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Motivation:   
 

Reality,  involving  complex  phenomena,  always  shows  imperfections 

when  compared  to  ideal  models. 

In science we need to deal with imperfections,  

such  as  imperfect  symmetries. 
 

We should be able to describe and  measure,  

how  the  imperfection  compares  to  some  ideal  model,  

and  how  these  imperfections  affect  natural  phenomena. 
 

A  specific,  practical  motivation:   
 

Some types of  symmetry deficiencies,  such as  various levels of  

chirality  of  L-  and   D- amino  acids  in life-forming molecules such as  

proteins,  have strong relations to  health,  diseases,  and  medicine. 



A current research collaboration with  

Professor Noriko Fujii   

 provides both theoretical and practical  motivation 
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An  example  from  last  week,  providing  strong  practical  motivation, the 
 

Conference of the Japanese Society for Cataract Research, 

2016 July 29-31,  Morioka,  Japan, 
 

has been dealing with  

very complex phenomena,  

which, however, depend on  

many fundamental aspects of chemistry and physics, 

described by various branches of  mathematics,  

connecting their field to the topic of   

this  Kyoto  International Symposium.  

  



Conference of the  

Japanese Society for  

Cataract Research,  

2016 July 29-31,   

Morioka,  Japan 



Japanese Society for Cataract Research, 2016 July 29-31,  Morioka,  Japan 
 

When molecules of the eye turn into their mirror images  
and become misfits:    Right hands in left gloves. 

I  have  a  cataract:   not  in   my eyes,  but  above  my  head,   
this picture has been taken in front of a waterfall,  a real  “Cataract”,  

so I have chosen to use this picture for this special occasion. 







I   am  a  chemist  and  mathematician,  

I am definitely not an expert on cataract  

(although my Father, with exactly the same name, was an expert,  

performing eye-surgery, operating on cataract patients).  

My research is on some fundamental questions of chemistry:  

global shape and local shape of electron density clouds of molecules,  

approximate symmetry, symmetry deficiency,  

Molecular  chirality  problems  and  chirality  changes.  

Since  I  study  Fundamental Chemistry,  

it is a special honour for me to talk at  Kyoto University. 



For  many  decades,  I  have had strong connections to  Japanese  Science, 

especially,  to  Kyoto  University,  

with  Chemistry  Prof.  Akitomo  Tachibana  and  others 

and it is wonderful that I may strengthen this  

from a new scientific perspective of   Prof.  Noriko  Fujii 
 

For  8 years,  I was a Foreign Member of 

The Fukui Institute for Fundamental Chemistry, Kyoto, 

directed by  Professor  Kenichi  Fukui 
 

I have the honour to have 7 publications  

with  Prof.  Kenichi  Fukui  and  Prof.  Shigeru  Arimoto  as  co-authors. 
 

These papers were on various topics, but the main, official topic was 

“Prebiotic Formation of Definite Sequence Biopolymers”, 

a topic well fitting with the current collaboration with  Prof.  Noriko  Fujii 





Mt. Hiei, 1994 



Molecular  Shape  and  Chirality,  

 
The  Role  of  Molecular  Fragments 

in Biochemical  Effects,   
 

Local  and  Global   Shape,   
 

Local  and  Global  Chirality  



All molecular properties are determined by the   

shape of electron density clouds,  forming the actual 

“bodies” of molecules.   
 

Molecular shapes which are mirror images but not 

superimposable on each other, just as left and right hands, 

are called “chiral”.  
 

Such chiral molecule pairs have equal energies and 

equal stabilities, but they fit differently into various 

surroundings.  



The left handed variants of amino acids dominate 

in life forming molecules on Earth, and the right-

handed forms are “misfits”  in living tissues.  
 

The purpose of this research is the  

detailed understanding of processes causing  

left-to-right mutations of amino acids in peptides,  

some of which processes do contribute to  

cataract in the eye.  



This research has a focus on shape-based  

chirality measures of the natural amino acids,  
 

to find relations between such measures and  the  observed 

variations in the  L  to  D,   ``left to right`` changes,  

we  call  ``enantiomerization``,   

of  these  compounds,  with  often   

significant biochemical,  and even health effects.   



Molecular Shape Analysis Methods 

Shape Analysis,  Paul G. Mezey 



Some fundamental concepts 

Molecular  Shape:   the shape of fuzzy electron density cloud 

Molecular  Similarity:   similarity measures 

Molecular  Symmetry,  perfect  symmetry,  imperfect  symmetry 

Symmetry  Deficiency   Measures: 

 The degree of similarity between imperfect and perfect symmetry 

Chirality:  non-superimposibility of mirror images,  

 Some symmetries are missing:  mirror planes  

 and  rotation-reflection symmetries of  the  S2n-type 

Chirality  Measures  
   
 



How  can  we  study  the shapes  of molecules ? 
 

What is a molecule? 

Some  atomic  nuclei,  and an electron density cloud. 
There is nothing else in a molecule, only nuclei and electrons. 

The world on that microscopic level of molecules is very different 

from what we are used to:  

quantum mechanics plays a far more important role,  

and nuclei and electrons have both particle and wave properties.   

Nuclei are more like small particles, electrons are more like waves 

forming a fuzzy cloud. 

Electrons in a molecule are best imagined as clouds. 



 

 

The shape of a molecule is the shape of its 

electron density cloud 



Think of water, the molecule of formula H2O,  
or   H – O – H    with the bonds indicated.  

How does a water molecule really look like? 

Let us take a look first at a sketch of a single water molecule,  H2O. 
There are three positively charged centers, the nuclei of the atoms of oxygen and two 
hydrogens, and a fuzzy, negatively charged electron density cloud, that is thick near the 
nuclei and is thinning out at larger distances from the nuclei. 

Molecules are small.  Paul G. Mezey 



It is easy to describe the shape of a potato: 

the potato has a skin,  a boundary,  a given 

geometry, that can be depicted easily. 

 

BUT: 
 

How to describe the shape of a cloud,  

that has no boundary ….. 
. 



The solution:   use isocontours,  that is, contours, 
where the cloud has the same density,  called  isodensity 
contours. 
 

An  isocontour surface is the collection of points where the 
density value is the same constant, say, constant  a. 
 
 
This is similar to the two-dimensional  idea of describing the 
shape of mountains on a map, using lines of equal heights,  
isolevels, which are continuous lines forming loops on the map. 
 
 
For the  three-dimensional clouds,  one has  isocontour surfaces 

. 



Shape Group Methods, SGM,  Paul G. Mezey 
. 

Some constant electron density contours, “isosurfaces” of water at  

density values of  0.001, 0.01, 0.10, 0.30, and 0.40 a.u. (atomic units) 

Atomic unit for  
electron density:  
1 electron/bohr3 



Water,    H2O 

  Just like a set of nested Russian wooden dolls: 
 

open one doll, there is another inside, 
open that one, there is yet another inside of that, 

and so on …. 
 

however, the electron density changes continuously, 
  

so in this case there are infinitely many dolls !  
 



MIDCO 



A molecular isodensity contour surface,  MIDCO  G(K,a)  of nuclear configuration  K   

and density threshold   a   is defined as   G(K,a) = { r :  r(K,r) = a },  that is, as the collection 

of all points  r  where the electronic density  r(K,r)  is equal to the threshold  value   a. 



29 

Molecular isodensity contour (MIDCO) surfaces of BNNNs 

 Atomic range 

 Bonding 

range 

 Skinny molecular 

range 
 Corpulent molecular 

range 



Closer  to  our  amino acid and peptide problems: 
 

what is the shape of a dipeptide …  

 . 





Alanylalanine, structural models and actual electron density cloud 

Shape Group Methods, SGM,  Paul G. Mezey 









Shape Group Methods, SGM,  Paul G. Mezey 

Electron density isocontours of  Aspartic Acid (Asp) 







L-Aspartic Acid          D-Aspartic Acid L-Aspartic Acid          D-Aspartic Acid 



Local  Shape  and  Global Shape, 

 Local  Symmetry  and  Global Symmetry,  

Local  Chirality  and  Global  Chirality: 

 

The Shape of Molecules   

and  the  

Shape of Molecular Fragments 

 . 





    Paul G. Mezey,    Acc. Chem. Res. 2014, 47, 2821−2827 



A Theorem on Molecular Fragments: 

The Holographic Electron Density Theorem 



Historical notes on the Holographic Electron Density Theorem 
The Hohenberg-Kohn Theorem [1] refers to the complete electron density, 

stating that all non-degenerate, ground state molecular properties are 
determined by the complete electron density.  

 

For artificial, bounded systems a similar result on the relation between the part and 
the whole has been proven earlier [2], by J. Riess and W. Münch. Their proof 
was not applicable for real, boundaryless molecules. This limitation of the 
result, although clearly stated by these authors, has not always been fully 
recognized by some later papers quoting the result. 

 

The “Holographic Electron Density Theorem”[23] deduces complete information 
from the part, stating that any nonzero volume part of a molecular electron 
density in a non-degenerate ground state contains the complete information 
about all properties of the entire, boundaryless molecule. 

 

That is, the complete molecular information does not require the complete electron 
density, and local electron density ranges already fully determine all 
molecular properties. 

 

1.    P. Hohenberg  and  W. Kohn,  “Inhomogeneous electron gas”, Phys. Rev. 136, B864-
B871 (1964).  

2. J. Riess and W. Münch, “The Theorem of Hohenberg and Kohn for Subdomains of a 
Quantum System”,  Theor. Chim. Acta, 58, 295-300 (1981). 

3. P.G. Mezey,  “The Holographic Electron Density Theorem and Quantum Similarity 
Measures”, Mol. Phys., 96, 169-178 (1999). 

Holographic Electron Density Theorem, HEDT, Paul G. Mezey 



A theorem on a universal relation between the part and the whole: 



Electron density and the information content of molecules 
The Hohenberg-Kohn Theorem, 1964:   The molecular electron density determines  
the molecular energy and through the Hamiltonian, all other molecular properties.  
(Walter  Kohn,  Nobel  Prize  in Chemistry,  1992). 
 
That is, the electron density is the fundamental information storage of molecules, the 
 electron density actually carries the complete information about the molecule.  
 
P.Hohenberg and W.Kohn, “Inhomogeneous electron gas”, Phys.Rev.136,B864-B871(1964).  

 

The holographic information content in parts of molecules: 
 

“The Holographic Electron Density Theorem”,   P.G. Mezey  1999:   
Any nonzero volume part of a molecular electron density in a non-degenerate 
 ground state contains the complete information about all properties of the entire,  
boundaryless molecule.  
 
P.G. Mezey,  “The Holographic Electron Density Theorem and Quantum Similarity 

Measures”,    Mol. Phys., 96, 169-178 (1999). 
 
This fundamental property of all molecules applies to all exhibited and also to all  
latent molecular properties.  

Holographic Electron Density Theorem, HEDT, Paul G. Mezey 



Girona, 2005, 
Walter Kohn and 
Paul G. Mezey 

Holographic Electron 
Density Theorem, HEDT, 

Paul G. Mezey 



P.G.Mezey, Discrete to Continuum Transforms and the Universal Molecule Model 



From Local Information to Global Representation: 
 

Additive Fuzzy Density Fragment (AFDF) Approaches 
 
 

Quantum Chemical Computations to Generate   
Exactly Additive  

Fuzzy Molecular Fragments 
 

A Fragment Density Matrix Approach to  
Linear-Scaling  

Macromolecular Quantum Chemistry:   
 

The  MEDLA  and  ADMA  Methods 



The pioneer of density partitioning (he called it 
population analysis), R. Mulliken, near the crater of 

Teide, Spain, 1976 



The Additive Fuzzy Density Fragmentation (AFDF) Principle. 

      Based on a scheme analogous to  Mulliken’s Population 
Analysis  

without integration. 
 

P.D. Walker and P.G. Mezey, Molecular Electron Density Lego Approach to 
Molecule Building,   J. Amer. Chem. Soc., 115, 12423-12430 (1993).         
[MEDLA  reference] 
 
P.G. Mezey, “Macromolecular Density Matrices and Electron Densities with 
Adjustable Nuclear Geometries”,  J. Math. Chem., 18, 141-168 (1995).        
[ADMA  reference] 



Styrene 

and, e.g., para-metoxy-styrene 
 

First just one practical motivation for studying molecular fragments: 
Through-bond  and  through-space interactions within molecules. 



Some  practical motivation for the study of molecular fragments: 
Through-bond  and  through-space interactions within molecules. 
 
In most cases, it is hard to study these interactions separately, but  
 
in some special cases, it is possible. 
 
The case of para-substituted styrene molecules, two approaches: 
 
Study the fragment shape changes for the vinyl group,  
as influenced by the para substituent  
 
(a) In the complete molecule 
(b) In a pair of molecules where the benzene ring is “left out” 

 
Case  (a)  includes both through-bond  and  through-space interactions 
Case  (b)  includes only  through-space interactions. 
 



Styrene 0.1 a.u.  
isodensity contours 



Styrene 0.01 a.u.  
isodensity contours 



Para-metoxy-styrene  0.1 a.u.  
isodensity contours 



Para-metoxy-styrene  0.01 a.u.  
isodensity contours 



Symmetry  Deficiency,   

Similarity Measures  and  Chirality Measures 
 

Some  general  approaches  to   
 

approximate  symmetry 
 

and  similarity  analysis 



Symmetry Deficiency Measures 
• A set is an  R-set  if it has the symmetry element  R   
 
• B  is an  R-subset of a set A if  B is a subset of A, and  B is an R-set 
• B  is a maximum volume R-subset of a set A if B is an R-subset of A and if volume V(B) 

is maximum among all R-subsets of A   
           (Note that, while B is not necessarily unique, V(B)  is). 
 
• C  is an  R-superset of a set A if  C is a superset of A (A is a subset of C), and  C  is an R-

set 
• C  is a minimum volume R-superset of a set A if C is an R-superset of A and if volume 

V(C) is minimum among all R-supersets of A  
         (Note that, while C is not necessarily unique, V(C)  is). 

 
• The internal R-symmetry deficiency measure,  ISD(A,R)  of a set A is 

 
 ISD(A,R) = 1 – V(B)/V(A), 
 
 where  B  is a maximum volume R-subset of A. 
 
• The external R-symmetry deficiency measure,  ESD(A,R)  of a set A is 

 
 ESD(A,R) = 1 – V(A)/V(C), 
 
 where  C  is a minimum volume R-superset of A. 



Similarity Measures  of  Objects 

Similarity and Dissimilarity 



Similarity  as  the  basis  of   explanation  and  prediction 

The fundamental role of similarity: 
 

Structural similarity 
as a likely indication of  

functional similarity 
 

Similar molecules are expected to have similar effects 
 
 
 



HOW TO STUDY SIMILARITY? 

All aspects of human understanding involves the concept of 
similarity. 

 
 

We recognize things based on similarity 
 

We understand things based on similarity 
 

We make deductions based on similarity 
 

We make plans based on similarity 

Similarity Measures,  Paul G. Mezey 



HOW TO STUDY SIMILARITY? 

All aspects of human understanding involves the concept of similarity. 
 

There are only two possible outcomes of comparisons. 
 

One outcome of a comparison, seldom if ever attained:  equality 
 

The other outcome of a comparison, almost always:  difference 
 
 

Similarity is a concept attempting to bridge these two classes. 
 

How can one quantify the degree of being different, or conversely, 
the degree of similarity? 

 
SIMILARITY  MEASURES 

Similarity Measures,  Paul G. Mezey 



HOW TO STUDY SIMILARITY? 

     Resolution Based Similarity Measures  

Similarity Measures,  Paul G. Mezey 



Resolution,  Paul G. Mezey 

At what distance can we distinguish them? 
Or, at what resolution can we distinguish them? 

 A                     B                       C 

The higher the resolution required to distinguish them, the greater the similarity. 
One can use the level of resolution needed to distinguish as a similarity measure.  

Resolution can be characterized by a number,  
hence we have a numerical similarity measure 

From these three people, C 
can be distinguished from 
the other two at a longer 
distance,  
than the distance at which A 
can be distinguished from B.  
 
Hence, A is more similar to B  
than either is to C. 



HOW TO STUDY SIMILARITY? 

Similarity Measures,  Paul G. Mezey 

Scaling – Nesting  Similarity  Measures,  SNSM 



HOW  TO  STUDY  SIMILARITY? 

Similarity Measures,  Paul G. Mezey 

What  maximal scaling factor  s(BA) allows B  to fit within A? 



HOW TO STUDY SIMILARITY? 

Similarity Measures,  Paul G. Mezey 

Scaling – Nesting  Similarity  Measures,  SNSM 

S(A,B)  and  S(B,A)  are asymmetric measures, not “distance” type measures. 
Many such asymmetric comparisons in science and art.  
Examples:  
In languages (asymmetric levels of cross-understanding,  
                                                                  e.g. Spanish vs. Portugese) 
Similarities within hierarchies. 
Replacability in roles. 
 
However, the symmetric version of SNSM, 
 
S(AB) =  (S(A,B)  + S(B,A)) / 2 
 
can be shown to be a proper “distance” type measure,  
that is, a metric, fulfilling the four criteria 
 
S(AB) ≥ 0,                                            non-negativity 
S(AB) = 0  if and only if  A=B             identity 
S(AB) = S(BA)                                     symmetry 
S(AC) ≤ S(AB) + S(BC)                       triangle inequality 
 



HOW TO STUDY SIMILARITY? 

Similarity Measures,  Paul G. Mezey 

Scaling – Nesting  Similarity  Measures,  SNSM 

P.G. Mezey,    A Proof of the Metric Properties of the Symmetric Scaling-Nesting 
Dissimilarity Measure and Related Symmetry Deficiency Measures, 
Int. J. Quantum Chem., 63, 105-109 (1997). 
 
P.G. Mezey,    Quantum Similarity Measures and Löwdin's Transform for 
Approximate Density Matrices and Macromolecular Forces, 
Int. J. Quantum Chem., 63, 39-48 (1997). 



TOPOLOGICAL  APPROACH  TO  GEOMETRIC  SIMILARITY 

Similarity Measures,  Paul G. Mezey 

Geometrical  Similarity  as Topologial  Equivalence 
 
 

The   GSTE   principle 



Molecules are not rigid, geometry is not the most useful 
mathematical tool for the description of their shapes. 

In general, more fundamentally, for quantum mechanical 
objects, such as molecules, precise location constraints in 

geometrical models violate the Heisenberg relation. 
For molecular shape characterization, a different branch 

of mathematics is especially useful: 
 

TOPOLOGY 
 

also  called  
 

“RUBBER  GEOMETRY” 

 
 



Some  elements  of  topology 

Topology  =  “rubber  geometry” 
 

Topology =  the mathematics of the essential 
 

Topology is an excellent tool for shape analysis 
 



Molecular Shape 
Analysis 

Two  different  types  of  equivalences   
between  the doughnut and the coffee cup: 

 
Topological  equivalence 

 
Homotopical equivalence 



Shape Analysis 

If each point of object A is assigned to a unique point of object B,  
and if each point of object B has a unique point of object A assigned to it,  
and if both this assignment and its inverse are continuous,  
than this assignment is a  homeomorphism. 



Molecular Shape 
Analysis 

A  continuous deformation is called a homotopy. 
Two  objects  are  homotopically equivalent,  if there exists   
a  continuous  deformation converting one to the other 

The  doughnut  and   the  coffee cup:   
   for a topologist, they are the same 



HOW TO STUDY SIMILARITY? 

Geometrical  Similarity as Topological Equivalence 

The  GSTE  principle  

Similarity Measures,  Paul G. Mezey 



Similarity Measures based on Topological Resolution 

 An elementary relation between generating subbases and 

topologies simplifies the approach to the construction of a 

hierarchy suitable to apply the tools of topological 

resolution. One may consider two generating subbases   S1 

andS2  containing families of subsets from an underlying 

space  X, and assume the following the inclusion relation:  

 

       S2S1                                           (1) 

 

If relation (1) holds, then the corresponding topologies  T1   

and  T2   generated by these two subbases are comparable, 

and topology   T2   is finer than topology  T1 :   

 

     T2 T1.                                               (2) 



Similarity Measures based on Topological Resolution 

In the simplest case, consider a countable family       of 

topologies  Ti  in the underlying set  X, 

 

  = {T1, T2,  . . . Ti, Ti+1 ,  . . . },                   (3) 

 

where these topologies  Ti  are fully ordered by the 

stronger-weaker relation. That is, we shall assume that 

 

      Ti+1 Ti                                                      (4) 

 

for any two indices  i  and  i+1.   



Similarity Measures based on Topological Resolution 

As a consequence, the corresponding topological spaces 

(X,Ti) are also fully ordered, and 

 

    (X,Ti+1) (X,Ti)                                         (5) 

 

holds for every index-pair   i   and  i+1. 



Similarity Measures based on Topological Resolution 

The choice of family    of topologies is said to be actually 

discriminative for the given similarity analysis, if from the 

ordered sequence of topological spaces 

 

 . . . (X,Ti+1) (X,Ti) . . .  (X,T2) (X, T1)      (6) 

 

there exists at least one that provides distinction among the 
molecules. Of course, if each topology is discriminative then 
the hierarchy in sequence (6)  provides no variety in 
topological resolution for the given set of molecules 



Similarity Measures based on Topological Resolution 

 In the above sense, the topological space  (X,Ti+1)  

describes more or at least as much detail of the underlying 

space  X   than the topological space  (X,Ti), as implied by 

relation  (5). Of course, if in addition to relation (5),  the 

constraint 

 

      (X,Ti+1) NE (X,Ti)                                       (7) 

 

also holds,  that is, if the strict inclusion relation applies in  

(5), than the discrimination by (X,Ti+1)is stronger than by  

(X,Ti).   



Similarity Measures based on Topological Resolution 

If both conditions, (5)  and  (7)  hold, then one can find 

functions  f  that map   X  onto itself and are  Ti - 

continuous  but  not  Ti+1 – continuous.  In this case, a 

topological description by (X,Ti+1)with a higher 

topological resolution provides more information than a 

description by (X,Ti)  with a topological resolution of lower 

level.  In other words, (X,Ti)   may not be fine enough to 

describe some details that can be captured by  (X,Ti+1). 



Similarity Measures based on Topological Resolution 

          A fully topological generalization of the  GSTE  
principle is obtained if one considers topological 
similarities as relations manifested in a topological 
equivalence according to a weaker topology.   
 
 A topological similarity at some level within the 
hierarchy of topologies becomes a weaker topological 
equivalence at some other level within the sequence. It is 
natural to take the strongest of these weak topologies to 
represent a characteristic level for the given similarity.  



Similarity Measures based on Topological Resolution 

The associated approach, Topological Similarity as 
Weaker Topological Equivalence (TSWTE),  is 
equivalent to the ordinary Geometrical Similarity as 
Topological Equivalence  (GSTE)  approach, if the 
topological space  (X,Ti)  used has topology Ti  as the 
metric topology.  
Of course, then Ti  is suitable for the geometrical 
representation of the objects within the underlying space 
X,  and the approach becomes geometrical.  
Consequently, the GSTE  approach can be regarded as a 
special case of the more general  TSWTE  approach. 



Similarity Measures based on Topological Resolution 

The TSWTE approach is a natural byproduct of any topological 
hierarchy, and is the simplest if the topological spaces involved are 
fully ordered. However, if only a partial order exists within a 
topological family,  the approach is still applicable.  



Similarity Measures based on Topological Resolution 

[1]  Mezey, P.G. (1991) The Degree of Similarity of Three-Dimensional   
            Bodies; Applications to Molecular Shapes, J. Math. Chem.,  7,  39-49. 
[2]  Mezey, P.G. (2000) Shape-Similarity Relations Based on Topological   
            Resolution, J.   Math. Chem., 27,  61-69. 
 [3]   Mezey, P.G. (1993)  Shape in Chemistry:  An Introduction to Molecular  
             Shape and Topology , VCH Publishers, New York. 
[4]   Mezey, P.G. (1997) Quantum  Chemistry  of  Macromolecular  Shape, 
 Internat. Rev. Phys. Chem.,  16,  361-388. 
[5]   Mezey, P.G. (1997)  Shape  in  Quantum  Chemistry.  In  Conceptual   
            Trends in  Quantum  Chemistry, Vol. 3, Calais. J.-L.;  Kryachko, E.S.  
             (eds.), Kluwer Academic Publ., Dordrecht, The Netherlands,  pp   
              519-550. 
[6]   Mezey, P.G. (2000) Topological Methods of Molecular Shape Analysis:  
            Continuum Models and Discretization, DIMACS Series in Discrete  
            Mathematics and Theoretical Computer Science, 51, 267-278. 
[7]    Mezey, P.G., Ponec, R., Amat, Ll., and  Carbo-Dorca, R. (1999)   
             Quantum  Similarity Approach to the Characterization of Molecular  
              Chirality, Enantiomer, 4,  371-378. 



THE  SPECIFIC  PROBLEMS  OF  MOLECULAR   SIMILARITY 

Similarity Measures,  Paul G. Mezey 

Molecules are fuzzy, they have no boundaries. 

 

How to study their shapes, their similarities,  

 their approximate symmetries,  

and their level of chirality? 



MIDCOs 
 A molecular isodensity contour surface,  MIDCO  

G(K,a)  of nuclear configuration  K   and density threshold   a   

is defined as  

 

G(K,a) = { r :  r(K,r) = a }, 

 

that is, as the collection of all points  r  of the  3D  space 

where the electronic density  r(K,r)  is equal to the threshold  

value   a.   

 The shape groups are algebraic groups,  not related to 

point symmetry groups, although the presence of symmetry 

may influence the shape groups. In technical terms, the shape 

groups are the homology groups of truncated objects, where 

the truncation is determined by local shape (specifically, local 

curvature) properties. 
Shape Group Methods, SGM,  Paul G. Mezey 



Some constant electron density contours, “isosurfaces” of water  
at density values of  0.001, 0.01, 0.10, 0.30, and 0.40 a.u. (atomic units) 

Shape Group Methods, SGM,  Paul G. Mezey 



Shape Group Methods, SGM,  Paul G. Mezey 



Alanylalanine, structural models and actual electron density cloud 

Shape Group Methods, SGM,  Paul G. Mezey 



The similarity between the shapes of any two objects,  such 

as the shapes of two faces or the shapes of two  molecules, 

can be evaluated  by the Shape Group Method, using an 

algorithm and computer programs (see some details later).  
 

The shape difference between the  L  and  D  forms   

provides a numerical measure for the Degree of Chirality: 
 

a small value for the only slightly chiral objects,  

and a  large value for very  chiral  objects. 



For the natural amino acids, the molecular fragment-

based local chirality measures, compared to global 

chirality measures of the complete molecules, are 

expected to show correlations with relative rates of 

enantiomerization, which, in turn, might provide new 

insight into the mechanisms of such, often harmful 

changes of amino acids,  

such as those leading to cataract formation. 



Some  fundamental  ideas  about  shape 
 

A  very  short  review  of  concepts: 
 

Tangent  plane to a surface:   
the surface and the tangent plane touch at a point, where 
they are  “locally parallel” 
 
Convex  surface region:  like  a  ”bump” 
 
Concave  surface region:  like  a  ”cave”, a “dip” 
 
Saddle  surface region:  like  a ”saddle” on a horse 

 



A  tangent plane  (white)   at some point  (black dot)  of  a surface 
(blue)  is  “touching”  the surface at this point,  and   
the tangent plane and the surface are locally “parallel” there 



A convex surface is like a “bump”,  something “round”  
A convex surface (red) and the tangent plane (blue)  
touching it at the point where the arrow stands 



A concave surface  can surround something,  like a “cave”,   
(origin of the word concave).  Concave  surface (yellow)  
and the tangent plane (blue)  touching  at the red point. 



Saddle  surface  “on a brown horse”,  and the  
tangent plane (horizontal) that cuts into it. 



Parabolic points:   

border points of convex, saddle, and concave surface 

regions. 



Shape analysis,  for faces,  for molecules,  
for the shapes of tumors, for the shapes of flowers 

Same approach applies, as in Molecular Shape Analysis 
 

My starting point: 
The mathematician Felix Klein, of Erlangen, Germany, 

tried to define mathematically, what is beautiful,  
he tried to develop a mathematical model for beauty, 
using lines of parabolic points on surfaces of statues 

 
As a starting point, I have used his ideas.  

who used differential geometry to analyze shapes 
 

A more modern approach  
using the tools of topology: 

 

Algebraic topology and differential topology 



On replicas of statues, Felix Klein  

marked the  lines  separating  

convex,  

concave, and  

saddle type regions  

of the surfaces, and studied the  

patterns so obtained.  
 

 Shape Group Methods, SGM,  Paul G. Mezey 



 
Handwork of Felix Klein,  

 
on a copy of the bust of the Belvedere Apollo, 

 
to be found at the 

 
University of  Göttingen,  Mathematics Library 

 

Shape Group Methods, SGM,  Paul G. Mezey 



 
 

 

Shape Group Methods,  SGM,  
Paul G. Mezey 



Felix Klein  was  not happy with the results,  he 

thought that nothing useful came out, and 

stopped the project. 
 

 

I have read about it, and I have found it fascinating: 
 

If this is not good for beauty,  

it still can be good for shape analysis! 
 

Shape Group Methods, SGM,  Paul G. Mezey 



One can apply the same ideas to molecular surfaces, 

 for example, to Molecular IsoDensity COntour surfaces,  

MIDCO’s. 
 

For generalization, an alternative, equivalent approach is 

more feasible, where local convexity is considered: 
 

The  locally  convex, saddle-type,  and  concave  regions 

of any given surface, these  regions are labelled   

     D2,  D1, D0,  respectively. 
Shape Group Methods, SGM,  Paul G. Mezey 



 
 

 

Shape Group Methods, SGM,  Paul G. Mezey 



Convexity domain partitioning of surfaces 
 
Locally  convex  regions        D2,  
 
Locally saddle-type regions   D1,  
 
Locally  concave  regions       D0. 
 
The parabolic points form the boundary lines of these regions. 
 
The indices  2, 1,  and  0  refer to the number of negative 

eigenvalues of the local Hessian matrix at each point   r,  where 
the surface is regarded as a function defined over the local 
tangent plane, taken as horizontal. 

Shape Group Methods, SGM,  Paul G. Mezey 



Does Felix Klein’s idea provide a sufficiently detailed 
 shape description?  

 
Are the shapes of  

European  
and  

American  
footballs the same? 

 
Not really! 

 
But, by the criteria of local convexity and domain separation 

by parabolic points, these balls are indistinguishable: just a 
single D2 region in both cases! 

  

Not satisfactory, one needs finer tools. 
Shape Group Methods, SGM,  Paul G. Mezey 



Convexity in a Curved Universe …..   

      Shape Group Method 

. 



Molecular Shape Analysis Methods 

Shape Analysis,  Paul G. Mezey 



Convexity is generalized with reference to tangent planes: 
 For ordinary convexity:  is the object locally more curved, or less curved 

than the tangent plane, or cuts into the tangent plane? 
 

How could one define convexity in a curved Universe?  
 
In a curved Universe, convexity is defined relative to tangent sphere: 
is the object locally more curved, or less curved than the  
tangent sphere, or cuts into the tangent sphere? 
 
The local curvature of the tangent sphere of radius  r  is a reference, that 

defines  relative convexity, relative to this reference curvature, b = 1/r 
 

The shapes of European and American footballs are now 
distinguishable by this approach. 

 
  

Shape Group Methods, SGM,  Paul G. Mezey 



 
 

 

Shape Group Methods, SGM,  Paul G. Mezey 



 
 

 

Shape Group Methods, SGM,  Paul G. Mezey 

Ordinary local convexity:  
convexity relative to a tangent plane of curvature  b=0 



 
 

 

Relative convexity   (convexity in a curved universe):  
convexity relative to a reference curvature  b 

Shape Group Methods, SGM,  Paul G. Mezey 



 
 

 

Relative convexity (convexity in a curved universe):  
convexity relative to a reference curvature  b 



Relative convexity domain partitioning of surfaces 
 
Convexity in a curved Universe, relative to some reference 

curvature  b,  where  b = 1/r,  with  r  the radius of the 
tangent sphere 

 

Locally  convex  regions   relative to curvature    b,         D2,  
 

Locally saddle-type regions   relative to curvature   b,     D1,  
 

Locally  concave  regions   relative to curvature   b,        D0. 
 
At each point  r,  the indices  2, 1,  and  0  refer to the number of 

eigenvalues of the local Hessian which are less then  b,  where the 
surface is regarded as a function defined over the local tangent plane, 
if this plane is taken as horizontal. 

Shape Group Methods, SGM,  Paul G. Mezey 



Shape Groups 

Shape Group Methods, SGM,  Paul G. Mezey 

The electron densities of the molecules and all their  
isocontours are calculated  by quantum chemistry methods. 
 
For the chemically important range  (0.001 a.u.  -  0.1 a.u)  
of   density threshold values   a   of  all  isocontours,  
and for the chemically important range  (- 10  ....  + 10)  
of  all  tangent sphere curvatures  b,  the  software   
determines  the  
 
locally convex          D2,   
locally concave        D0, 
and saddle regions  D1,   
 
of  all  isocontours. 

. 



Shape Groups 
For most small changes of  a  and  b  values,  only the sizes  of 
these  D0, D1,  and  D2 regions change, but  their topological  
pattern  remains the same  on the isosurfaces,  
however, for  some changes  of  a  and  b  values,  even the 
topological  pattern of  these regions changes. 
 

The main observation:   for the entire range of  
patrameters   a   and  b,  only a finite number of  
topologically different patterns of domains exist.  
 

These patterns can be characterized topologically,  
using the homology groups of algebraic topology. 
 

The Shape Groups are the  
one-dimensional homology groups of these patterns. 

. 



Shape Group Method 
For compete details see  P.G. Mezey Shape in Chemistry,  An  
Introduction to Molecular Shape and Topology, VCH  New York 1993 
 

Summary of terminology and  notations: 
Electron density value at the contour surface    a 
Curvature value of tangent sphere   b 
A shape pattern:  
      a relative arrangement of  all convex, saddle, and concave regions,  
      without any concern about their size. 
 

For the whole range of  a  and  b  values, there are only a 
finite number of  such (topologically equivalent) shape patterns.  
Using the tools of Topology,  these patterns define the so-called  
homology groups  on each and every one of the whole range of 
isodensity surfaces 
 

The 1-dimensional homology groups are the Shape Groups  of the 
 

complete electron density clouds,  fully describing their shape. 



The  ranks  of  these Shape Groups  are  the  Betti  numbers,  they  
depend on the a, b values,  generating a numerical shape table,  we  
call  the  (a,b)-map,  that is used as a numerical shape code.   
 

These shape codes can be compared as number sequences, providing  
numerical  shape similarity measures.   
 
These shape similarity measures can be adopted as  
chirality measures,  
for both  
complete molecules  or  molecular fragments.   
  
In  L - D  transformations, these chirality measures, determined as  
the global measure for the whole molecule, or the local measure for  
a molecular fragment,  show characteristic changes,  indicating  in  
which stage  are the local or the global chirality propeties  dominant.   



Allyl alcohol,  three nested isocontours, of  0.2, 0.1, and 0.01 a.u. 

Shape Group Methods, SGM,  Paul G. Mezey 



Molecular Shape 
Analysis 

Shape Group Methods, SGM,  Paul G. Mezey 

Global  (a,b)-map, the global shape code for Allyl alcohol 



 How Much Molecular Fragments Know  
and What Are They Good For ?  

 



Complementary roles and separation of main components 
of interaction effects:  

through-bond and through-space effects  

Both through-bond  
and through-space 
(ringed system) 

Through-space only 
(“ringless” system) 

0.001 a.u. 0.01 a.u. 0.1 a.u. 

 HF/cc-pVTZ, B3LYP/cc-pVTZ, MP2/cc-pVTZ for geometry calculation, followed 
by the shape code generation for the vinyl part.  

 Approach for  “through-space”  only:    
         – Get rid of the aromatic ring  
                        – Complete the fragments to be chemically correct  
                        – SP calculations/MO calculations – shape code for vinyl part.  

• Complex phenomena are easier to understand if they are manifested  
• in simple systems, such as styrene and its derivatives.  
 





Shape Similarity  

• A numerical measure of shape similarity of any two 
electron densities is obtained by comparing the (a,b) 
maps (the shape codes of the Betti numbers), taking 
the ratio of matches against the total number of 
elements of the shape codes(861). 

• “1.0” is a perfect match and “0.0” means no 
similarity. 

• For a family of molecules, these shape similarity 
measures are collected into a Similarity Matrix. 



Similarity Matrix (DFT)  

• All possible pair similarities are present.  
• Extractable information:  

 Directly: Through-space (TS) effects 
 Indirectly: Through-bond (TB) effects 
 Correlations, by choosing an appropriate reference molecule 
 One Similarity Matrix for every level of theory and results can be 

analyzed separately. 



 Through-Bond effect 

 DFT SM results displayed. 
 The numbers will help us 

understand the magnitude of the 
TB effect, the smaller the 
similarity value, the larger the 
TB effect.   

 Strong interactions via mobile pi-
system should result in low 
similarity values and vice versa 

 Dominant effect, it is expected to 
be large, compared to TS. 
 

  
 
 
 
 
1 

PARA FUNCTIONAL 
GROUP                             

 
trans-VINYL 

 

0.6350 

2 F 
 

0.6700 

3 CH3 
 

0.6761 

4 OH 
 

0.7538 

5 N(CH3)2 
 

0.7550 

6 OCH3 
 

0.7567 

7 cis-VINYL 
 

0.7611 

8 CHO 
 

0.7644 

9 CN 
 

0.7658 

10 CF3 
 

0.7663 

11 NH2 
 

0.7670 

12 NO2 
 

0.7699 

13 STY 
 

0.7740 

14 COCH3 
 

0.7835 

SIMILARITY 



Through-Space effect 

• Appropriate part of SM is analyzed 
    to get the TS effect. 
• Not very dramatic, the greatest variation less 

than 5%, but at that distance it is expected to 
be low.  

• Mostly electrostatic interaction. 
• The addition of atoms when completing the 

fragments further decreased the effect of pure 
functional group. 

• Good agreement between models when this 
effect is being studied.  

• Small, important because they help calculate 
the TB effect and after all, it is a direct 
measure. 

 



Shape Deviation Measures 

• A system devised to better 
display hard to see results.   

• It’s a measure that shows 
right away the dominance 
and strength of an effect of a 
functional group. 

• The relative magnitudes of 
the two components provide 
information on the relative 
roles and possible 
dominance of the through-
bond and through-space 
interactions and their 
variations within the family 
of substituents studied. 
 

  
S(STY,A) S(sty,a) SDM(A) SDMtb(A) SDMts(A) 

       1 STY 1.0000 1.0000 0.0000 0.0000 0.0000 

2 OH 0.9668 0.9865 0.0332 0.0197 0.0135 

3 CHO 0.9662 0.9748 0.0338 0.0086 0.0252 

4 CN 0.9488 0.9824 0.0512 0.0336 0.0176 

5 NH2 0.9463 0.9871 0.0537 0.0408 0.0129 

6 COCH3 0.9476 0.9871 0.0524 0.0395 0.0129 

7 NO2 0.9236 0.9736 0.0764 0.0500 0.0264 

8 OCH3 0.9174 0.9683 0.0826 0.0509 0.0317 

9 CF3 0.9113 0.9708 0.0887 0.0595 0.0292 

10 trans-VINYL 0.8889 0.9836 0.1111 0.0947 0.0164 

11 N(CH3)2 0.8415 0.9712 0.1585 0.1297 0.0288 

12 F 0.7681 0.9818 0.2319 0.2137 0.0182 

13 cis-VINYL 0.7651 0.9754 0.2349 0.2103 0.0246 

14 CH3 0.7585 0.9842 0.2415 0.2257 0.0158 
 

    MP2 SDM (above)  





Shape Similarity Study of  
Substituent Effects  

• Approaching the method from an organic chemist’s 
point of view: ortho-, meta-, and para-directing  
substituents can be activators and deactivators in 
Aromatic Electrophilic Substitution type of reactions. 

• “This ring ain’t big enough for the both of us !” - two 
competing functional groups on one ring – di-

substituted benzenes instead of para-substituted STY 
• Functional groups modify the shape of the rest of the 

molecule, and these shape changes can be correlated 
with the type and strength of activation/deactivation. 

 



• Styrene is reference – only the 
functional group is different in every 
case → shape change is the 
consequence of the functional group.  

• What results are expected? - 
energetically most stable 
arrangement and its outcome.  

• More activating/para directing the 
functional group → less influence on 
vinyl shape.  

• More deactivating/meta directing → 
more influence on vinyl shape.  

 
Styrene and  Para-Nitro Styrene 

(above) 



Hammett tables for 
typical functional 
groups and  
similarity values  

Results correlate   
well with 
experimental data. 
 
NH2 and COCH3 

results are the 
same! Does this 
mean that they 
look the same ? 
(DFT) 

Activator – 
deactivator 
characteristics.  



Fragment Shape Variation Index  

• Various molecular fragments and substituents are capable of 
different extent of shape changes, and it is useful to view their 
actual shape changes in the context of the variability of such 
shape changes. 

• For a substituent A,  a small shape change may be more 
significant than a large shape change for substituent B, if the 
shape variability of A is much less than that of B. Example: 
small/compact fluorine and large/”bulgy” sulfur. 

• Shape changes can be fully understood if one looks at local 
and global shape changes and at their interrelation too.   

• The concept of Shape Variation Index has been introduced in 
order to address this question.   
 



Aromatic ring  
comparison and FSVI 
Polycyclic Aromatic 

Hydrocarbons, 1st 
carcinogen discovered 
(benzopyrene). 
Aromatic ring shape  
similarity data correlates  
well with aquatic toxicity 
results.  
FSVI: indicates the 
“importance” of change 
by looking at the whole 
picture instead of  
individual components.  
Local and global shapes  
are interrelated → some 
features might not  be  
obvious if treated  
separately. 
 



The similarity between the shapes of any two objects,  such 

as the shapes of two faces or the shapes of two  molecules, 

can be evaluated  by the Shape Group Method, using 

computer programs  (see some details later).  
 

The shape difference between the  L  and  D  forms   

provides a numerical measure for the Degree of Chirality: 
 

a small value for the only slightly chiral objects,  

and a  large value for very  chiral  objects. 



For the natural amino acids, the molecular fragment-

based local chirality measures, compared to global 

chirality measures of the complete molecules, are 

expected to show correlations with relative rates of 

enantiomerization, which, in turn, might provide new 

insight into the mechanisms of such, often harmful 

changes of amino acids,  

such as those leading to cataract formation. 



Functional Groups 

Functional Groups,  Paul G. Mezey 



Quantum Chemical Functional Groups 
 A simple electron density criterion has been introduced for the identification 

and quantum chemical definition of a generalized concept of functional groups 
[10], based on the following simple principle: 

  if a group of atomic nuclei within a molecule is separated from the rest of 
the nuclei by an isodensity contour surface, then these nuclei and an 
associated fuzzy part of the electron density cloud possess some degree of 
“autonomy” within the molecule.  

 
 This “autonomy” might be of a rather limited degree but it is still reminiscent 

to the autonomy of two molecules placed in the vicinity of each other, close 
enough that some electron density overlap occurs between them, but not close 
enough for any chemical reaction and noticeable rearrangement of the bonding 
pattern to occur. In both cases, there exist molecular isodensity contours,  
MIDCO’s, separating the set of nuclei of a quasi or truly autonomous 
molecular entity (either that of a molecular component of limited autonomy, or 
those of  two individual molecules).  

 
 Due to their characteristic reactivity, only modestly modified by their 

surroundings, it is natural to expect from chemical functional groups within a 
molecule to possess such isodensity contours. Conversely, one may regard 
fuzzy molecular components with such isocontours as generalized functional 
groups [10]. 

P.G.Mezey,  Size Measures of Molecular Electron Densities 



An Approach to Functional Groups in Quantum Chemistry 

P.G. Mezey, Quantum Chemical Shape: New Density Domain Relations for the Topology of 
Molecular Bodies, Functional Groups, and Chemical Bonding,  

 Canad. J. Chem., 72, 928-935 (1994). (Special issue dedicated to Prof. J.C. Polanyi). 
P.G. Mezey, Functional Groups in Quantum Chemistry,  

 Advances in Quantum Chemistry, 27, 163-222 (1996). 
P.G. Mezey, Local Electron Densities and Functional Groups in Quantum Chemistry, in "Topics 

in Current Chemistry, Vol. 203,  “Correlation and Localization",  Ed. P.R. Surjan, Springer-
Verlag, Berlin, Heidelberg, New York, 1999, pp. 167-186. 

G. M. Maggiora and P.G. Mezey, A Fuzzy Set Approach to Functional Group Comparisons 
Based on and  Asymmetric Similarity Measure,  

 Int. J. Quant. Chem, 74, 503-514 (1999). 
P.G. Mezey, K. Fukui, and S. Arimoto, A Treatment of Small Deformations of Polyhedral Shapes 

of Functional Group Distributions in Biomolecules,  
 Int. J. Quant. Chem., 76, 756-761 (2000). 
P.G. Mezey, Computer-Aided Drug Design: Some Fundamental Aspects  
 J. Mol. Mod.,  6, 150-157 (2000). 
 
Some background: 
P.G. Mezey,   Shape in Chemistry; An Introduction to Molecular Shape and Topology;  VCH: 

New York, 1993. 
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Density Domains and Functional Groups 
an Approach Based on Molecular Isodensity Contours, MIDCOs 

Density Domain DD(K,a) is a  domain enclosed by a MIDCO  C(K,a) :
  

DD(K,a) = { r :  r(K,r) ≥ a }.  
 

The density domain and the fuzzy electron density fragmentation 
approaches have been suggested for a quantum chemical criterion and 
representation of formal functional groups.  

 
P.G. Mezey, Quantum Chemical Shape: New Density Domain Relations for the Topology of 

Molecular Bodies, Functional Groups, and Chemical Bonding,  
 Canad. J. Chem., 72, 928-935 (1994). (Special issue dedicated to Prof. J.C. Polanyi). 
P.G. Mezey, Functional Groups in Quantum Chemistry,  

 Advances in Quantum Chemistry, 27, 163-222 (1996). 
 

 Functional Groups,  Paul G. Mezey 



Density Domains and Functional Groups 
an Approach Based on Molecular Isodensity Contours, MIDCOs 

 
A useful analogy: consider two molecules near one 

another.  
 
As long as these molecules have separate identity, each 

must have some Density Domain containing all the 
nuclei of the molecule, but none of the nuclei of the 
other molecule. Separate identity is manifested by 
such density domains. 

 

Functional Groups,  Paul G. Mezey 



Functional groups and limited autonomy within molecules 

Two neighbor molecules,  A  and  B:  
both have MIDCOs enclosing all their nuclei,  

but not those of the other molecule.  
This indicates some degree of autonomy for both molecules  

Functional Groups,  Paul G. Mezey 



Density Domains and Functional Groups 
an Approach Based on Molecular Isodensity Contours, MIDCOs 

 

Consider now a single molecule and one of its connected 
density domains  DD(K,a)   and the nuclei enclosed 
by it.  The very fact that this subset of the nuclei of 
the molecule is separated from the rest of the nuclei 
by the boundary  C(K,a)  of the density domain  
DD(K,a)  indicates that these nuclei, together with the 
local electronic density cloud surrounding them, 
represent a sub-entity of the molecule, with limited 
autonomy, and some degree of individual identity.  

 
It is natural to regard such a density domain  DD(K,a)   

as a criterion and the fuzzy density fragment for the 
nuclei within DD(K,a)  as a representative of a formal 
functional group.  

Functional Groups,  Paul G. Mezey 



Functional groups and limited autonomy within molecules:  
use the same condition as for two separate molecules.  

Take a single molecule: 
The existence of a MIDCO separating a set of nuclei from the rest of the nuclei of 

the molecule, indicates a local, limited autonomy of a Functional Group 

Functional Groups,  Paul G. Mezey 



Functional groups and limited autonomy within molecules,  
using the same condition as for two separate molecules.  

 Fuzzy functional group: the fuzzy ADMA fragment for the nuclei of  DD(K,a)  

Functional Groups,  Paul G. Mezey 



Functional groups and limited autonomy within molecules,  
using the same condition as for two separate molecules.  

 This criterion does not directly address another aspect of functional 
groups: reactivity, although it is a natural expectation that functional 

groups show characteristic reactivity properties. 

Functional Groups,  Paul G. Mezey 



Allyl alcohol, traditional structural formula 

Functional Groups,  Paul G. Mezey 



Allyl alcohol, three nested isodensity contours, of  0.2, 0.1, and 0.01 a.u. 

Functional Groups,  Paul G. Mezey 



Molecular Shape 
Analysis 

Functional Groups,  Paul G. Mezey 



Molecular Shape 
Analysis 
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Functional groups and limited autonomy within molecules:  
example of ethanol (ethyl alcohol).  

Functional Groups,  Paul G. Mezey 



No methyl group in ethanol 

Example: 
 
 According to the quantum chemical definition of 

functional groups, the ethanol molecule contains the   
 -CH2-CH3   and    
 -OH   
 functional groups, but not the  
  -CH3   
 functional group. 
 
 There is no  methyl group as functional group 

in ethanol ! 

Functional Groups,  Paul G. Mezey 



In ethanol, (ethylalcohol), CH3CH2OH, there is no methyl group, as functional group ! 

Functional Groups,   
Paul G. Mezey 



Functional groups and limited autonomy within molecules:  
example of methanol, CH3OH.  

Functional Groups,  Paul G. Mezey 



Molecular Shape 
Analysis 



Molecular  
Shape  

Analysis 
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Summary:  Density Domains and Functional Groups 
Density Domain DD(K,a) :   
 
DD(K,a) = { r :  r(K,r) ≥ a } 
 
is the domain enclosed by a MIDCO  C(K,a) = { r :  r(K,r) = a }.  
 
The density domain approach has been suggested for a quantum chemical representation of 

formal functional groups.  (P.G. Mezey, Canad. J. Chem., 72, 928-935 (1994). (Special issue 
dedicated to Prof. J.C. Polanyi), and  P.G. Mezey, Functional Groups in Quantum Chemistry, Advances 
in Quantum Chemistry, 27, 163-222 (1996). 

 
Consider a single connected density domain  DD(K,a)   and the nuclei enclosed by it.  The very 

fact that this subset of the nuclei of the molecule is separated from the rest of the nuclei by the 
boundary  C(K,a)  of the density domain  DD(K,a)  indicates that these nuclei, together with 
the local electronic density cloud surrounding them, represent a sub-entity of the molecule, 
with individual identity.  

 
It is natural to regard this density domain  DD(K,a)   as a criterion and a representative of a 

formal functional group.  
Fuzzy functional group: the fuzzy ADMA fragment for the nuclei of  DD(K,a)  
 
Mezey, P.G., (1993). Shape in Chemistry; An Introduction to Molecular Shape and Topology;  

VCH: New York. 
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The local and global information content of molecules 

• How different two, formally identical functional groups can 
be?   
 

• How do local ranges of molecules influence global 
properties?  
 

• How are global molecular  properties reflected in local 
ranges of molecules?  

 
• The Holographic Principle of Electron Densities . 

Functional Groups,  Paul G. Mezey 



Functional group polyhedra 

Take a set of functional groups from a molecule  M, and define a unique point for 
each. Take the convex hull of these points, this defines a functional group 
polyhedron  FGP(M)  for the molecule  M 

 
This polyhedron provide a simplified representation of some essential geometrical 

aspects of the molecule  M. 
 
The symmetry and chirality properties of an  FGP(M)  polyhedron can be studied 

directly, leading to a “low resolution”  description,  and an  FGP(M)  
polyhedron can be compared directly to another  FGP(M’)  polyhedron. 

 
Whereas the original input information comes from quantum chemistry, some of 

the tools for the above purposes are provided by topology and discrete 
mathematics. 

 
P.G. Mezey, K. Fukui, and S. Arimoto, A Treatment of Small Deformations of 

Polyhedral Shapes of Functional Group Distributions in Biomolecules,  
 Int. J. Quant. Chem., 76, 756-761 (2000). 
 

Functional Groups,  Paul G. Mezey 







Molecules are  
on my mind 
 
or 
 
the  “halo” 
of a  
Saint  Chemist 




