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1. Introduction



Topological insulator

» Interesting physics from non-trivial topology

Bulk: insulator
Surface: metal

Topology guarantees edge modes

(Bulk-Edge correspondence) Figure from Tokura et al.

Nature Reviews Physics vol 1, 126 (2019)

» Close relationship to domain-wall

New knowledge of topological matter
=2 new hints to lattice fermions by Domain-wall fermion

example: Gapped symmetric phase by 4-fermi interaction
(Talk by Kikukawa)
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Two approaches to topology

> MiCFOSCOpiC approach:
Study the wavefunction of the free electron Hamiltonian
Applied to various different free systems ( higher dim, higher symmetry)
Classification of topology is highly developed
Looks rather technical (at least to me)
Applicable only to free fermion systems

TKNN formula (D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs)

» Field theory approach:
Introduce gauge field and study the effective action Ses(A)

Conceptually simple
Applicable also to interacting fermion systems
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What characterizes topology?

> MiCFOSCOpiC approach:
Topology of Berry connection of single particle wavefunctions

n - 0
11)F).## = :g:: J/F(i2]? (?[(./1(71)) “4£L) = __Z<7laﬁﬂz§i;_‘7lalﬁ

7

TKNN formula: Conductivity €=» Top. #

» Field theory approach:

Top # = Chern-Simons level of the 3-dim effective gauge action

K. Ishikawa : Conductivity € =>» Top. #
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Question

Two topological characterizations are identical?

In some specific cases, yes.

4 N

How generally identical and why ?

We try to answer this question in this work.

o /
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2. Review of TKNN formula



Anomalous Hall effect

2+1 dim system with Parity Violation

Y

Hall current perpendicular to Electric field

[

E

(Jz)E = O zy Loy I
—) ]

Hall conductivity can be expressed by topological quantity using

1) Kubo formula from perturbation theory
2) Formulae in quantum mechanics
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Electron states under electric field (perturbation theory)

In) : eigenstate in free theory

In) g : perturbed state

- , —ev
Hall current under the electric field (j,)p = Z (n|g L2$ n) g
n,kb,, <0

Kuboformula
:>|J ] YYYMWWW%W

p___a b#a ( )_Eb(m)

where we have used
a : band label,

® Translational invariance: 711 = (a,ﬁ)
p : bloch momentum
® Heisenberg equation: [y, H] — ivy
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Derivation of Useful formula from

e

0

H(p)la, p) = Ea(p)la, p)
(@, ﬁlb@ZO (a 7 b)

a, plvilb, p) = (Ea(P) — Eb(P){a, Dl \b p) (a 7 b)

Combining with Kubo formula and defining 4% (5) = —i(q, ﬁ| |a D)

S | ¢’ ij 9 4
O-xy:ﬁzze a—piAj (P)
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Berry connectlon

d? d°p ; 0
“or ) on 3p

a

A(“)(”)‘ Chern numberc_ 1!

TKNN formula
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Outline

v 1. Introduction

v 2. Review of TKNN formula
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3. Review of field theory approach



Effective gauge action

Integrating out massive fermions in 3-dimensions

Set(A) = In [/ D@bD@Ze—f@(Der)w

Pa rity anomaly S. Deser, R. Jackiw, S. Templeton 1982, N. Redlich 1984

Seft(A) = iCesSes(A) + -+

1 m
Ses(A) = /dga: e“”AA,L&,AA Ces = _S_WW

Parity violation of fermion induces Chern-Simons action

2019/4/22 15



Anomalous Hall conductivity from Chern-Simons action

Seft (A) = iCes /de e“W‘AM&,A)\

Hall conductivity is given by the Chern-Simons coupling ¢_cs

.0
(Ji) = A
= 2.6V O, A\ = QCcseijEj

Sett(A)
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Winding number expression of Chern-Simons coupling

C.s Can be obtained from 2-point function with fermion 1-loop

Assuming multi-photon vertex does not contribute
True for continuum theory and Wilson fermion on the lattice

6040/31041 a d3
— (1) _ (D (_,..
Ces 2.3l (&11)61 / (27)3 ST [S( Waglaip — ] S(p — q1)l'g) ( Ch,p)]

I‘S) lq; p|: fermion-fermion-photon vertex
p: incoming fermion momentum,

q: incoming photon momentum

Assuming derivative of vertex function does not contribute
True for continuum theory and Wilson fermion on the lattice

evobian [ g3 95 (p)
_ ) )
s =~ /(%)3% [5( 057 2T 0
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—1
Using Ward-Takahashi identity I‘/(})[O;p] _ Z-asa M(p)
p

!

“Winding number” expression of Chern-Simons coupling

cCopLal 3
Cos = =555 /éwngr [S(p)é’aoS‘l(p)S(p)(?ﬁlS_l(p)S(p)aals_l(p)}‘

K. Ishikawa 1984
Golterman, Jansen, Kaplan 1993

» Topological in S(p) has no singularity (true for gapped system)

» Winding number ofamap T3 — S3 for Wilson fermion
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4. Equivalence for general Hamiltonian

Fukaya, T.O., Yamaguchi, Xi
arXiv:1903.11852



Gapped fermion system in D=2n+1 dimensions.

Fermions on 2n dim lattice with continuous time in Euclidean space

SE:/dtzw { + iAo + H(A)| ¥(t,7)

t

—.

H(A)

. :translational inv. =» band structure \ \\ \\ V)

W, ?N : can have many internal DOF Vo A
=» Many bands

No particular structure is assumed \ \
such as relativistic fermion, or Wilson fermion, ..... \ \ \ \ \

o\
Lo
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Energy eigenstates for fixed p

— ENC>O
Ne
E2>O
- Ei>0
----------------------- Er=0
Gap A !
Nv Valence bands ] —— By, <0
Nc Conduction bands ;| :
A: Gap By <0
Fy <0
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Effective gauge action

We consider effective action after integrating out fermion

gSett(A) /D¢D¢Te_sE

Fermion system is gapped
=>» expanded as the sum of gauge inv. local actions

ar : coefficients

Seft (A) = Z aSk(A) S, : Gauge inv actions
k



Chern-Simons action S.;(A)
SGH(A) =t Z.CCSScs(Iél) + -

Ses(A) = /d2n+1x€0¢051a1---5nanAaoaﬁlAal -+ 0p, Aa,

Topological action =2 defined for any geometry of the lattice

Coefficient is quantized due to gauge invariance

k

cs = ., kel = -Si
C ) (n+ 1) k = Chern-Simons level

We will see Chern-Simons level k is a toplogical invariant.
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Cpg CaAN be obtained by differentiating the effective action as
.. :(_i)n—l_lanBlal"‘Bnan ( 0 ) (i)
4 D!2n+ ) \oa )5, \0a ) s,
- i 5" S5 (A)
< d2n-|—1aji67,q1:1cZ €
71;[1/ 0 A, (£0)0Aq, (1) -+ - 0 A4, (T4) A=0.,=0
O
v

Fermion 1-loop diagram with n+1 external photons



4-1 Chern-Simons level =2 Winding number



For general Hamiltonian,

Feynman rule can have fermion-fermion-multiphoton vertices

T [gn, s+ 5 qu, 003 p)

=» 1-loop n-point function from several diagrams in general.

2019/4/22
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D=2+1 case

C :_(_i)2€0¢051041/ d’p 0
8 213! (27T)3 8q1 By

{Tr {Sp(p)F(Q) [—q1, 003 q1, &1519]]

+ Ir [SF(P — Q1)F(1) [—q1, Oéo;p]SF(p)F(l)[QL a1;P — mﬂ }

q1=0

(e R
()|
o =
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Two new contributions in general case

1. Multi-photon vertex contribution —> non-zero
2. Momentum derivative of the vertex function 2 non-zero

These new contributions can give corrections to
the winding number expression.

However, one can show that they cancel due
to new Ward-Takahashi identities

2019/4/22
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New Ward-Takahashi identities

Gauge invariant lattice action can be formally
expanded by infinite series of covariant derivatives.

o

Example: ¢!t D)t le Ay, 2 4 ap) = i, 2) Y 55 (D) (1, 2)

n=0

Therefore, formally action can be expressed as

S = /dtz > Wt (t, &) My, (Dyy -+ Dy, ) (8, F)
r n=0

xr

Same coefficient M appear in propagator and vertices
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Formal expansions of propagator and vertices

Using the coefficients M,

Z M,ul "Un H (ipm)

1=1
a—1 n
1 . .
re ko, i p] = —i Z ZMM1 ‘Ha—1Hfat+1 " Hn H (i(p + k) ;) H (1Pp;)
n=1a=1 =1 1=a+1
Ik, ps; 1, v; ]
o0 n a—1 b—1 n
— _i2 Z Z M,ul"',ua—l,uﬂa+1"',ub—1l/ub+1"',un H ( p+ k +l H p—|—l H (ip,ui)
n=1a,b=1 1=1 i=a 1=b+1
a<b
a—1 b—1 n
_ZQZ Z Mul Pa—1VHa+1"" Hb—1[Hb+1""" Hn H( (p‘|'k‘|'l>m> H (i(p—i—k)ui) H (ipm)
n=1 a,b=1 1=1 1=a-+1 1=b+1

a<b
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New Ward-Takahashi identity

The formal expression reproduces usual Ward-Takahashi identities.

In addition, one also obtains the following 2" order W-T identity

.

1st derivative of the two-photon vertex with respect to momentum
is related to 2"9 derivative of the single photon vertex.

v

Correction terms to 1-loop expression is shown to be total derivatives
and vanish.

?T Wk, w; pl
8kuap)\

PPk, s 0, \; p)
o ok,

~or@[0, \; 1, s pl
- al,
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Therefore, for general Hamiltonian we obtain

c 604051@1 dpo
= 2'3' Bz ( 27r

< [S 0 P, ) 8%;;65 Lsi(p) SE

8p040



D=4+1 case
Chern-Simons coupling is obtained from 3-point 1-loop diagrams.

For general Hamiltonian, multi-photon couplings can contribute
and momentum derivative of vertex functions do not vanish.

However, one can derive new 3™ order WT-identity from formal
expansion of the action in terms of covariant derivatives as

O’ T3 [q, w;r,v; 8, A; pl 0T g, s r, v pl
0qa0r3 B

0qa, 030X

q,r,s=0 q,r=0



Using previous 2" order WT-identity and new 3 order WT-identity

One can show correction terms cancel and c_cs is given by
winding number expressions as

_ (=972 [ &
Ces = — 3151 W60061a162a2

955" (p) 0S5 (p)
8p0&0 a])/5’1

0Sp (p)
8p0¢2

055" (p)
Opg,

0Sp ()
8p0&1

x Tr [SF (p) Sr(p) Sr(p) Sr(p) Sr(p)



4-2 Winding number = TKNN formula



This part was essentially already given by
Qi, Hughes, Zhang , Phys. Rev. B78, 195424, 2008

|Idea : Evaluate the winding number expression as follows

1. Rewrite the fermion propagator using eigenstates

1
:%:‘O"@ipowa(ﬁ) S

2. Continuously deform only the eigenvalues to degenerate flat band

E.(p)(<0) — E, = constant
E.(p)(>0) — E. = constant

3. Carry out momentum integral over p”0
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Step 1

Winding number expression can be rewritten as

2n
1 1
. H
ipd + H ! E(z’po—kl-[(ak )>]

Ces =— —

n! - (2n + 1)(—i)n itz izn / d*"p / dp®
Tr
(n+ D)!(2n 4+ 1)! (2m)2 | 27w

Inserting complete set of energies eigenstates, one obtains

Ces —

nl(—g)"t? d*"p
(n+1)!(2n)! / (27)2n J

I= Y ei1i2--'i2n/dp0 (10, H|ag) (2|0, H|az) - - - {aon|O1H |an)
2m  (1p° + Ea, )?(ip° + Eay) -+ - (1p° + Ea,,)

1,0 2y



Step 2

Continuously deform Hamiltonian by changing only the eigenvalues
keeping the gap to degenerate flat band.

ZE (P)]a(p))(a(p \+ZE 5)16(5)) (b(P)|

o) = B 3 D)ol + B2 3 ) 65

E4(P) Eq FPW

\/

\_/ E,

\/

E=0 - =0
/\

/\

/\ b

=y

> D
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Step 2

Continuously deform Hamiltonian by changing only the eigenvalues
keeping the gap to degenerate flat band.

ZE (P)]a(p))(a(p \+ZE 5)16(5)) (b(P)|

o) = B 3 D)ol + B2 3 ) 65

E4(P) Eq FPW

\/

\_/ E,

\/

E=0 - =0
/\

/\

/\ b

=y

> D
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Continuously deform Hamiltonian by changing only the eigenvalues
keeping the gap to degenerate flat band.

ZE (P)]a(p))(a(p \+ZE 5)16(5)) (b(P)|

o) = B 3 D)ol + B2 3 ) 65

E4(P) Eq FPW

\/

\_/ E,

\/

E=0 - =0
/\

/\

/\ b

=y

> D
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Useful formulae

(a@|0.HB)b@) =0,  (a(p)0.H(B)|b(p)) =0,
(a(p)|0,H(P)|b(5)) = (Ec — Ey){al0,.b),

(a(p)|0, H () |b(P)) = —(Ee — E,){a|0,.b),
(a,b=1,---,N,, a,b=1---,N,).

shows that inserted states should be valence and conduction band
appearing alternately.

(¥

N N,
J = E § ¢l1J1t2nj2n

al’... 7an:1 al,... ,an:]_

[/ om0 T B0 1 By (10 Han) (@105, Hlaz) - x (an0i, Hlan) (05, Hlar)

dp® 1 . . | |
+ / 27T (ZpO + E’C)n—i-l(ip() + Ev)n <CL1|8¢1H|6L1><CL1|3J‘1H|6L2> X o000 X <an|8an|an><an|ajnH‘a1>



Step 3

p"O0 integration can be easin carried out by Cauchy integral

J = Z Z Eiljl"'i2nj2n(_1)n+1%

an=1ay, - ,a,=1

<a1|621a1><a1|a71a2> X X <an|aindn><dn|8jna1>-

Inserting this expression into c_cs using J, and using the
definition of the Berry curvature (skipping detail) one obtains

- - - ~
) () C
= DI (n ok D)(2n) /BZ bn(A4),
ch,(A) = ;! (271T)ntr(.7:")
_ Y
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This result shows that

Chern-Simons level in field theory approach
and

Chern number in microscopic approach (TKNN)

are identical for general Hamiltonian bilinear in
fermion for D=2+1, 4+1 dimensions.

2019/4/22

44



N | <

2019/4/22

Outline

1. Introduction

2. Review of TKNN formula

3. Review of field theory approach
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5. Summary

* We have shown microscopic approach (TKNN) and field
theory approach give identical topological number for general
Hamiltonian bilinear in fermion.

A series of Ward-Takahashi identities are crucial to show the
equivalence.

* One should note no other details beyond gauge symmetry
(such as existence of relativistic field theory at low energy) is
needed.



* In 4+1 dimensions, there are two independent Chern
numbers. However, only a particular Chern number appeared.

* This means that topological classification in microscopic
approach may be finer, or those detailed structure may not be
robust.

* It would be interesting to see similar equivalence holds or not
for other cases such as systems with higher symmetry or
systems with interacting fermions.
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1. Introduction

Topological insulators & Domain-wall fermion
in D=2n+1 dimension

Very closely related
- Characterized by topology
- Mass Gap in the bulk

- Bulk-Edge Correspondence €= Gauge symmetry



