌫�5] q) = q̄ [{⌦, D̃q}Gµ⌫�
µ⌫ ] q) ⇠ �LcMDM

dim-5 operator : O(a-2) mixing with dim-3 pseudoscalar density 
⇒ evaluate&subtract p,nEDM induced by PS density P = q̄�5q

[T.Bhattacharya et al, 1502.07325]

Lclover = aq̄ [Gµνσ
µν ] q



Lattice calculation of chromo EDM operator 

Our study: only connected diagrams (without renormalization, subtraction) 

Simulation parameters 
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Insertions of the quark-bilinear cEDM density (54) can generate both connected and disconnected contractions,
similarly to the quark current. In this work, we calculate only the fully connected contributions to these correlation
functions shown in Fig. 4. The disconnected contributions (see Fig. 5) are typically much more challenging to calculate,
and we will address them in future work. Neglecting the disconnected diagrams will not a↵ect the comparison of the
form factor and the energy shift methods, because they are omitted in both calculations.

Figure 3: “Clover” definition of the gauge field strength tensor on a lattice.

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

Figure 4: Quark-connected contractions of nucleon, quark current, and cEDM operators.

Figure 5: Quark-disconnected contractions of nucleon, quark current, and cEDM operators.

Figure 6: Propagators required for computing quark-connected contractions of nucleon, quark current, and cEDM operators.

To compute the connected diagrams, we insert the quark-bilinear cEDM density (54) once in every  -quark line
of CNJN̄ diagrams, generating the four-point functions shown in Fig.4. We evaluate all the connected three- and
four-point contractions using the forward and the set of sequential propagators shown in Fig. 6. In addition to the
usual one forward F and two backward (sink-sequential) B propagators, we compute one cEDM-sequential C and
four doubly-sequential ({cEDM, sink}-sequential) (E + G) propagators per sample. For every additional value of the

●: electromagnetic current 
✖: cEDM operator

9

III. CEDM-INDUCED EDM AND EDFF ON A LATTICE

In our initial calculation of cEDM-induced nucleon EDMs, we use two lattice ensembles with Iwasaki gauge action
and Nf = 2 + 1 dynamical domain wall fermions: 163 × 32 with mπ ≈ 420 MeV [25] and 243 × 64 with mπ ≈
340 MeV [26, 27]. The ensemble parameters are summarized in Tab. I. We use identical ensembles, statistics, and
spatial sampling per gauge configuration in both calculation methods discussed in further sections.

Table I: Lattice ensembles on which the simulations were performed. Both ensembles use Iwasaki gauge action and Nf = 2+1
domain wall fermions. The statistics are shown for “sloppy” (low-precision) samples. The nucleon masses were extracted using
2-state fits. For the background electric field method, we quote the quantum of the electric field E0 = 6π

a2LtLx
.

L3
x × Lt × L5 a [fm] aml ams mπ [MeV] mN [GeV] E0 [GeV2] conf stat Nev NE=1,2

ev NCG

163 × 32× 16 0.114(2) 0.01 0.032 422(7) 1.250(28) 0.110 500 16000 200 150 100
243 × 64× 16 0.1105(6) 0.005 0.04 340(2) 1.178(10) 0.0388 100 3200 200 200 200

We use the all-mode-averaging framework [28] to optimize sampling, in which we approximate quark propagators
with truncated-CG solutions to a Möbius operator [29]. We use the Möbius operator with a short 5th dimension
L5s and complex s-dependent coefficients bs + cs = ω−1

s (later referred to as “zMobius”) that approximates the same
4-dimensional effective operator as the Shamir operator with the full L5f = 16. The approximation is based on the
domain wall-overlap equivalence

[ /D
DWF

]4d =
1 +mq

2
−

1−mq

2
γ5ϵL5

(HT ) , HT = γ5
/DW

2 + /DW

, (50)

ϵMöbius
L5s

(x) =

∏L5s

s (1 + ω−1
s x)−

∏L5s

s (1 − ω−1
s x)

∏L5s

s (1 + ω−1
s x) +

∏L5s

s (1 − ω−1
s x)

≈ ϵShamir
L5f

(x) . (51)

where the coefficients ωs are chosen so that the “sign” function ϵMöbius
L5s

(x) is the minmax approximation to the
ϵShamir
L5f

(x). We find that L5s = 10 is enough for an efficient 4-dimensional operator approximation. Shortened 5th
dimension reduces the CPU and memory requirements: for example, L5f = 16 is reduced to L5s = 10 saving 38% of
the cost. We deflate the low-lying eigenmodes of the internal even-odd preconditioned operator to make the truncated-
CG AMA more efficient. The numbers of deflation eigenvectors Nev and truncated CG iterations NCG are given in
Tab. I. We compute 32 sloppy samples per configuration. To correct any potential bias due to the approximation of
the /D operator and the truncated CG inversion, in addition we compute one exact sample per configuration using the
Shamir operator. The latter is computed iteratively by refining solutions of the “zMobius”, again taking advantage
of the short L5s and deflation.

A. Parity-even and -odd nucleon correlators

The EDFF F3 is a parity-odd quantity induced by✟✟CP interactions. To compute the effect of CP -odd interactions,
we modify the lattice action

S → S + iδCPS = S + i
∑

i,x

ci[OCP
i ]x (52)

where ci are the CP -odd couplings such as the QCD θ-angle, quark (chromo-)EDMs, etc. We Taylor-expandQCD+✟✟CP
vacuum averages in the couplings ci. For example, for the three-point function, we get4

⟨N [q̄γµq] N̄⟩
✟✟CP =

1

Z

∫

DU Dψ̄Dψe−S−iδCPS N [q̄γµq] N̄ = CNJN̄ − i
∑

i

ci δ
CP
i CNJN̄ + O(c2ψ) , (53)

where C... and δCPC... stand for CP -even and CP -odd correlators. Similarly, we also analyze the effect of✟✟CP inter-
action on the nucleon-only correlators. In total, we calculate the following two- and three-point CP -even correlators

4 In this section, all conventions for correlators, form factors, and momenta are Euclidean.



1. Form factor method



Mixing parameter induced by cEDM 

C2pt(~p; t)��CP = |Z|
2e�EptmNe2i↵�5 � i/p

2Ep

= |Z|
2 e

�Ept

2Ep
[(mN � i/p) + 2i↵mN�5] +O(↵2)

(CP-even) (CP-odd)

↵eff (t) = �
Tr

⇥
T+�5C

CP�odd
2pt (t)

⇤

Tr [T+C2pt(t)]

CCP�odd
2pt (t) = hN(t)N̄(0)

X

x

OcEDM (x)i
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Figure 9: Plateau plots for the neutron and proton Pauli form factors: the three smallest Q2 > 0 points. Results for the
243 × 64 (left) and 163 × 32 (right) lattices.

Figure 10: Chiral rotation angle α5 of the proton field induced by u- and d-quark cEDM interactions on the 243 × 64 (left)
and 163 × 32 (right) lattices. The angles α5 for the neutron are related by the SU(2)f symmetry u ↔ d. The chromo-EDM
interactions are not renormalized and may contain mixing with other operators.

point functions (61). Expanding the ratio in α5 ∝ cψG, we get

Tr
[

T
(

RNJN̄ − icψG δ
CPRNJN̄ +O(c2ψG)

)] t→∞
=

∑

i=1,2

[

K(T )
R i + iα5K({T,γ5})

R i

]

Fi +K(T )
R 3F3 +O(α5

2) , (65)

where K(T )
R 1,2,3 are the kinematic coefficients (C9-C12) for form factors F1,2,3 computed with the polarization matrix

T and with K → KR (C14). Matching the O(cψG terms in the above expansion and neglecting excited states, we

Mixing angle α depend strongly on the flavor involved in cEDM. 

For proton, its strength for U-cEDM is large, no signal for D-cEDM. 

For nucleon,  no signal for U-cEDM. 

24^3 x 64 lattice, proton



Result of F3 form factor (L=24)

R: kinetic factor

GE: Sachs electric form factor

CCP�odd
3pt (T, t) = hN(T )Jµ(t)N̄(0)

X

x

[OcEDM (x)]i

a standard plateau method: 

R(T, t) =
CCP�odd

3pt (T, t)

c2pt(t)

s
c02pt(T )c

0
2pt(t)c2pt(T � t)

c2pt(T )c2pt(t)c02pt(T � t)

“correct” F3 : (1 + ⌧)F3(Q
2) =

mN

qzR
Tr

⇥
T+
Sz

·R(T, t)µ=4
⇤
� ↵GE(Q

2)

projection operator : 

C3pt(~p0, t; ~p, ⌧)��CP =
X

~y,~z

e�i~p0·~y+i~p·~zhN(~y, t)Jµ(~z, ⌧)N̄(0)i��CP

= |Z|2 e
�Ep0 (t�⌧)�Ep(⌧)

4Ep0Ep

X

�,�0

hN(p0)|p0,�i��CP hp0,�|Jµ|p,�0i��CP hp,�0|N(p)i��CP

Recall the 3 pt functions:
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Figure 12: Linear Q2 fits to the neutron EDFF F3 (same data as in Fig. 11) including only the three smallest Q2 > 0 points
and source-sink separations T = 8a, 10a. Results for the 243 × 64 (left) and 163 × 32 (right) lattices.

Figure 13: Plateau plots for the neutron EDFF form factors: the three lowest Q2 > 0 points. Results for the 243 × 64 (left)
and 163 × 32 (right) lattices.

We have computed the neutron correlation functions with two values of the electric field E = E0 and 2E0. The results
for both ensembles are shown in Fig. 14. We choose t = 6 . . . 9 as the common plateau to estimate the value of ζ on
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Linear Q^2 fit to nucleon F3 form factor

mπ = 340[MeV]



2. Energy shift method



Lattice QCD with background constant electric field

24^3x 64 lattice minimal value of E (|n|=1)

Uniform electric field preserving translational invariance and periodic 
boundary conditions on a lattice (Euclidean imaginary electric field) 
used for the nucleon polarizability [W. Detmold, Tiburzi, and Walker-
Loud, (2009)] 
First applied to the CPV effects. 
No sign problem: Analytic continuation of CP-odd interaction

strength of E field

charge quanta

Charge quantization due to finite volume.



Nucleon 2 point function with a constant Ez-field

Energy shift : 

(CP-even) (CP-odd)(t >> 1)

“Effective” energy shift  (extraction of the term proportion to linear-time)

spin dependent interaction energy 
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Effective energy shift for Neutron (L=24)

Neutron, d-cEDM

Neutron, u-cEDM

Only neutron is considered.  (Analysis of charged particle propagators is more complicated.) 

Non-zero signal for spectator d-cEDM.  

Effective energy plateau around t = 6~10. 

Results for |Ez|=1, |Ez|=2 are consistent.  -> Higher order effects of E-field can be neglected. 

mπ = 340[MeV]



u-cEDM: New and Old formula results give similar value consistent with energy shift method. 
d-cEDM: “new” formula result is consistent with the energy shift method.  
“old” F3 has a sizable mixing due to large α (cEDM mixing α ~ 30)   [c.f. α for topological charge]
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Energy shift method

Neutron, u-cEDM 

F2 mixing effect is tiny.

Neutron, d-cEDM 

large spurious mixing.  

New formula vs. Old formula mπ = 340[MeV]

αu ∼ 0

αd ∼ 30



Implication of new formula for the theta induced EDM 



Reanalysis of “lattice” θ induced EDM
Correction is simple: 

[F. Guo et al., PRL 115, no.6, 062001 (2015)] Form factor method

20

Table III: Corrections to the results reported in earlier calculations of ✓̄-induced nucleon EDM for the nucleon (n) and the
proton(p). Some of the used values are at non-zero momentum transfer Q2, or at non-zero value of ✓̄-angle. Both form factors
F2,3 are quoted as dimensionless (in “magneton” units e/(2mN )). The errors for F3 are taken equal to those of F̃3 except
Ref. [8], in which the error are extracted from our interpolation of the corrected F̄3(✓̄) values (see Fig. 16). In the first row, the
correction follows the original conventions [10] exactly. In the following rows, the parity-mixing angles ↵ have been transformed
to ↵ < 0 to and the EDMs were corrected with F3 = F̃3 + 2↵F2 using the assumption discussed in the text.

m⇡ [MeV] mN [GeV] F2 ↵ F̃3 F3

[10] n 373 1.216(4) �1.50(16)b �0.217(18) �0.555(74) 0.094(74)
[5] n 530 1.334(8) �0.560(40) �0.247(17)a �0.325(68) �0.048(68)

p 530 1.334(8) 0.399(37) �0.247(17)a 0.284(81) 0.087(81)
[6] n 690 1.575(9) �1.715(46) �0.070(20) �1.39(1.52) �1.15(1.52)

n 605 1.470(9) �1.698(68) �0.160(20) 0.60(2.98) 1.14(2.98)
[8] n 465 1.246(7) �1.491(22)c �0.079(27)d �0.375(48) �0.130(76)d

n 360 1.138(13) �1.473(37)c �0.092(14)d �0.248(29) 0.020(58)d

a
The value f1n was reported incorrectly in Ref. [5] with a factor of

1
2 [33].

b
Estimated as (� 1

2F
v
2 (0)) from Ref. [34] assuming F

s
2 ⇡ 00.

c
From Ref. [35] where F2 was computed with ✓̄ = 0.

d
Estimated from a linear+cubic fit to plotted ↵̄(✓̄) and F

✓
3 data [8].
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�0.6
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F̄
3
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m⇡ = 465MeV

m⇡ = 360MeV

Figure 16: Corrected (filled symbols) and original (open symbols) values for the neutron form factor F3 at nonzero imaginary
✓-angle from Ref. [8]. The linear parts in the limit ✓ ! 0 are shown in Tab. III.

clear if the sign of the CP -odd interaction ⇠ G̃G is consistent in all of the Refs. [5–11]. On the other hand, all the
reported non-zero results for the proton and neutron EDM agree in sign with F3n(0) < 0 and F3p(0) > 0, and it
is reasonable to assume that any di↵erences in the conventions are compensated in each final reported EDM value.
Furthermore, because the ✓-angle is equivalent to a chiral rotation of quark fields, it is then reasonable to assume that
upon conversion to some common set of conventions, e.g., those of Ref. [10], the sign of the chiral rotation angle ↵
agrees between di↵erent calculations. Based on these plausible assumptions, we deduce that the results in [7, 8] must
be corrected as F ✓

3 = F̃ ✓
3 + 2↵(✓)F2

6, where ↵ < 0, in analogy with Ref. [10]. The data for ↵̄✓ and F̃ ✓
3 (0) at finite ✓̄

values are extracted from figures in Ref. [8]. The original F̃ ✓
3 (0) and the corrected F ✓

3 (0) values are shown in Fig. 16.
Following Ref. [8], the corrected F ✓

3 (0) values are interpolated to ✓̄ ! 0 using a linear+cubic fit F3(0)✓̄ + C ✓̄3 and the
resulting normalized values F3(0) = dF ✓

3 /d✓̄
��
✓̄=0

are given in Tab. III. We observe that the corrected values at both

the finite and zero ✓̄ values agree with zero at . 2� level.
Corrections to other results [5, 6], may be done on the similar basis7. The resulting values are also collected in

Tab. III, and in most cases they are compatible with zero, deviating at most 2�. We emphasize that, apart from
Ref. [10], these corrections are made using the sign assumptions discussed above. If our assumptions are wrong, the
corrected central values will be approximately twice as large compared to the originally reported values. Although we

6
Strictly speaking, for finite values of ✓̄ and ↵̄(✓̄), one has to use the hyperbolic “rotation” formula cosh(2↵)F3 = F̃3 + sinh(2↵)F2, in

which we neglect O(↵
2
) terms because |↵| . 0.15, while the precision is only ⇡ 10%.

7
Correction to results in Ref. [7] require the corresponding values for F2, which we could not locate in published works.

[E. Shintani et al, D78:014503(2008)]  
Lattice with uniform Minkowski-real background electric field -> Energy shift method  
not affected by the spurious mixing.  
dn=-0.040(28) e fm (1.4σ), the result is not sufficient to see disagreement with the form factor method.
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Figure 5: The phase factor ᾱ(θ̄) as a function of θ̄ for our two sets of quark masses.

where Gθ ΓNJµN(t
′, t; p⃗ ′, p⃗) is the three-point function, with t′ being the time location of the nucleon

sink and t the time location of the current insertion, and the function F(Γ,Jµ) is

F(Γ,Jµ) =
1
4
TrΓ

[

eiα(θ)γ5
Eθ ′γ4 − iγ⃗p⃗ ′ + mθN

Eθ ′
eiα(θ)γ5

]

Jµ

[

eiα(θ)γ5
Eθγ4 − iγ⃗p⃗ + mθN

Eθ
eiα(θ)γ5

]

(15)

with Jµ given in (9). The three-point functions are calculated for various choices of nucleon
polarization, Γ = Γ4, iΓ4γ5γ1, iΓ4γ5γ2 and iΓ4γ5γ3. For Jµ we take the local vector current q̄γµq.

4 Results
In physical units, the pion and kaon masses are 1

κℓ κs mπ [MeV] mK [MeV]
0.12090 0.12090 465(13) 465(13)
0.12104 0.12062 360(10) 505(14)

(16)

To a good approximation 2m2K +m2π = constant, in accord with the leading order chiral expansion
2m2K + m2π = 6 B0 m̄.

At imaginary values of θ, both α(θ) and Fθ3 are imaginary. Thus, we can write

α(θ) = i ᾱ(θ̄) , Fθ3 = i F̄
θ̄
3 . (17)

In Fig. 5 we show the results for the phase factor ᾱ(θ̄), and in Fig. 6 we show the form factor F̄ θ̄,n3
1It is to be noted that the pseudoscalar mass at our flavor symmetric point are somewhat larger than the physical

value
√

(

m2K0 + m
2
K+ + m

2
π+

)

/3 = 413MeV.
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Dynamical calculations with finite imaginary θ angle 

[C. Alexandrou, et al. (ETMC)]: Form factor method 

dn = -0.045(06) e fm (7.5 σ)  -> +0.008(6) e fm (1.3σ)
Correction made   
by ourselves



Reanalysis of “lattice” θ induced EDM
Correction is simple: 

Correction made   
by ourselves

Ref[1] : C. Alexandrou et al., Phys. Rev. D93, 074503 (2016),    
Ref[2] : E. Shintani et al., Phys.Rev. D72, 014504 (2005). 
Ref[3] : F. Berruto, T. Blum, K. Orginos, and A. Soni, Phys.Rev. D73, 054509 (2006)  
Ref[4] : F. K. Guo et al., Phys. Rev. Lett. 115, 062001 (2015). 

The lattice results are consistent with phenomenological estimates.  

After removing spurious contributions, no signal of EDM. 
How to improve the signal?



Noise reduction for θ-induced EDM



4d spherical [K.-F. Liu, et al, 2017] 

truncation in t-direction [Shintani et al 2015, Guo et al 2019] 

4d “cylinder” (new)

Noise reduction for θ-induced EDM

Statistical error  ～ V4

Topological charge: 

Constraining to the fiducial volume for Q

Q ∼
∫

V4

GG̃, ⟨Q2⟩ ∼ V4

F3 ∼ ⟨Q · (NJµ
EM N̄)⟩nucleon EDM:

t

��tQ

T +�tQ

t = 0

T

Jµ
EM

rQ

Q ⇠
Z

VQ

d4xq(x)

|tQ � tJ | < �t

|xQ � xsink| < R

VQ : |~x| < rQ, ��tQ < t0 < T +�tQ



Truncation in t-direction
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0.8 ∆tQ=32

Nf=2+1 Domain wall fermion, 24^3x64, a = 0.11 fm  
mπ=340 MeV 
700 configurations, (32sloppy + 1exact samples)  
Three different electric background fields with x, y, and z-directions   

   → 67200 k statistics 
reduced topological charge Q : truncation in t-direction 
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F3 from energy shift method 
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F3 from form factor method

reduced topological charge Q : truncated in t-direction  
Nf=2+1 Domain wall fermion, 24^3x64, a = 0.11 fm 
mπ=340 MeV 
700 configurations (32sloppy + 1exact samples) → 22400 statistics

|t� T/2|  �tQ

�tQ = 32

mπ = 340[MeV]
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Comparison of two methods for θ-EDM mπ = 340[MeV]

Fn
3 (t = T/2)

Energy shift method:  
F eff
3 (t = 6), �tQ = 8

Q2 = 0.22[MeV2]

|2mndn| = |Fn
3 (0)| ' 0.05 · ✓

Truncation method works for both methods. 
“New” formula : consistent with energy shift. 
Form factor method has better accuracy.



Dim=5 : qEDM 



N N

Γ

quark EDM operator 

Dimension 5 CP violating operator  
No need for CP-odd form factor 

→ No spurious mixing problem in quark EDM 
dq ~ mq in most models,    

→ strange quark contribution (disconnected diagram) is important. 

hN |�( ̄� · F̃ )
�Aµ

|Ni /✏k�µ⌫qkhN | ̄��⌫ )|Ni

⇠✏k�µ⌫qkūN��⌫uN(nucleon tensor charge)

F3

2mN
⌘ dN / gT dN = dug

u
T + ddg

d
T + dsg

s
T

hN | ̄��⌫ |Ni = gT ūN��⌫uN

N N N N N N

Γ

Γ

Γ

Strange contribution : disconnected diagrams only (noisy)

ms/md ⇠ 20



Result of nucleon tensor charge 

[N. Yamanaka, et al. for JLQCD Collaboration, PRD 98, 054516 (2018)]



Simulation parameters:

Nf = 2+1 QCD using overlap quarks + Iwasaki gauge action

Lattice spacing : a = 0.112(1) fm Fixed topology Q = 0

163 x 48 lattice, mπ = 540, 450 MeV,

High mode contribution with noise method

Low and high mode contributions:

160 (for 163x48), 240 (for 243x48) exact low Dirac eigenmodes

All-to-all propagators:

243 x 48 lattice, mπ = 380, 290 MeV

(50 Configurations for each quark mass)

D�1 =
160X

k

1

�k
vkv

†
k + (“high modes”)

N N N N N N

Γ

Γ

Γ

N N

Γ

<O>TSM = <O>Str - <O>Rel +   1/NG ΣG<OG>Rel 
Truncated Solver Method (c.f. AMA) for high modes:



Improvement of disconnected diagrams with x,y,z directions
Nucleon tensor charges have spatial directions:

average axial and tensor charges over x, y, z polarizations  
for the disconnected diagram, 
which is computationally efficient for the calculation of disconnected diagrams,  
since the quark loop is calculated independently 

C(disc)
3pt (tsrc,ysrc,�t,�t0) =

where {OΓi,Pi} = {A1,γ5γ1}, {A2,γ5γ2}, {A3,γ5γ3}, {T01,γ5γ1}, {T02,γ5γ2}, {T03,γ5γ3}, 

�
1

3

X

i=x,y,z

1

N6
s

X

x,z

⌦
trs

⇥
O�i(z, tsrc +�t)D�1(z, z)

⇤
trs

⇥
�+PiN(x, tsrc +�t0)N̄(ysrc, tsrc)

⇤↵

p

S

nucleon

with Q=0. We also carry out an auxiliary simulation at Q=1 to check the e↵ects of fixed

Q to the singlet axial charge �⌃, which has the same quantum number as Q.

The bare gauge coupling is set to � ⌘ 6/g2 = 2.3, where the lattice spacing fixed from the

⌦ baryon mass is a = 0.112(1) fm. We work in the isospin symmetric limit, and take four

values mud = 0.015, 0.025, 0.035 and 0.050 for the mass of degenerate up and down quarks.

This choice covers the pion masses m⇡ ' 290 – 540 MeV, and mud = 0.0029 corresponds

to the physical pion mass m⇡,phys. The strange quark mass is fixed to ms = 0.080, which

is very close to the physical value ms,phys = 0.081 fixed from the kaon mass mK . The ms

dependence of the nucleon observables is negligibly small compared to our accuracy.

Depending on mud, we choose a lattice volume, N3
s ⇥ Nt = 163 ⇥ 48 or 243 ⇥ 48, to

fulfill the condition m⇡L � 4 for the control of finite volume e↵ects due to pions wrapping

around the lattice. The statistics are 50 gauge configurations at each mud. Our simulation

parameters are summarized in Table I.

mud m⇡ [MeV] Lattice size

0.050 540(4) 163 ⇥ 48

0.035 453(4) 163 ⇥ 48

0.025 379(2) 243 ⇥ 48

0.015 293(2) 243 ⇥ 48

TABLE I. Parameters of our simulations.

B. Calculation of nucleon charges

The nucleon scalar, axial and tensor charges are defined by

Sq ⌘
1

2mN
hN |q̄q|Ni, (7)

�q ⌘
1

2mN
hN(sz = +1/2)|q̄�3�5q|N(sz = +1/2)i, (8)

�q ⌘
1

2mN
hN(sz = +1/2)|q̄i�03�5q|N(sz = +1/2)i, (9)

respectively. In this study, we focus on the proton charges (N = p) and separately calculate

up, down and strange quark contributions (q = u, d, s). Note that the proton is polarized

for the axial and tensor charges.
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δs, m=0.015:

δs(disconnected contribution)  
is very small (consistent with zero)
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δd:

δu: δs:

gTs=δs = -0.012(16)stat(8)χ 

δu = 0.85(3)stat(2)χ(7)a≠0 

δd = -0.24(2)stat(0)χ(2)a≠0 

Our result:

Consistent with other previous results.



Recent results: the isovector tensor charge

[N. Yamanaka, 1902.00527]

All lattice results are very accurate and show consistency among them. 
The lattice error is much smaller than phenomenological estimates. 
Lattice : important input for nEDM

This work
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FIG. 12. Our result for �⇡N (filled square) compared with those from recent direct evaluations in

lattice QCD (open squares, RQCD [9], �QCD [8], ETM [11]), analyses of lattice QCD data using

Feynman-Hellmann theorem (black triangles, QCDSF-UKQCD [7], Lutz et al. [72], BMW [10],

Ling et al. [73]) and phenomenological studies (open circles, Alarcón et al. [12], Hoferichter et al.

[13], Yao et al. [15], Ruiz de Elvira et al. [16]). As for our result, the smallest error bar denotes

the statistical one, and the largest one also takes into account those due to the extrapolation and

the discretization.

VI. TENSOR CHARGES

For the tensor charges (9), we consider up, down and strange quark contributions, �u, �d

and �s, which are needed to study new physics e↵ects to nucleon observables in the flavor

basis. We also report on the isovector tensor charge

gT ⌘
1

2mN
hp|ūi�03�5u� d̄i�03�5d|pi = �u� �d, (37)

which has been studied in one-loop ChPT [67, 76] and previous lattice studies [18, 21, 61,

62, 69, 77, 78].

Figure 14 shows the e↵ective values of the tensor charges at mud = 0.015. The Gaussian

smearing works well to obtain plateaux, from which we determine the tensor charges by the

constant fit in �t and �t0. Numerical results are summarized in Table VII. �2/d.o.f.<1.3

at all simulation points. The isovector charge gT is purely connected contribution, and is

determined with an accuracy of a few %. We observe that disconnected contributions to �u

26
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Current status of lattice EDMs 

θ-EDM  
Many lattice results: after correcting spurious mixing, results 50-100% error.  

For mπ =340 [MeV], 

Assuming a scaling  

An extrapolated value at physical point:   

chromo-EDM  
Exploratory studies started.  
Nonzero signals for bare operators. Need to calculate operator mixing and 
renormalization -> position space renormalization. 
(c.f. RI-MOM: Bhattacharya, et al., “15)   

quark-EDM 
u,d quark: ~ 3-5 % error,     s-quark: need better precision 

Weinberg operator 
100 % error 

 4 quark operators 

Not explored yet.

|2mndn| = |Fn
3 (0)| ' 0.05 · ✓

|dn| ⇠ mq ⇠ (m⇡)
2

Fn
3 (0) ⇠ 0.01 · ✓, |dn| ⇠ 0.001efm · ✓



Summary
Precision study of EDM is important.  
■ Beyond the Standard model physics searches using nuclei are competitive and 

complementary to the energy frontier new physics searches.  

Lattice computation of EDM  
■ Reanalysis of the lattice method to compute the (CP-odd) nucleon form factors.  
• There exists a spurious mixing between MDM and EDM form factors on lattice. 

■ Lattice numerical confirmation of “new” form factor formula 
• proposal to calculate EDM on a lattice using energy shift, that is not affected 

the mixing problem. 
• cEDM operator is used to check the consistency between “new” form factor 

method and the energy shift method. 
■ All the previous lattice θ-EDM results using the form factor method must to be 

corrected. 
• Resulting EDM form factor |F3| are reduced, become one σ signal or less. 
• High precision computation is more important. 

■ Various nucleon EDM computations on lattice are ongoing.
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