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Abstract. Here I report on my activity from April to June 2018 as an Advanced Futures Fellow 
at Kyoto University. During this time, I examined how the plant white clover (Trifolium repens), 
adapts to spatial variation at large and small spatial scales associated with environmental 
variation in temperature. At a large spatial scale, I sampled 25 T. repens populations from the 
South to the North of Japan, and assayed the frequency of plants that produce hydrogen cyanide 
(HCN), an antiherbivore defence trait that also reduces tolerance to freezing and varies due to 
Mendelian inheritance at two loci. I further tested for genetic clines in HCN along urban-rural 
gradients across three cities (Sapporo, Kyoto and Hiroshima). Trifolium repens exhibited a a 
decrease in the frequency of HCN genotypes with increasing latitude and lower temperatures. 
The strength of these clines were stronger than clines sampled seven decades ago, suggesting 
that T. repens has continued to adapt to large scale climatic gradients in Japan since its 
introduction in the 1800s. I detected a cline in HCN along the urban-rural gradient of Kyoto, 
whereas there were no clear genetic clines in either Sapporo or Hiroshima. My results show that 
T. repens adapts to large scale environmental gradients but seldom adapts to small scale
environmental variation in Japan.
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1.  Introduction 
This report documents the work I undertook during my two month stay as an Advanced Futures 
Fellow at Kyoto University from April -June 2018. During this time I was based on the Center for 
Ecological Research. In addition to the research I performed, I gave six lectures, participated in the 
Kyoto Forum, and interacted extensively with faculty, students and post-doctoral researchers at Kyoto 
University and other Japanese universities, giving them feedback on their research and ideas. My work 
focused on the adaptation of plants to climate, and thus this document represents a report of my 
preliminary findings.  

Understanding how species adapt to their environment is a question of fundamental importance in 
biology. Evolution of species’ populations along environmental gradients has long served as a model 
to understand how organisms adapt to spatial and temporal changes in their environment (Briggs and 
Walters, 1972). Spatial gradients in the environment may include changes in temperature with latitude, 
whereby temperature decreases at higher elevations and higher latitudes. Temporal changes may 
include seasonal changes or longer-term trends such as historical and contemporary climate change. 
Here I seek to understand how spatial and temporal variation in temperature in Japan affect the 
evolution of a functionally important antiherbivore defence trait in white clover (Trifolium repens L, 
Fabaceae). 

White clover has long served as a model for the study of adaptation to spatial variation in 
temperature. This plant exhibits a genetic polymorphism for the production of the chemical defence, 
hydrogen cyanide (HCN), whereby plants produce either HCN (cyanogenic) or they completely lack 
this defence (acyanogenic). Variation in this trait is caused by Mendelian inherited allelic variation at 
each of two loci: CYP79D15 (hereafter referred to as the Ac locus), which produces the cyanogenic 
glycosides linamarin and lotaustraulin (Olsen et al., 2008), and linamarase (hereafter referred to as the 
Li locus) which produces the enzyme that hydrolyzes the cyanogenic glycoside to produce HCN 
(Olsen et al., 2007). Plants require at least one functional allele at both loci to produce HCN, and both 
loci exhibit partial or whole gene deletions that result in a recessive loss of function of that gene. If a 
plant is homozygous for the recessive gene deletion at either locus then the plant is acyanogenic. 
While HCN’s primary function is involved in defence against generalist herbivores (Burdon, 1983; 
Hughes, 1991; Thompson and Johnson, 2016), the presence of HCN also decreases tolerance to 
freezing (Daday, 1954; Olsen and Ungerer, 2008; Kooyers et al., 2018). Daday (1958) showed that in 
the native and introduced ranges of T. repens, plants exhibit clines in the frequency of HCN producing 
genotypes within populations. In the native range, he showed that the frequency of HCN producing 
genotypes decreases from 100% in the south of Europe (Spain), to 0% in the North and East of Europe 
(e.g. Norway, Russia) (Daday, 1954), where temperatures are below freezing in winter. He went on to 
show that there are similar but weaker clines in the non-native ranges of North America and Japan, 
and no clines in South America, Australia or New Zealand. Since Daday’s (1958) work, T. repens 
populations have had seven decades to further adapt to environmental gradients in their introduced 
range, and the Earth has warmed considerably since the 1950s. These global climatic changes may 
have allowed clines to become steeper in the introduced range and cyanogenic plants to occur at 
higher latitudes. 

Recent work also shows that T. repens can adapt to the much smaller spatial gradients in 
temperature caused by cities and surrounding rural areas. In several North American cities, HCN 
frequencies are low in downtown regions of cities and higher in suburban and rural areas (Thompson 
et al., 2016; Johnson et al., 2018). These genetic clines appear to be caused by a gradient in colder 
minimum winter temperatures in cities. Since urban areas have convergent features throughout the 
world, it might be the case the plants like T. repens consistently adapt to cities throughout their range, 
but this possibility of global parallel evolution to urban environments has not been tested.   

Here I test the hypothesis that the HCN polymorphism in T. repens has adapted to spatial and 
temporal climatic temperature gradients in Japan. I asked three specific questions. First, does T. repens 
exhibit a cline in the frequency of HCN genotypes with either latitude or winter temperatures in 
Japan? Second, has the strength of this cline changed through time, and has the frequency of HCN 
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genotypes increased in northern populations? And third, does HCN exhibit genetic clines along urban-
rural gradients in large Japanese cities, as has been seen in North America. The results reported here 
contribute to our understanding of how plants adapt to climatic variation. The results presented in this 
report are preliminary and conclusions should be viewed as tentative and incomplete. The full works 
will be published separately as part of the M.Sc. thesis of Simon Innes, and as part of the Global 
Urban Evolution Project (www.globalurbanevolution.com) 

2.  Material and Methods 
The material obtained to answer our research questions were collected at two spatial scales: 1) broad 
geographic samples from across Japan, which answered questions 1 and 2; and, 2) smaller scale samples 
within individual cities. My description of the methods for sampling at each of these scales follows. 
 
2.1. Contemporary and historical samples of T. repens HCN frequencies across Japan 
To address questions 1 and 2, we sampled 25 populations of T. repens from the South (Nishi-Oyama: 
31.17523 N, 130.59019E) to the North of Japan (Sapporo: 43.10601 N, 141.40253 E) (Figure 1). From 
each population, we collected seeds from a minimum of 20 plants. These seeds were then grown from 
seed in a growth chamber at the University of Toronto Mississauga and phenotyped by S. Innes for the 
presence or absence of HCN using a modified version of the Feigl-Anger assay (Gleadow et al., 2011) 
as described in (Thompson and Johnson, 2016). The presence of HCN indicates plants that have at least 
one functional allele at both Ac and Li. We are presently determining the frequency of the dominant and 
recessive alleles at both loci individually. In total, we assayed 903 plants with an average of 36 plants 
per population. To obtain historical data from Japan, we extracted the data presented in Appendix I of 
Daday (1958) for HCN phenotype, geospatial coordinates and temperature from each of the seven 
populations sampled from Japan in the 1950s. Using these data we used linear regression and analysis 
of variance (ANOVA) implemented in R to determine how the frequency of cyanogenic genotypes 
within populations changed with latitude and winter temperature for both the historical and 
contemporary data sets.  
 

[INSERT FIGURE 1] 
 
2.2 Sampling urban-rural clines in HCN within cities 
To answer question 3, we sampled plants along urban-rural clines in each of three large Japanese cities: 
Sapporo, Kyoto and Hiroshima (Figure 1). From each city we sampled plants from 44-45 populations 
along an urban-rural clines, as shown in Figures 2. These clines started in the urban centre of each city, 
continued through the suburbs and then several kilometres into rural areas outside of the city. From each 
city we sampled 10-20 plants separated by at least 3m, for a total of 874 plants from Sapporo, and 994 
plants from each of Kyoto and Hiroshima. From each plant we collected 3-4 leaves, which were stored 
in 2 mL microcentrifuge tubes in a -80C freezer until the HCN assay was performed as before. We then 
used linear regression to determine whether HCN frequency within each population was related to the 
relative distance from the urban centre. Distance from the urban centre was used as a metric of 
urbanization, which is well correlated with the percentage of impervious surface in each of the three 
cities sampled. Distance was relativized based on the Euclidean distance from the urban center, with 0 
corresponding to the urban center of a city, and a distance of 1 representing the most distance rural site; 
typically 30-40 km from the downtown region (Figure 2).  
 

[INSERT FIGURE 2] 

3.  Results 
 
3.1 Latitudinal clines in HCN  
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The frequency of HCN within populations declined at higher latitudes and increased with higher winter 
temperatures. Correspondingly, the frequency of HCN was significantly related to latitude (Slope = -
0.045, P = 0.005, R2 = 0.29) and winter temperatures in January (Slope = 0.037, P = 0.014, R2 = 0.24).  

The historical frequency of HCN within populations showed no significant relationship with either 
latitude (Slope = -0.006, P = 0.75, R2 = 0.02) or temperature (Slope = 0.008, P = 0.59, R2 = 0.016). 
When the contemporary and historical data for HCN frequency is included in a single model, there is a 
significant effect of latitude (F1,28 = 8.76, P = 0.006), but no difference in average HCN frequency 
between the two samples (contemporary vs historical) (F1,28 = 2.16, P = 0.152), and there was no 
interaction between latitude and when plants were sampled (F1,28 =1.71, P = 0.20; Figure 3). A visual 
inspection of Figure 3 suggests that the slope of HCN versus latitude is steeper in the contemporary 
sample compared to the historical sample, with higher frequencies of HCN in the South and roughly 
equivalent frequencies in the North.  
 

[INSERT FIGURE 3] 

3.2 Urban rural clines in HCN  
Of the three cities sampled, a significant cline in HCN versus distance from the city center was observed 
in only a single city (Figure 4). In Kyoto, there was a significant negative relationship between HCN 
frequency and distance from the city centre (Slope = -0.193, P = 0.045, R2 = 0.092; Figure 4B), indicating 
that the frequency of HCN was higher in the city than in the surrounding rural areas. No relationship 
was found in either Hiroshima (Slope = -0.01, P = 0.931, R2 = 0; Figure 4C) or Sapporo (Slope = 0.111, 
P = 0.2, R2 = 0.039; Figure 4A). 
 

[INSERT FIGURE 4] 

4.  Discussion 
The results collected during my Advanced Futures Fellowship show that T. repens has evolved clear 
clines in the frequency of HCN from the South to the North of Japan, which is associated with a large 
gradient in temperature. Of the three cities examined, only one city showed a significant cline in HCN. 
I discuss the importance of these results in relationship to adaptation to spatial and temporal variation 
in environments. 
 
4.1 Contemporary and historical clines in HCN across Japan 
The contemporary sample of T. repens across Japan showed a clear signature of an adaptive cline in 
genotype frequency. Consistent with Daday’s (Daday, 1954; Daday, 1958), the frequency of HCN in 
populations declined from the South to the North of Japan. The percentage of HCN within populations 
was predicted to increase by 3.7% for every degree of warming in January, which is consistent with 
colder temperatures selecting against cyanogenic genotypes. Based on the equation of the best fitting 
regression line, 63% of all plants were cyanogenic at the very south of Kyushu, and 0% of plants were 
predicted to be cyanogenic (i.e. 100% acyanogenic) at the very northern tip of Hokkaido.  

Based on data from seven populations sampled in Japan, Hunor Daday concluded that T. repens had 
evolved a cline in one of the two loci (Ac) in response to the temperature gradient that occurs in this 
country. However, this conclusion was not based on any statistics, but instead relied on a qualitative 
assessment of frequencies at Ac and Li in relation to winter temperature and latitude. While he did not 
specifically look at the frequency of HCN plants within populations, it is surprising that we found no 
relationship between HCN and latitude or temperature in his sample. Moreover, I tested the correlation 
between the frequency of Ac and temperature in his dataset and found it to be non-significant (r = 0.21, 
P = 0.64), suggesting that Daday’s conclusions about an adaptive cline in Japan were unfounded. Based 
on this comparison of the contemporary and historical samples of T. repens in Japan, it would appear 
that populations in Japan have become better adapted to spatial variation in climate since the 1950s. 
Since the lines cross at higher latitudes (Figure 3), it indicates that cyanogenic genotypes have not shifted 
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further north, as might be predicted as a response to climate change. However, when we test these 
observations explicitly, we find no difference in the relationship between HCN frequency vs latitude 
between the two dataset. Given the relatively small number of populations sampled by Daday, it is 
difficult to discern whether this lack of an interaction reflects the low statistical power inherent to 
Daday’s sampling of just seven populations, or whether there has not been sufficient time for adequate 
evolution change since the 1950s. Unfortunately, these two possibilities cannot be disentangled, but we 
are looking to other countries to see if this can be resolved from a larger global sample. 
 
4.2 Adaptation of T. repens to cities in Japan 
Based on earlier results from North America (Thompson et al., 2016; Johnson et al., 2018), we 
hypothesized that cities in Japan would exhibit urban-rural clines in the frequency of HCN, with the 
lowest level of HCN in urban locations. Contrary to our prediction, we did not detect any cline in two 
cities (Hiroshima and Sapporo) and a weak cline in the opposite direction to what was predicted in Kyoto 
(Figure 4). These results have several possible interpretations. First, it is possible that there is something 
unique to North American cities to make it more likely for T. repens to adapt to those cities. Although 
North American cities are on average younger than Japanese cities, this possibility seems unlikely since 
we have now seen clines in other cities throughout the world, including other Asian cities included in 
the Global Urban Evolution project. The other possible explanation for the cline in Kyoto, is that all 
rural samples were sampled from an elevation that was ca. 70m higher. However, given that HCN was 
on average 19% lower in the rural compared to the urban area, and the temperature difference between 
these habitats is expected to be <0.5C, then this degree of temperature difference cannot account for the 
large difference in HCN. Perhaps the most likely explanation is that the herbivore communities were 
higher in the city than the rural area, a possibility that remains to be tested.  
 
4.3 Conclusions 
Based on my study of plant adaptation across Japan, I can make several tentative conclusions about the 
evolution of HCN within T. repens in response to spatial and temporal variation in the environment. 
First, it is clear that T. repens has adapted to latitudinal variation in climate since its introduction to 
Japan in the 1800s. Second, circumstantial evidence suggests that seven decades since Daday’s work 
has allowed populations to adapt more to climate than was observed in the 1950s, although this 
conclusion remains tentative and is not entirely supported by all analyses. Finally, we found limited 
evidence for adaptation of T. repens to cities, with the one significant cline being opposite to what has 
been observed in North American cities. These results suggest that climate over large spatial scales is 
most important in driving the evolution of adaptations of T. repens to temperature gradients in Japan.  
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Figure 1. Map of Japan showing sampling locations of T. repens populations along latitudinal gradient 

(white circles), as well as the cities sampled (yellow circles) when testing for urban-rural clines in 
HCN within populations. The three cities included Sapporo (S), Kyoto (K) and Hiroshima (H). Inset 

shows T. repens growing outside of the Center for Ecology at Kyoto University. 
 
  



 
 

Report on my visit to Kyoto University as an Advanced Futures Fellow: 
Evolution of cyanogenesis in Trifolium repens in response  
to spatial and temporal environmental variation in Japan 

8 
 

 
 

Figure 2. Sampling sites in Hiroshima city, shown as light purple circles. We tested for a cline in 
HCN frequency along the urban-rural cline. Insets show white clover plants collected from Peace 

Memorial Park, Hiroshima, and the location of the city within Japan. 
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Figure 3. Relationship between the frequency of HCN within populations and latitude from my 
sample in 2018 (contemporary) and Daday’s sample from the 1950s (historical).  
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Figure 4. Relationship between the frequency of HCN producing plants within populations along 

urban-rural clines in (A) Sapporo, (B) Kyoto, and (C) Hiroshima. Each point represents a population 
and the line show the best-fitting linear regression to the data. Distance from the urban center are 

standardized with 0 representing the urban center and 1 representing the most rural location.  
 

 


