
Direct calculation of two-nucleon energy

Takeshi Yamazaki

University of Tsukuba

Center for Computational Sciences

Collaborators

K.-I. Ishikawa and Y. Kuramashi for PACS Collaboration

Frontiers in Lattice QCD and related topics

@ Yukawa Institute for Theoretical Physics, April 15–26 2019



Outline

• Introduction

– Two-nucleon bound state calculation

– Direct calculation of two-nucleon energy

• Simulation parameters in Nf = 0 at mπ = 0.8 GeV

• Preliminary result of comparison of two sources

• Very preliminary anaysis

• Summary

1



Introduction

figure from Irie-san

Final goal: Qunantitave understanding of nucleus property from QCD

Lattice QCD reproduced several single hadron properties
mass, decay constant, form factor, · · ·

Lattice calculation of light nuclei started at 2009
[PACS-CS PRD81:111504(R)(2010)]

2



Exploratory study of three- and four-nucleon systems
PACS-CS Collaboration, PRD81:111504(R)(2010)

Identification of bound state from volume dependence of ∆E
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∆E4He = 27.7(7.8)(5.5) MeV ∆E3He = 18.2(3.5)(2.9) MeV

1. Observe bound state in both channels

2. Same order of ∆E to experiment

Several systematic errors, e.g., Nf = 0, mπ = 0.8 GeV

Encouraging result as a first step
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Introduction

figure from Irie-san

Final goal: Qunantitave understanding of nucleus property from QCD

Lattice calculation of light nuclei started at 2009
[PACS-CS PRD81:111504(R)(2010)]

Direct calculation of NN binding energy

Exponential source
PACS-CS, Nf = 0 mπ = 0.8 GeV [PRD84:054506(2011)]
TY et al., Nf = 2+ 1 mπ = 0.5 GeV [PRD86:074514(2012)]
TY et al., Nf = 2+ 1 mπ = 0.3 GeV [PRD92:014501(2015)]

Gaussian source
’12 NPLQCD, ’15 CalLat Nf = 3 mπ = 0.81 GeV; ’15 NPLQCD Nf = 2+ 1 mπ = 0.45 GeV
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Introduction
Energy shift ∆ENN in 3S1 channel

Nf = 0 mπ = 0.8 GeV Nf = 2+ 1 mπ = 0.5 GeV
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PRD84:054506(2011) PRD86:074514(2012)

Bound state observed in 3S1 channel and also 1S0 channel
Similar results are obtained in other works
’15 TY et al. Nf = 2+ 1 mπ = 0.3 GeV [PRD92:014501(2015)]

’12 NPLQCD, ’15 CalLat Nf = 3 mπ = 0.81 GeV; ’15 NPLQCD Nf = 2+ 1 mπ = 0.45 GeV
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Introduction

figure from Irie-san

Final goal: Qunantitave understanding of nucleus property from QCD

Lattice calculation of light nuclei started at 2009
[PACS-CS PRD81:111504(R)(2010)]

Direct calculation of NN binding energy

Exponential source
PACS-CS, Nf = 0 mπ = 0.8 GeV [PRD84:054506(2011)]
TY et al., Nf = 2+ 1 mπ = 0.5 GeV [PRD86:074514(2012)]
TY et al., Nf = 2+ 1 mπ = 0.3 GeV [PRD92:014501(2015)]

Gaussian source
’12 NPLQCD, ’15 CalLat Nf = 3 mπ = 0.81 GeV; ’15 NPLQCD Nf = 2+ 1 mπ = 0.45 GeV

Nucleus found in 3S1 and 1S0 at mπ > mphys
π

Effective potential from HALQCD method

’07 HALQCD and various works
No nucleus found in 3S1 and 1S0 at mπ > mphys

π

Urgent task: Reproduce nature at mphys
π

→ deuteron only in 3S1 and its binding energy
Important for reliability check of calculation method
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Introduction

figure from Irie-san

Final goal: Qunantitave understanding of nucleus property from QCD

Lattice calculation of light nuclei started at 2009
[PACS-CS PRD81:111504(R)(2010)]

Direct calculation of NN binding energy

Exponential source
PACS-CS, Nf = 0 mπ = 0.8 GeV [PRD84:054506(2011)]
TY et al., Nf = 2+ 1 mπ = 0.5 GeV [PRD86:074514(2012)]
TY et al., Nf = 2+ 1 mπ = 0.3 GeV [PRD92:014501(2015)]

Gaussian source
’12 NPLQCD, ’15 CalLat Nf = 3 mπ = 0.81 GeV; ’15 NPLQCD Nf = 2+ 1 mπ = 0.45 GeV

Direct calculations have been carried out exponential or Gaussian source

HALQCD : Large source operator dependence of binding energy
[HALQCD, JHEP1610(2016)101;JHEP1903(2019)007]
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Introduction

figure from Irie-san

Final goal: Qunantitave understanding of nucleus property from QCD

Lattice calculation of light nuclei started at 2009
Current purpose: Reproduce binding energy of known light nuclei

Direct calculation of NN binding energy

Direct calculations have been carried out exponential or Gaussian source

HALQCD : Large source operator dependence of binding energy
[HALQCD, JHEP1610(2016)101;JHEP1903(2019)007]

Comparing exponential and wall sources

Wall source is known to need longest time for plateau.
→ Hard to satisfy important condition of direct calculation

Purpose: Examine source dependence in high precision calculation
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Important condition of binding energy calculation
Traditional method in lattice QCD (NN channel)

nucleon correlation function

CN(t) = ⟨0|N(t)N(0)|0⟩ =
∑

n
⟨0|N |n⟩⟨n|N |0⟩e−EN

n t −−−−−−→
t≥tN≫1

AN
0 e−mNt

NN correlation function

CNN(t) = ⟨0|ONN(t)ONN(0)|0⟩ =
∑

n
⟨0|ONN |n⟩⟨n|ONN |0⟩e−Ent

−−−−−−−→
t≥tNN≫1

A0 e
−ENNt

Ratio of correlation functions

R(t) =
CNN(t)

(CN(t))2
−−−−−→
t≥tR≫1

A′
0 e

−∆Et, ∆E = ENN − 2mN

Important condition: tR ≥ tN, tNN

i.e. CN(t) and CNN(t) are written by each ground state in t ≥ tR
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Choice of two-nucleon operator in direct method

Two-nucleon scattering state with p ∼ 0
well overlap to

∑

x,y
N(x)N(y)(= ONN)

Two-nucleon bound state
better overlap to

∑

x
N(x)N(x)(= OL) than ONN

But ⟨0|OL(t)OL(0)|0⟩ is not good for bound state energy calculation
all N(p)N(−p) states also equally contribute → much late plateau

⇒ ⟨0|ONN(t)OL(0)|0⟩ is used for bound state energy calculations
[PACS, NPLQCD, CalLat, (Mains)]

Variational analysis is desirable, but calculation cost is large.

7



Variational analysis by Mains group
Fransis et al., arXiv:1805.03966

H-dibaryon channel Nf = 3 mπ = 0.96 GeV
6
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FIG. 3. Ground-state e↵ective energy for the singlet (top) and 27-plet (bottom) on ensemble E1. The legend indicates the
operators used at the sink. Solid green diamonds denote the energies determined from the hermitian 2 ⇥ 2 GEVP, while the
solid blue and red circles represent the results extracted from the non-hermitian 2⇥ 2 matrix. Open red circles correspond to
the e↵ective energy obtained from a single correlation function with a narrow-smeared hexaquark operator at the source and
a two-baryon operator with p1 = p2 = 0 at the sink. The plots on the right show the plateau region with the fitted energy
levels. The horizontal line represents the value of 2m⇤, with the uncertainty denoted by the grey band.

2⇥2 hexaquark correlator matrix approaches its plateau
from above. In the plateau region the data are noisy and
compatible with the ⇤⇤ threshold. By contrast, correla-
tor matrices including at least one two-baryon operator
at the sink yield e↵ective energies that are below the
threshold and which have smaller uncertainties. How-
ever, care must be taken when deciding at which value of t

the asymptotic behavior has been isolated. Owing to the
non-hermitian setup, it is possible that residual excited-
state contributions enter the projected ground-state cor-
relator with negative weights, so that the plateau is ap-
proached from below. This can also cause local minima
to appear, which could be di�cult to distinguish from
a true plateau. Indeed, we see evidence for this behav-
ior, with the energies showing a dip for t ⇡ 0.4 fm before
moving closer to the threshold for t & 0.9 fm. The e↵ec-
tive energy determined from the mixed single correlator
approaches a plateau below the threshold, but without

showing any dip. We conclude that the ground-state ef-
fective energy shows a consistent plateau for t & 0.9 fm,
which is interpreted as the ground-state energy. The 2⇥2
hexaquark correlator matrix yields consistent results for
t & 1.0 fm, given the large statistical noise.

Our estimate of the ground-state energy in the singlet
channel on ensemble E1 is obtained from a fit to the ef-
fective energy determined from the diagonalization of the
2⇥ 2 correlator matrix with one hexaquark and one two-
baryon operator at the sink. The panel on the top right
of Figure 3 shows a blow-up of the plateau region, with
the fitted value of the energy and error displayed as a
band across the fitting interval. We find that the ground
state in the singlet channel lies below the energy of two
non-interacting ⇤ hyperons by 2.5 standard deviations.
Numerical values for the fitted energies are listed in Ta-
bles II and III, while the results for the energy di↵erence
2m⇤ � E are shown in Table IV.
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FIG. 6. Comparison of the e↵ective energy di↵erence be-
tween the singlet ground state and two non-interacting ⇤s,
computed with point-to-all propagators and distillation, re-
spectively, for ensemble E1. Open blue circles derive from
the same non-hermitian 2⇥2 correlator matrix that was used
to determine the ground state energy in the singlet channel,
represented by the blue points in the top panel of Figure 3.

frames [47]. Below the three-particle threshold, this is
a relation between the two-particle scattering amplitude
and the finite-volume energy levels. In the case of one
pair of identical particles scattering in the S wave, if we
ignore the influence of higher partial waves due to the
breaking of rotational symmetry, the condition takes the
form

p cot �(p) =
2

p
⇡L�

Z
D
00

 
1,

✓
pL

2⇡

◆2
!

, (19)

where p is the scattering momentum satisfying Ecm ⌘p
E2 � P 2 = 2

p
m

2

⇤
+ p2, �(p) is the scattering phase

shift, � = E/Ecm is the moving-frame boost factor, and
Z

D
00

is a generalized zeta function defined in Ref. [47]. Our
numerical implementation of the zeta function is based
on Ref. [48].

As recently reviewed in Ref. [49], a bound state, cor-
responding to a pole in the scattering amplitude on the
real p

2 axis below zero, is determined by the condition
p cot �(p) = �

p
�p2. That reference also provides a

check that can be applied to lattice data: at the pole,
the slope of p cot �(p) (versus p

2) must be smaller than
that of �

p
�p2.

For small p
2, the phase shift can be described by the

e↵ective range expansion. We use the first two terms,

p cot �(p) = �
1

a0

+
r0

2
p
2
, (20)

where a0 is the scattering length and r0 is the e↵ective
range. Fitting this to lattice data is nontrivial, since
p cot �(p) and p

2 are not independent variables, being
related by the quantization condition. Therefore, we

FIG. 7. SU(3) singlet scattering phase shift on ensemble
E1. The legend indicates the moving frame D = L

2⇡P ;
the data point labeled [000]⇤ was obtained using distilla-
tion and the others were obtained using point-source data.
The grey line and its error band indicate the e↵ective-range-
expansion fit, and the orange dashed curve corresponds to
p cot � = �

p
�p2. The horizontal error bar shows the inter-

section between the grey line and the orange dashed curve,
which is translated to a binding energy in the label above it.

choose to fit to the squared scattering momentum p
2 de-

termined from each lattice energy, similarly to what was
done for fitting to the lattice energies in Ref. [50]. Fitting
to the momentum rather than energy benefits from can-
cellations of statistical uncertainties that are correlated
between E and m⇤. Given a set of fit parameters (a0, r0),
in each frame the fit momentum is determined by finding
the solution to the quantization condition that is near-
est to the corresponding momentum determined from the
lattice calculation, i.e. by numerically solving

2
p

⇡L�
Z

D
00

 
1,

✓
pL

2⇡

◆2
!

= �
1

a0

+
r0

2
p
2
. (21)

We only consider the ensembles with SU(3) symmetry,
since otherwise this is a much more complicated coupled-
channel (⇤⇤, N⌅, and ⌃⌃) system.

We are only able to obtain a reliable fit in the flavor
singlet sector on ensemble E1, where the precise energy
level in the rest frame from the distillation method pro-
vides a stronger constraint than the other data. This is
shown in Figure 7; we find the scattering length to be
1.3(5) fm and the e↵ective range 0.4(3) fm. There is a
clear intersection with the bound-state curve, which has
a slope with the correct behavior, indicating the presence
of a bound H dibaryon. This intersection yields a binding
energy of �E = 19(10) MeV, somewhat smaller in mag-
nitude than the näıve value obtained from the rest-frame
energy di↵erence 2m⇤ � E.

For the ensembles A1 and N1, we are unable to obtain
reliable fits. However, in the flavor singlet sector, the

Compare ⟨0|OBB(t)OL(0)|0⟩ and variational analysis
→ good agreement

Compare high precision ⟨0|OBB(t)OBB(0)|0⟩ and variational analysis
→ statistically consistent

⇒ ⟨0|OBB(t)OL(0)|0⟩ could give a correct ∆E.
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Different ∆Eeff from two sources
[HALQCD, JHEP1610(2016)101;JHEP1903(2019)007]

Wall and Exp sources give different ∆E

Figure 15. The reconstructed e↵ective energy shifts �Ee↵(t, t0 = 13a) for the wall source (red
bands) and the smeared source (blue bands) at L = 40, 48 and 64. The e↵ective energy shifts in
the direct method are also shown for the wall (red circles) and smeared (blue squares) sources. The
black dashed lines are the energy shifts for the ground state of the HAL QCD Hamiltonian in the
finite volume evaluated at t0/a = 13. (Left) 0  t/a  24. (Right) 0  t/a  175.

– 26 –

Based on HALQCD potential
∆Eexp

NN has large contamination from excited states

∆Ewall
NN is almost flat

Important: check using variational analysis → large computational cost
This work: check with high precision calculation
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Comments on HALQCD method

1. Derivative expansion [TY and Kuramashi, PRD96(2017)11:114511]

• Not systematic expansion and need convergence ckeck
• Truncation causes input k dependence of coefficients.

(∆+ k2)φk(r) =
∞∑

n=0
Vn(r)∆nφk(r) =

N∑

n=0
V n(r)∆nφk(r)

Vn(r) ̸= V n(r) and V n(r) depends on input k

2. Time-dependent HALQCD method
[TY and Kuramashi, PRD98(2018)3:038502]

• V n(r) has operator dependence if t is not large enough.
Number of operator = Number of states in 4-point functions

⇒ Same condition to variational analysis
• Even if the condition is satisfied, V n(r) give correct amplitude at k

determined from state energy in 4-point functions
• Time-dependent HALQCD method cannot dtermine the energy.
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Simulation parameters
High precison calculation in Nf = 0 mπ = 0.8 GeV

Iwasaki gauge (β = 2.416, a−1 = 1.541 GeV) + tadpole imporved Wilson fermion actions
same action as ’02 CP-PACS, PRD81:111504(R)(2010); PRD84:054506(2011)

Compare exponential and wall sources in NN 3S1 channel
roughly correspond to ⟨0|ONN(t)OL(0)|0⟩ and ⟨0|ONN(t)ONN(0)|0⟩

L T source Nmeas
16 64 Exp 15,544,000

Wall 8,307,200
20 64 Exp 5,504,000

Wall 4,480,000
32 64 Exp 10,496,000

Wall 8,307,200

All results are preliminary.

Computational resources (HPCI System Research Project: hp160124)

COMA and HA-PACS(U. of Tsukuba), FX10 and Reedbush (U. of Tokyo), Tatara (Kyushu U.),

FX100 and CX400(Nagoya U.), OFP(JCAHPC)

11



R(t) = CNN(t)/(CN(t))2 in L = 20

Effective mass : meff = log(C(t)/C(t+1)) −−−→
t≫1

m
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R(t) = CNN(t)/(CN(t))2 in L = 20
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R(t) = CNN(t)/(CN(t))2 in L = 20

Effective mass : meff = log(C(t)/C(t+1)) −−−→
t≫1

m
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tN ∼ tNN ∼ 12 tNN ∼ 16, tN ∼ 17

dashed lines determined from exponential source

consistent with each other in plateau region
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R(t) = CNN(t)/(CN(t))2 in L = 20

Effective 2mN and ENN
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with large error

12-c



R(t) = CNN(t)/(CN(t))2 in L = 16
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exp: reasonable plateau in t∼>tN,NN
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consistent with exp in t∼>tN
with large error

Similar result to L = 20
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R(t) = CNN(t)/(CN(t))2 in L = 32
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exp: ∆ENN in t∼>tN,NN
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downward trend in Eeff
NN

∆ENN plateau may appear t > tN

Might become ∆ENN = ∆ENN

Why hard to observe consistency on larger volume?
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Volume dependence of wall source
Preliminary result + pilot study of PRD84:054506(2011): Nf = 0 mπ = 0.8 GeV
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-0.008

-0.004

0
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L=32
L=48
L=96

Eff. ΔENN
Wall

Clear volume dependence + dip structure in small t
Dip becomes flat as volume increases
Bump appears in large t region in high precision data on L = 20 and 32

attempt to explain bump using ∆ENN from exponential
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Time dependence of ∆Eeff
NN with wall source (very preliminary)

Can understand time dependence with ∆ENN from exponential?
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lowest NN scattering state ∆E1 = AL−3 > 0
Wall source: leading excited state contribution in R(t) ⇒ NN ′

∆E2 = ∆ENN ′ = mN ′ −mN

∵ suppress p ̸= 0 baryon and large N ′ contribution in CW
N (t)

Explain R(t) in 12∼<t ≤ 20 by ∆E0,∆E1,∆E2
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Time dependence of ∆Eeff
NN with wall source (very preliminary)

Can understand time dependence with ∆ENN from exponential?
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Wall source: next leading excited state contribution in R(t) ⇒ NN ′

∆E2 = ∆ENN ′ = mN ′ −mN

∵ suppress p ̸= 0 baryon and large N ′ contribution in CW
N (t)

Explain R(t) in 12∼<t ≤ 20 by ∆E0,∆E1,∆E2
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Time dependence of ∆Eeff
NN with wall source (very preliminary)

Can understand time dependence with ∆ENN from exponential?
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Explain R(t) in 12∼<t ≤ 20 by ∆E0,∆E1,∆E2
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Time dependence of ∆Eeff
NN with wall source (very preliminary)

Can understand time dependence with ∆ENN from exponential?
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0

L=16
L=20
L=32

ΔENN
eff wall source

5 10 15 20 25
t
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2.07

2.08

2.09

2.1

2.11
L=16
L=20
L=32
2MN

exp

eff. ENN
3S1

Bound state from ∆Eexp
NN = ∆E0 → a0 < 0

lowest NN scattering state ∆E1 = AL−3 > 0
Wall source: next leading excited state contribution in R(t) ⇒ NN ′

∆E2 = ∆ENN ′ = mN ′ −mN

∵ suppress p ̸= 0 baryon and large N ′ contribution in CW
N (t)

Explain R(t) in 12∼<t ≤ 20 by ∆E0,∆E1,∆E2

16-c



Time dependence of ∆Eeff
NN with wall source (very preliminary)

Can understand time dependence with ∆ENN from exponential?

0 5 10 15 20 25
t

-0.012

-0.008

-0.004

0

L=16
L=20
L=32

ΔENN
eff wall source

5 10 15 20 25
t

2.06

2.07

2.08

2.09

2.1

2.11
L=16
L=20
L=32
2MN

exp

eff. ENN
3S1

Bound state from ∆Eexp
NN = ∆E0 → a0 < 0

lowest NN scattering state ∆E1 = AL−3 > 0
Wall source: next leading excited state contribution in R(t) ⇒ NN ′

∆E2 = ∆ENN ′ = mN ′ −mN

∵ suppress p ̸= 0 baryon and large N ′ contribution in CW
N (t)

Explain R(t) in 12∼<t ≤ 20 by ∆E0,∆E1,∆E2
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Input for ∆E0,∆E1,∆E2

10 20 30 40 50 60 70 80 90 100
L

0

0.02

0.04

0.06

0.08

ΔE0
ΔE1

ΔE1
L=32(32/L)3

Input ΔE

10 20 30 40 50 60 70 80 90 100
L

0

0.1

0.2

0.3

0.4

0.5

0.6

ΔE2=mN’-mN
ΔE0
ΔE1

ΔE1
L=32(32/L)3

Input ΔE

∆E0: exponetial source results
∆E1: a variational analysis result ∆EL=32

1 = 0.0086(+44
−14) PRD84(2011)054506

∆EL
1 = ∆EL=32

1

(32
L

)3

∆E2: mN ′ ∼ 1.6 estimated from CW
N (t)

∆E2 = mN ′ −mN w/o finite volume effect
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Fit results of R(t) with wall source

Fit form: R(t) = R0e
−∆E0t +R1e

−∆E1t +R2e
−∆E2t

0 5 10 15 20 25
t

-0.012

-0.008

-0.004

0

L=16
L=20
L=32

ΔENN
eff wall source

0 10000 20000 30000 40000

L3
-7
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-5

-4

-3

-2

-1

0

1

R1/R0
R2/R0

Bump in t ∼ 15 can be explained by 3 states
Ratios for Ri/R0 propotional to L3

→ consistent with [R0 : bound state] and [R1,2 : scattering states]
c.f.) [Mathur et al., PRD70(2004)074508]
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Fit results of R(t) with wall source

Fit form: R(t) = R0e
−∆E0t +R1e

−∆E1t +R2e
−∆E2t

0 5 10 15 20 25
t

-0.012

-0.008

-0.004

0

L=16
L=20
L=32

ΔENN
eff wall source

0 10000 20000 30000 40000

L3
-7

-6

-5

-4

-3

-2

-1

0

1

R1/R0
R2/R0

Bump in t ∼ 15 can be explained by 3 states
Ratios for Ri/R0 propotional to L3

tmin shifts to larger t as L

other scattering state contributions become non negligible
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Fit results of R(t) with wall source

Fit form: R(t) = R0e
−∆E0t +R1e

−∆E1t +R2e
−∆E2t

0 5 10 15 20 25
t

-0.012

-0.008

-0.004

0

L=16
L=20
L=32

ΔENN
eff wall source

0 10000 20000 30000 40000

L3
-7

-6

-5

-4

-3

-2

-1

0

1

R1/R0
R2/R0

Bump in t ∼ 15 can be explained by 3 states
Ratios for Ri/R0 propotional to L3

tmin shifts to larger t as L
other scattering state contributions become non negligible

L = 32 needs much larger t to agree with ∆Eexp
0

L = 20 might need larger t to agree with ∆Eexp
0
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Fit results of R(t) with wall source

Fit form: R(t) = R0e
−∆E0t +R1e

−∆E1t +R2e
−∆E2t

0 5 10 15 20 25
t

-0.012

-0.008

-0.004

0

L=16
L=20
L=32

ΔENN
eff wall source

0 10000 20000 30000 40000

L3
-7

-6

-5

-4

-3

-2

-1

0

1

R1/R0
R2/R0

Bump in t ∼ 15 can be explained by 3 states
Smaller t: NN ′ contribution seen (upward)
Larger t: NN contribution seen (bump)

Volume dependence
→ Overlaps and ∆E1 of NN state largely changed with L
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Expected time dependence of ∆Eeff
NN with wall source

Estimate ∆Eeff
NN at L = 24

R(t)/R0 = e−∆E0t +R1/R0e
−∆E1t +R2/R0e

−∆E2t

0 5 10 15 20 25
t

-0.012

-0.008

-0.004

0
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L=20
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ΔENN
eff wall source

0 10000 20000 30000 40000

L3
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-3
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0

1

R1/R0
R2/R0

Ri/R0 estimated from linear interpolation
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Expected time dependence of ∆Eeff
NN with wall source

Estimate ∆Eeff
NN at L = 24

R(t)/R0 = e−∆E0t +R1/R0e
−∆E1t +R2/R0e

−∆E2t

0 5 10 15 20 25
t
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-0.008

-0.004
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L=16
L=20
L=24
L=32

ΔENN
eff wall source

0 10000 20000 30000 40000

L3
-7

-6
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-3
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1

R1/R0
R2/R0

Could touch actual data
Large t needs to agree with ∆Eexp

0
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Expected time dependence of ∆Eeff
NN with wall source

Estimate ∆Eeff
NN at L = 48 and 96

R(t)/R0 = e−∆E0t +R1/R0e
−∆E1t +R2/R0e

−∆E2t

0 5 10 15 20 25 30 35 40
t

-0.004

-0.002

0

L=32
L=48
L=96

ΔENN
eff wall source

0 2e+05 4e+05 6e+05 8e+05 1e+06

L3
-200

-150

-100

-50

0

R1/R0
R2/R0

Ri/R0 estimated from linear extrapolation
Could touch actual data
Much large t needs to agree with ∆Eexp

0
∆Eeff

NN < 0 on L = 96
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Volume dependence of wall source
Preliminary result + pilot study of PRD84:054506(2011): Nf = 0 mπ = 0.8 GeV

0 5 10 15 20 25
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-0.008
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L=48
L=96

Eff. ΔENN
Wall

Dip in small t + Bump in large t
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Volume dependence of wall source
Preliminary result + pilot study of PRD84:054506(2011): Nf = 0 mπ = 0.8 GeV
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L=32
L=48
L=96

Eff. ΔENN
Wall

Figure 9. The ratio of the overlap coe�cients in the temporal correlation function |bn/b0| obtained
at t/a = 13 for the wall source (Left) and the smeared source (Right) on various volumes. Solid
(open) symbols correspond to positive (negative) values of bn/b0.

Figure 10. The reconstructed e↵ective energy shifts �Ee↵(t, t0 = 13a) with statistical errors are
plotted as a function of t (colored bands), while the direct measurement of the e↵ective energy shifts
from R-correlators are plotted by red circles or blue squares. The black dashed lines correspond
to the energy shift �E0(t0 = 13a) for the ground state of the HAL QCD Hamiltonian H

LO in the
finite volume. The results on L = 48 for the wall source (Left) and the smeared source (Right).

In Fig. 10, we show the reconstructed e↵ective energy shifts�Ee↵(t, t0 = 13a), together

with numerical data of the e↵ective energy shifts �Ee↵(t) from the R-correlators, for the

wall source (Left) and the smeared source (Right) on L = 48. The bands correspond to

�Ee↵(t, t0 = 13a) with statistical errors coming from those of bn and �En at t0/a = 13,

while red circles or blue squares correspond to �Ee↵(t) obtained directly from the R-

correlator in Sec. 3.1. Here we do not consider �Ee↵(t, t0 = 13a) for t/a < 13, where

inelastic contributions are expected to be larger. Shown together by the black dashed

line represents the energy shift �E0(t0 = 13a) for the ground state of the HAL QCD

Hamiltonian H
LO on L = 48.

We find that the results of the direct method, most notably the plateau-like structures

around t/a = 15, are well reproduced by �Ee↵(t, t0) for both wall and smeared sources,

– 15 –

Dip in small t + Bump in large t

Different behavior from HALQCD expectation
[HALQCD, JHEP1903(2019)007]

Dip becomes flat as volume increases
⇒ looks plateau in large volume if statistics is not enough

Our expectation: In large statistics similar behavior will appear
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Summary
Preliminary result
High precision NN calculation in Nf = 0 at mπ = 0.8 GeV

Souce dependence of ∆Eeff
NN

exponential source: earlier plateau
walll source: non monotonic behavior

consistent with exponential source at large t

Volume dependence of R(t) with wall source
Bump in large t can be explained by bound, NN , NN ′ states

Ratios of amplitudes propotional to L3

→ ground state is bound state, 1st and 2nd are scattering states
Expected ∆Eeff

NN on other L agrees with data
Dip becomes flat as volume increases

→ looks plateau if statistics is not enough

Wall source: hard to obtain bound state energy
large overlap to NN scattering state in large t

Need to check our expectation with variantional analysis
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Nf = 2+ 1 mπ = 0.146 GeV on (8.1 fm)3

3S1 effective ∆E with exponential source

0 4 8 12 16 20
t

-0.04

-0.03

-0.02

-0.01

0

deuteron ΔE w/ FVE

3S1 ΔE [MeV]

118,080 measurements
roughly agree with deuteron ∆E with finite volume effect ∼ 6 MeV

Might be hard to improve statistical error further
need better calculation method to imporve statistical error
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