Probing the Universe through the Stochastic GW Background

Towards optimal detection

Sachiko Kuroyanagi Nagoya University 9 Feb 2018 - GC2018

in collaboration with T.Takahashi (Saga U) & T. Chiba (Nihon U)

Stochastic GW background

random phase & no directional dependence

- Overlapped astrophysical GWs $\Delta T < f^{-1}$
- GWs from the early Universe

Sensitivity curves for GW background

Astrophysical GW background

Cosmological GW background

How to detect a stochastic background

Optimal filtering

Ref. Allen & Romano, PRD 59, 102001 (1999)

$$S \coloneqq \int_{-T/2}^{T/2} dt \int_{-T/2}^{T/2} dt' s_1(t) s_2(t') Q(t,t')$$

filter function

Signal in Fourier space

$$\mu \coloneqq \langle S \rangle = \int_{-\infty}^{\infty} df \int_{-\infty}^{\infty} df' \, \delta_T(f - f') \langle \tilde{h}_1^*(f) \tilde{h}_2(f') \rangle \tilde{Q}(f')$$

Noise in Fourier space

$$\sigma^{2} \coloneqq \langle S^{2} \rangle - \langle S \rangle^{2} \approx \int_{-\infty}^{\infty} df \int_{-\infty}^{\infty} df' \int_{-\infty}^{\infty} dk \int_{-\infty}^{\infty} dk' \, \delta_{T}(f - f') \, \delta_{T}(k - k') \langle \tilde{n}_{1}^{*}(f) \tilde{n}_{1}(-k) \rangle \langle \tilde{n}_{2}^{*}(-f') \tilde{n}_{2}(k') \rangle \tilde{Q}(f') \tilde{Q}(k') = 0$$

We need template = spectral shape

"Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run", LIGO & Virgo Collaboration, PRL. 118, 121101 (2017)

Idea

Example

GWB from superradiant instabilities (Ultralight scalar fields around spinning black holes)

"Stochastic and resolvable gravitational waves from ultralight bosons" Brito et al. PRL 119, 131101 (2017)

Template fitting

How accurately can we measure the tilt?

How accurately can we measure the tilt?

General expectation

Peak frequency dependence

 $\Omega_{\rm GW^*} = 10^{-8}$

n_{Gw2} is determined accurately

n_{GW1} is determined accurately

Discussion

 Fitting by broken power-law is more time consuming single: I free parameter (n_{GW}) broken: 3 free parameter (n_{GWI}, n_{GW2}, f*)

Strategy? I. GW search by single power-law
2. Fitting by broken power-law

High SNR detection is necessary for the 2nd step

Same discussion holds for DECIGO
 → More chance to detect GW background

Summary

- Detection of a stochastic GW background is the next challenging step for GW science
- It's searched by matched filtering so we need to prepare templates (= spectral shape)
- We made quantitive estimations on broken-power law fitting and found that it dramatically improves $\delta\chi^2$
- We also made estimation on how accurately the spectral told can be determined. Precise fitting of spectral shape would help to identify the generation mechanism