

Febrauary, 2018

香港中文大學 The Chinese University of Hong Kong

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide
Dispersion	n of Gravitat	ional Waves		
With h	= c = G = 1			

• Without Lorentz violation:

$$\omega = k \tag{1}$$

• Isotropic dispersion [1]:

$$E^{2} = p^{2} + m_{g}^{2} + Ap^{\alpha}$$

$$\Rightarrow \omega^{2} = k^{2} + m_{g}^{2} + Ak^{\alpha}$$

$$\Rightarrow v_{g}(f) \approx 1 - \frac{1}{2}m^{2}f^{-2} - \frac{1}{2}Af^{\alpha-2}$$
(2)

¹Figure 1. from R. Takahashi et al. "*Arrival time differences between gravitational waves and electromagnetic signals due to gravitational lensing*". ApJ 835 (Jan. 2017), arXiv:1606.00458

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide

Lensing (Diffraction) of Gravitational Waves

Lensed waveform

$$\tilde{h}_L(f) = F(f; \text{lensing parameters})\tilde{h}(f)$$
 (3)

Amplification function [2]:

$$F(f;\vec{\theta}_s) \propto \frac{(1+z_L)f}{i} \int d^2\theta \exp(2\pi i f t_d(\vec{\theta},\vec{\theta}_s))$$
(4)

where t_d is the arrival time delay between lensed and unlensed rays.

• Time delay:

$$t_d(\vec{\theta}, \vec{\theta}_s) = \frac{(1+z_L)}{c} \left[\frac{D_L D_S}{2D_{LS}} |\vec{\theta}_s - \vec{\theta}|^2 - \psi(\vec{\theta}_s) \right]$$
(5)

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide
Effect due	to lensing			

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide
The Central	Question			

How would the lensing pattern look like if gravitational waves are with dispersions?

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide
Arrival Tim	e Delay			

With dispersion

$$t_d \to \frac{c}{v_g(f)} t_d$$
 (6)

From now on $\beta(f) = c/v_g(f)$

Dispersion changes the phase differences along the rays.
 ⇒ lensing pattern is changed.

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide
Amplification	Functions			

• For point mass lens

$$F(f;y) = \exp\left(\frac{\pi}{4}w\beta\right) \left(\frac{w}{2}\beta\right)^{i\frac{w}{2}\beta} \times \Gamma\left(1 - i\frac{w}{2}\beta\right)_1 F_1\left(i\frac{w}{2}\beta, 1; i\frac{w}{2}\beta y^2\right)$$
(7)

where $w = 8\pi M_L(1 + z_L)f$, (7) can be reduced to known case [3] when there is no dispersion.

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide
Image Pat	tern			

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide

Parameter Estimations

$$\lambda_g = \hbar/m_g c$$

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide
Advantages				

- Relies solely on the lensed signals.
- SNR of signal is boost.
- Improved constraint on m_g

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide
Summary				

- Lensing pattern of gravitational waves with dispersions
 ⇒ probe dispersion using lensing.
- Better constrains on m_g
- Systematic run is on going. Will have more complete results soon.
- Incorporating the SIS.

Our Awesome Group!

- Saeed Mirshekari et al. "Constraining Lorentz-violating, modified dispersion relations with gravitational waves". Phys. Rev. D 85, 024041. (Jan. 2012)
- 2 Schneider, et al (1992). "*Gravitational Lenses*".Springer's Publications. ISBN: 0941-7834. DOI: 10.1007/978-3-662-03758-4
- R. Takahashi et al. "Wave Effects in the Gravitational Lensing of Gravitational Waves from Chirping Binaries". ApJ 595 (Oct. 2003), pp. 1039-1051. eprint: astro-ph/0305055.

Introduction	Method	Parameter Estimation	GW In CUHK	Backup Slide
Unlensed I	Dispersive (GWs [1]		

• Propagation time delay when A = 0

$$\Delta t = (1+z) \left(\Delta t_e + \frac{m_g^2}{2} D_0 \left(\frac{1}{f_e^2} - \frac{1}{f'_e^2} \right) \right)$$
(8)

• This leads to a phase difference,

$$\delta\Psi(f) = -\frac{\pi D_0 m_g^2}{(1+z)f} \tag{9}$$

such that

$$h_{\rm disp}(f) = h(f)e^{i\delta\Psi(f)} \tag{10}$$