Direct calculation of two-nucleon energy

Takeshi Yamazaki

University of Tsukuba

Center for Computational Sciences

Collaborators

K.-I. Ishikawa and Y. Kuramashi for PACS Collaboration

Frontiers in Lattice QCD and related topics

@ Yukawa Institute for Theoretical Physics, April 15-26 2019

Outline

- Introduction
 - Two-nucleon bound state calculation
 - Direct calculation of two-nucleon energy
- Simulation parameters in $N_f = 0$ at $m_\pi = 0.8$ GeV
- Preliminary result of comparison of two sources
- Very preliminary anaysis
- Summary

Final goal: Qunantitave understanding of nucleus property from QCD

Lattice QCD reproduced several single hadron properties mass, decay constant, form factor, ···

figure from Irie-san

Lattice calculation of light nuclei started at 2009

[PACS-CS PRD81:111504(R)(2010)]

Exploratory study of three- and four-nucleon systems PACS-CS Collaboration, PRD81:111504(R)(2010)

2. Same order of ΔE to experiment

Several systematic errors, e.g., $N_f = 0$, $m_{\pi} = 0.8$ GeV Encouraging result as a first step

Introduction

Final goal: Qunantitave understanding of nucleus property from QCD

Lattice calculation of light nuclei started at 2009

[PACS-CS PRD81:111504(R)(2010)]

figure from Irie-san

Direct calculation of NN binding energy

Exponential source

PACS-CS, $N_f = 0$ $m_{\pi} = 0.8$ GeV [PRD84:054506(2011)] TY et al., $N_f = 2 + 1$ $m_{\pi} = 0.5$ GeV [PRD86:074514(2012)] TY et al., $N_f = 2 + 1$ $m_{\pi} = 0.3$ GeV [PRD92:014501(2015)]

Gaussian source

'12 NPLQCD, '15 CalLat $N_f = 3 m_{\pi} = 0.81$ GeV; '15 NPLQCD $N_f = 2 + 1 m_{\pi} = 0.45$ GeV

Introduction

Bound state observed in ${}^{3}S_{1}$ channel and also ${}^{1}S_{0}$ channel Similar results are obtained in other works

'15 TY et al. $N_f = 2 + 1 \ m_{\pi} = 0.3 \text{ GeV} [PRD92:014501(2015)]$

'12 NPLQCD, '15 CalLat $N_f = 3 m_{\pi} = 0.81$ GeV; '15 NPLQCD $N_f = 2 + 1 m_{\pi} = 0.45$ GeV

Introduction Final goal: Qunantitave understanding of nucleus property from QCD Lattice calculation of light nuclei started at 2009 [PACS-CS PRD81:111504(R)(2010)] Direct calculation of NN binding energy Exponential source figure from Irie-san PACS-CS, $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV} [PRD84:054506(2011)]$ TY et al., $N_f = 2 + 1 \ m_{\pi} = 0.5 \ \text{GeV} \ [\text{PRD86:074514(2012)}]$ TY et al., $N_f = 2 + 1 \ m_{\pi} = 0.3 \text{ GeV} [PRD92:014501(2015)]$ Gaussian source '12 NPLQCD, '15 CalLat $N_f = 3 m_{\pi} = 0.81$ GeV; '15 NPLQCD $N_f = 2 + 1 m_{\pi} = 0.45$ GeV Nucleus found in ${}^{3}S_{1}$ and ${}^{1}S_{0}$ at $m_{\pi} > m_{\pi}^{\text{phys}}$ Effective potential from HALQCD method '07 HALQCD and various works No nucleus found in ${}^{3}S_{1}$ and ${}^{1}S_{0}$ at $m_{\pi} > m_{\pi}^{\text{phys}}$ Urgent task: Reproduce nature at m_{π}^{phys} \rightarrow deuteron only in 3S_1 and its binding energy Important for reliability check of calculation method

Introduction

Final goal: Qunantitave understanding of nucleus property from QCD

Lattice calculation of light nuclei started at 2009

[PACS-CS PRD81:111504(R)(2010)]

Direct calculation of NN binding energy

figure from Irie-san

Exponential source

PACS-CS, $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$ [PRD84:054506(2011)] TY et al., $N_f = 2 + 1 \ m_{\pi} = 0.5 \text{ GeV}$ [PRD86:074514(2012)] TY et al., $N_f = 2 + 1 \ m_{\pi} = 0.3 \text{ GeV}$ [PRD92:014501(2015)]

Gaussian source

'12 NPLQCD, '15 CalLat N_f = 3 m_{π} = 0.81 GeV; '15 NPLQCD N_f = 2 + 1 m_{π} = 0.45 GeV

Direct calculations have been carried out exponential or Gaussian source

HALQCD : Large source operator dependence of binding energy [HALQCD, JHEP1610(2016)101;JHEP1903(2019)007]

Introduction

Final goal: Qunantitave understanding of nucleus property from QCD

Lattice calculation of light nuclei started at 2009 Current purpose: Reproduce binding energy of known light nuclei

Direct calculation of NN binding energy

Direct calculations have been carried out exponential or Gaussian source

HALQCD : Large source operator dependence of binding energy [HALQCD, JHEP1610(2016)101;JHEP1903(2019)007]

Comparing exponential and wall sources

Wall source is known to need longest time for plateau.

 \rightarrow Hard to satisfy important condition of direct calculation

Purpose: Examine source dependence in high precision calculation

figure from Irie-san

Important condition of binding energy calculation Traditional method in lattice QCD (*NN* channel) nucleon correlation function

$$C_N(t) = \langle 0|N(t)\overline{N}(0)|0\rangle = \sum_n \langle 0|N|n\rangle \langle n|\overline{N}|0\rangle e^{-E_n^N t} \xrightarrow[t \ge t_N \gg 1]{} A_0^N e^{-m_N t}$$

NN correlation function

$$C_{NN}(t) = \langle 0|O_{NN}(t)\overline{O}_{NN}(0)|0\rangle = \sum_{n} \langle 0|O_{NN}|n\rangle \langle n|\overline{O}_{NN}|0\rangle e^{-E_{n}t}$$
$$\xrightarrow{t \ge t_{NN} \gg 1} A_{0} e^{-E_{NN}t}$$

Ratio of correlation functions

$$R(t) = \frac{C_{NN}(t)}{\left(C_N(t)\right)^2} \xrightarrow[t \ge t_R \gg 1]{} A'_0 e^{-\Delta Et}, \quad \Delta E = E_{NN} - 2m_N$$

Important condition: $t_R \ge t_N, t_{NN}$

i.e. $C_N(t)$ and $C_{NN}(t)$ are written by each ground state in $t \ge t_R$

Choice of two-nucleon operator in direct method

Two-nucleon scattering state with $p \sim 0$ well overlap to $\sum_{x,y} N(x)N(y) (= O_{NN})$

Two-nucleon bound state better overlap to $\sum_{x} N(x)N(x) (= O_L)$ than O_{NN}

But $\langle 0|O_L(t)\overline{O}_L(0)|0\rangle$ is not good for bound state energy calculation all N(p)N(-p) states also equally contribute \rightarrow much late plateau

 $\Rightarrow \langle 0|O_{NN}(t)\overline{O}_L(0)|0\rangle \text{ is used for bound state energy calculations}$ [PACS, NPLQCD, CalLat, (Mains)]

Variational analysis is desirable, but calculation cost is large.

Variational analysis by Mains group

Fransis et al., arXiv:1805.03966

Different ΔE^{eff} from two sources

[HALQCD, JHEP1610(2016)101; JHEP1903(2019)007]

Based on HALQCD potential $\Delta E_{NN}^{\rm exp}$ has large contamination from excited states $\Delta E_{NN}^{\rm wall}$ is almost flat

Important: check using variational analysis \rightarrow large computational cost This work: check with high precision calculation

Comments on HALQCD method

- 1. Derivative expansion [TY and Kuramashi, PRD96(2017)11:114511]
- Not systematic expansion and need convergence ckeck
- Truncation causes input k dependence of coefficients.

$$(\Delta + k^2)\phi_k(r) = \sum_{n=0}^{\infty} V_n(r)\Delta^n \phi_k(r) = \sum_{n=0}^{N} \overline{V}_n(r)\Delta^n \phi_k(r)$$
$$V_n(r) \neq \overline{V}_n(r) \text{ and } \overline{V}_n(r) \text{ depends on input } k$$

2. Time-dependent HALQCD method

[TY and Kuramashi, PRD98(2018)3:038502]

- $\overline{V}_n(r)$ has operator dependence if t is not large enough. Number of operator = Number of states in 4-point functions \Rightarrow Same condition to variational analysis
- Even if the condition is satisfied, $\overline{V}_n(r)$ give correct amplitude at k determined from state energy in 4-point functions
- Time-dependent HALQCD method cannot dtermine the energy.

Simulation parameters

High precison calculation in $N_f = 0 \ m_{\pi} = 0.8 \ \text{GeV}$

Iwasaki gauge ($\beta = 2.416$, $a^{-1} = 1.541$ GeV) + tadpole imporved Wilson fermion actions same action as '02 CP-PACS, PRD81:111504(R)(2010); PRD84:054506(2011)

Compare exponential and wall sources in NN ³S₁ channel roughly correspond to $\langle 0|O_{NN}(t)\overline{O}_L(0)|0\rangle$ and $\langle 0|O_{NN}(t)\overline{O}_{NN}(0)|0\rangle$

L	T	source	N _{meas}
16	64	Exp	15,544,000
		Wall	8,307,200
20	64	Exp	5,504,000
		Wall	4,480,000
32	64	Exp	10,496,000
		Wall	8,307,200

All results are preliminary.

Computational resources (HPCI System Research Project: hp160124) COMA and HA-PACS(U. of Tsukuba), FX10 and Reedbush (U. of Tokyo), Tatara (Kyushu U.), FX100 and CX400(Nagoya U.), OFP(JCAHPC)

$$R(t) = C_{NN}(t)/(C_N(t))^2$$
 in $L = 20$

Effective mass : $m^{\text{eff}} = \log(C(t)/C(t+1)) \xrightarrow[t\gg1]{} m$

$$R(t) = C_{NN}(t)/(C_N(t))^2$$
 in $L = 20$

Effective mass : $m^{\text{eff}} = \log(C(t)/C(t+1)) \xrightarrow[t \gg 1]{} m$

$$R(t) = C_{NN}(t)/(C_N(t))^2$$
 in $L = 20$

Effective mass : $m^{\text{eff}} = \log(C(t)/C(t+1)) \xrightarrow[t \gg 1]{} m$

dashed lines determined from exponential source

consistent with each other in plateau region

 $R(t) = C_{NN}(t)/(C_N(t))^2$ in L = 20

Effective
$$\Delta E_{NN} = E_{NN} - 2m_N$$

exp: reasonable plateau in $t \gtrsim t_{N,NN}$ wall: non-monotonic behavior consistent with exp in $t \gtrsim t_N$ with large error

 $R(t) = C_{NN}(t)/(C_N(t))^2$ in L = 16

Effective $\Delta E_{NN} = E_{NN} - 2m_N$

exp: reasonable plateau in $t \gtrsim t_{N,NN}$ wall: non-monotonic behavior consistent with exp in $t \gtrsim t_N$ with large error Similar result to L = 20

 $R(t) = C_{NN}(t)/(C_N(t))^2$ in L = 32

exp: ΔE_{NN} in $t \gtrsim t_{N,NN}$ wall: non-monotonic behavior downward trend in E_{NN}^{eff} ΔE_{NN} plateau may appear $t > t_N$ Might become $\Delta E_{NN} = \Delta E_{NN}$

Why hard to observe consistency on larger volume?

Volume dependence of wall source

Preliminary result + pilot study of PRD84:054506(2011): $N_f = 0 m_{\pi} = 0.8 \text{ GeV}$

Clear volume dependence + dip structure in small tDip becomes flat as volume increases Bump appears in large t region in high precision data on L = 20 and 32

attempt to explain bump using ΔE_{NN} from exponential

Time dependence of $\Delta E_{NN}^{\text{eff}}$ with wall source (very preliminary) Can understand time dependence with ΔE_{NN} from exponential? 0.000 O_1 1st ensemble 0 -0.002 O_2 1st ensemble O_1 2nd ensemble -0.004 ground state -0.004 Δ experiment * -0.006 -0.008 • ΔE_{NN}^{eff} wall source -0.008 -0.010 -0.012 ● L=16 ■ L=20 ▲ L=32 -0.014 -0.012 -0.016 2e-05 4e-05 6e-05 8e-05 0 20 5 10 15 25 0 $1/L^3$ t Bound state from $\Delta E_{NN}^{exp} = \Delta E_0$

Time dependence of $\Delta E_{NN}^{\text{eff}}$ with wall source (very preliminary) Can understand time dependence with ΔE_{NN} from exponential? 0.000 O_1 1st ensemble Ο -0.002 **F** O_2 1st ensemble O_1 2nd ensemble -0.004 -0.004 ground state experiment * -0.006 -0.008 • ΔE_{NN}^{eff} wall source -0.008 -0.010 -0.012 ● L=16 ■ L=20 ▲ L=32 -0.014 -0.012 -0.016 2e-05 4e-05 6e-05 8e-05 5 10 15 20 25 0 $1/L^{3}$ t Bound state from $\Delta E_{NN}^{exp} = \Delta E_0 \rightarrow a_0 < 0$

lowest NN scattering state $\Delta E_1 = AL^{-3} > 0$

Time dependence of $\Delta E_{NN}^{\text{eff}}$ with wall source (very preliminary)

Can understand time dependence with ΔE_{NN} from exponential?

Bound state from $\Delta E_{NN}^{exp} = \Delta E_0 \rightarrow a_0 < 0$ lowest NN scattering state $\Delta E_1 = AL^{-3} > 0$ Wall source: next leading excited state contribution in $R(t) \Rightarrow NN'$ $\Delta E_2 = \Delta E_{NN'} = m_{N'} - m_N$ \therefore suppress $p \neq 0$ baryon and large N' contribution in $C_N^W(t)$

Time dependence of $\Delta E_{NN}^{\text{eff}}$ with wall source (very preliminary)

Can understand time dependence with ΔE_{NN} from exponential?

Bound state from $\Delta E_{NN}^{exp} = \Delta E_0 \rightarrow a_0 < 0$ lowest NN scattering state $\Delta E_1 = AL^{-3} > 0$ Wall source: next leading excited state contribution in $R(t) \Rightarrow NN'$ $\Delta E_2 = \Delta E_{NN'} = m_{N'} - m_N$ \therefore suppress $p \neq 0$ baryon and large N' contribution in $C_N^W(t)$

Time dependence of $\Delta E_{NN}^{\text{eff}}$ with wall source (very preliminary)

Can understand time dependence with ΔE_{NN} from exponential?

Bound state from $\Delta E_{NN}^{exp} = \Delta E_0 \rightarrow a_0 < 0$ lowest NN scattering state $\Delta E_1 = AL^{-3} > 0$ Wall source: next leading excited state contribution in $R(t) \Rightarrow NN'$ $\Delta E_2 = \Delta E_{NN'} = m_{N'} - m_N$ \therefore suppress $p \neq 0$ baryon and large N' contribution in $C_N^W(t)$

Explain R(t) in $12 \leq t \leq 20$ by $\Delta E_0, \Delta E_1, \Delta E_2$

Input for $\Delta E_0, \Delta E_1, \Delta E_2$

 ΔE_0 : exponetial source results

 ΔE_1 : a variational analysis result $\Delta E_1^{L=32} = 0.0086 \binom{+44}{-14} \operatorname{PRD84(2011)054506}$

$$\Delta E_1^L = \Delta E_1^{L=32} \left(\frac{32}{L}\right)^3$$

 $\Delta E_2: \ m_{N'} \sim 1.6 \text{ estimated from } C_N^W(t) \\ \Delta E_2 = m_{N'} - m_N \text{ w/o finite volume effect}$

Bump in $t \sim 15$ can be explained by 3 states Ratios for R_i/R_0 propotional to L^3

 \rightarrow consistent with [R_0 : bound state] and [$R_{1,2}$: scattering states]

c.f.) [Mathur et al., PRD70(2004)074508]

Bump in $t \sim 15$ can be explained by 3 states Ratios for R_i/R_0 propotional to L^3

 t_{\min} shifts to larger t as L

other scattering state contributions become non negligible

Bump in $t \sim 15$ can be explained by 3 states Ratios for R_i/R_0 propotional to L^3

 t_{\min} shifts to larger t as L

other scattering state contributions become non negligible

L = 32 needs much larger t to agree with ΔE_0^{exp}

L = 20 might need larger t to agree with ΔE_0^{exp}

Bump in $t \sim 15$ can be explained by 3 states Smaller t: NN' contribution seen (upward) Larger t: NN contribution seen (bump)

Volume dependence

 \rightarrow Overlaps and ΔE_1 of NN state largely changed with L

Expected time dependence of ΔE_{NN}^{eff} with wall source

 R_i/R_0 estimated from linear interpolation

Expected time dependence of ΔE_{NN}^{eff} with wall source

Could touch actual data Large t needs to agree with ΔE_0^{\exp}

Expected time dependence of ΔE_{NN}^{eff} with wall source

 R_i/R_0 estimated from linear extrapolation Could touch actual data Much large t needs to agree with ΔE_0^{exp} $\Delta E_{NN}^{eff} < 0$ on L = 96

Volume dependence of wall source

Preliminary result + pilot study of PRD84:054506(2011): $N_f = 0 m_{\pi} = 0.8 \text{ GeV}$

Dip in small t + Bump in large t

Volume dependence of wall source

Preliminary result + pilot study of PRD84:054506(2011): $N_f = 0 m_{\pi} = 0.8 \text{ GeV}$

Dip in small t + Bump in large tDifferent behavior from HALQCD expectation

[HALQCD, JHEP1903(2019)007]

Dip becomes flat as volume increases

 \Rightarrow looks plateau in large volume if statistics is not enough Our expectation: In large statistics similar behavior will appear

Summary

Preliminary result High precision NN calculation in $N_f = 0$ at $m_{\pi} = 0.8$ GeV

Souce dependence of $\Delta E_{NN}^{\text{eff}}$

exponential source: earlier plateau

walll source: non monotonic behavior

consistent with exponential source at large t

Volume dependence of R(t) with wall source

Bump in large t can be explained by bound, NN, NN' states Ratios of amplitudes propotional to L^3

 \rightarrow ground state is bound state, 1st and 2nd are scattering states Expected $\Delta E_{NN}^{\text{eff}}$ on other *L* agrees with data Dip becomes flat as volume increases

 \rightarrow looks plateau if statistics is not enough

Wall source: hard to obtain bound state energy large overlap to NN scattering state in large t

Need to check our expectation with variantional analysis

 $N_f = 2 + 1 \ m_{\pi} = 0.146 \ \text{GeV} \text{ on } (8.1 \ \text{fm})^3$

118,080 measurements

roughly agree with deuteron ΔE with finite volume effect ~ 6 MeV

Might be hard to improve statistical error further need better calculation method to imporve statistical error