Stress tensor distribution around static quarks in hot medium

Ryosuke Yanagihara (Osaka University)

For FlowQCD collaboration : Takumi Iritani, Masakiyo Kitazawa, Masayuki Asakawa, Tetsuo Hatsuda

Confined vs. Deconfined

Pressure distribution inside hadrons vs. Our study

Flux tube

✓ Electric field spreads all over the space
 ✓ Coulomb potential

✓ Flux tube, squeezed one-dimensionally
 ✓ Confinement potential

Flux tube

- ✓ Electric field spreads all over the space
 ✓ Coulomb potential
- QCD 4.5 ************** 4.0 ^{3.5} ^{3.0} ^{3.0} ^{2.5} 2.0 Cornelltype 1.5 data 0.0 0.2 0.4 0.6 0.8 1.0 1.2 $R[\mathrm{fm}]$
- ✓ Flux tube, squeezed one-dimensionally
 ✓ Confinement potential

More direct physical quantity : Stress tensor !!

Maxwell stress

$$T_{ij} = \epsilon_0 \left(E_i E_j - \frac{\delta_{ij}}{2} E^2 \right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{\delta_{ij}}{2} B^2 \right)$$

To do

(1) Prepare $Q\bar{Q}$ on the lattice (2) Measure EMT around $Q\bar{Q}$

Set up

- ✓ Quenched SU(3) Yang-Mills gauge theory
- ✓ Wilson gauge action
- ✓ Clover operator
- ✓ Continuum limit
- \checkmark APE smearing for spatial links
- ✓ Multihit improvement in temporal links
- ✓ Simulation using BlueGene/Q @ KEK

β	Lattice spacing	Lattice size	# of statistics
6.304	0.057 fm	48 ⁴	140
6.465	0.046 fm	48 ⁴	440
6.513	0.043 fm	48 ⁴	600
6.600	0.038 fm	48 ⁴	1500
6.819	0.029 fm	64 ⁴	1000

A lattice study of stress distribution around $Q \overline{Q}$ in vacuum

Stress distribution in terms of local interaction

Stress distribution around $Q\overline{Q}$: Cylindrical coordinates

(Note : after double limit)

EMT and confinement potential

EMT and confinement potential

Toward analysis at nonzero temperature

Stress distribution around $Q\bar{Q}/Q$ at nonzero temperature

To do

(1) Prepare $Q(\bar{Q})$ on the lattice (2) Measure EMT around Q/\bar{Q}

Set up (quark—anti-quark, single quark)

- ✓ Quenched SU(3) Yang-Mills gauge theory $Q\bar{Q}$ 4.0 ✓ Wilson gauge action F(R) [GeV] ✓ Clover operator \checkmark Fixed *a*, *t* 0.46 fm 0.69 fm 2.5 Multihit improvement in temporal links
- ✓ Simulation using OCTOPUS, Reedbush

β	Lattice spacing	Spatial size	Temporal size	T/T_c	# of statistics
6.600	0.038 fm	48 ³	12	1.44	640

Maxwell stress (revisit)

$$T_{ij} = \epsilon_0 \left(E_i E_j - \frac{\delta_{ij}}{2} E^2 \right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{\delta_{ij}}{2} B^2 \right)$$

Stress distribution around $Q\overline{Q}$: Cylindrical coordinates

Stress distribution around *Q* **: Spherical coordinates**

Stress distribution around *Q*

Pressure distribution inside hadrons vs. Our study

Summary and Outlook

Summary \checkmark We first measure stress distribution around $Q\bar{Q}/Q$ at zero/nonzero temperature on the lattice

Outlook

 $\checkmark a, t \rightarrow 0$ (double limit)

- ✓ Temperature dependence
- ✓ Application: QQ, QQQ, excited state, hadron (full QCD)...

Back up

Flow time dependence (single quark system)

Interference b/w singlet and octet state

