New constraints on small-scale primordial magnetic fields from Magnetic Reheating

Shohei Saga (YITP, Kyoto University)

Based on

S.S, H.Tashiro, and S.Yokoyama [MNRAS 475 L52(2018)]

S.S, A.Ota, H.Tashiro, and S.Yokoyama in prep.

- 1. Introduction to PMFs
- 2. Reheating of the CMB photon
- 3. Magnetic Reheating
- 4. Summary

- 1. Introduction to PMFs
- 2. Reheating of the CMB photon
- 3. Magnetic Reheating
- 4. Summary

Introduction to PMFs 1.

Primordial Magnetic Fields(PMFs)

generated by cosmological phenomena in the early universe

Why we consider PMFs?

Observed (large-scale) magnetic fields

- Galaxy(~ kpc) $\sim 10^{-5} 10^{-6}$ Gauss Cluster(~ Mpc) $\sim 10^{-6}$ Gauss
- Intergalactic(void) $> 10^{-16} 10^{-21}$ Gauss

Setting seed fields in the early universe and amplifying

Cosmological constraint on PMFs

- CMB anisotropy
- CMB distortion
- Big Bang Nucleosynthesis (BBN)

1.1 Example(1) CMB anisotropy

PMFs generate CMB temperature and polarization anisotropies.

1.2 Example(2) CMB distortion

J. Ganc and M. S. Sloth [1404.5957] K. K. Kunze and E. Komatsu [1309.7994]

Chemical potential

$$f(\epsilon) = \left[\exp\left(\frac{\epsilon - \mu}{k_{\rm B}T}\right) - 1\right]^{-1}$$

y-parameter

$$y = \frac{1}{12} \int \mathrm{d}z \frac{1}{\rho_{\gamma}} \frac{\mathrm{d}Q}{\mathrm{d}z}$$

Decaying of PMFs generates μ and y distortion From the observation of COBE, B < O(nG).

1.3 Constraint on PMFs

In the cosmological observations,

<u>n Gauss</u> PMFs on <u>Large Scale</u> (≳ Mpc)

PMFs on **much smaller scales** ?

1. Introduction to PMFs

- 2. Reheating of the CMB photon
- 3. Magnetic Reheating
- 4. Summary

2. Reheating of the CMB photon

Double Compton era

<u>Compton scattering</u> <u>Double Compton scattering</u> <u>Planck distribution</u>

 $\sim 2.0 \times 10^6$

<u>µ era</u>

<u>Compton scattering</u> # of CMB photon fix Bose-Einstein distribution

 $\sim 4.0\times 10^4$

<u>y era</u>

Z,

Non-equilibrium state

Before μ era, i.e., **2.0** × 10⁶ ≤ 1 + *z*,

Double Compton scattering is efficient.

- Thermal equilibrium
- Planck distribution

An energy injection **increases # of CMB photons** while # of baryons does not change.

The baryon-photon number ratio η decreases.

9

 $n_{\rm b}$

 n_{γ}

2.1 Baryon-photon ratio η

Baryon-photon ratio is independently constrained by BBN and CMB. R.H.Cyburt, B.D.Fields, and K.A.Olive [astro-ph/0503065]

a 0.25 η determines \geq → photon dissociation rate, reaction rate, and so on. 10^{-3} H/ \Box \rightarrow abundance of light element generated ³He/H 10^{-4} in BBN era 10^{-5} 10^{-9} Constrained value by BBN 7Li∕H ч $\eta_{\rm BBN} = (6.19 \pm 0.21) \times 10^{-10}$ 10^{-10} K.M.Nollet and G.Steigman [1312.5725] 10^{-10} 10^{-9} $\frac{n_{\mathrm{b}}}{2}$ $\eta =$ n_{γ}

2.2 Baryon-photon ratio η

Baryon-photon ratio is determined independently by BBN and CMB.

From CMB observations,

- Temperature of CMB photons: T_{CMB}
- Density of baryons: Ω_{b0}

We can directly determine η

Constrained value by CMB (after the onset of the μ -era)

 $\eta_{\rm CMB} = (6.11 \pm 0.08) \times 10^{-10}$

Planck 2013 [1303.5076]

2.3 Baryon-photon ratio η

- 1. Introduction to PMFs
- 2. Reheating of the CMB photon
- 3. Magnetic Reheating

4. Summary

3 Magnetic Reheating

Energy injection source = Diffusion of PMFs \rightarrow increasing n_{γ} (i.e., reheating)

MHD mode analysis Example: Fast-magnetosonic mode

$$k_{\rm D}(z) \approx 7.44 \times 10^{-6} (1+z)^{3/2} \text{ Mpc}^{-1} \sim k_{\rm Silk}(z)$$
Spectrum of PMFs:
$$k_{\rm D} \leftarrow k_{\rm D} \quad \text{Reheating photons}$$
Reheating cale $k_{\rm D} \leftarrow k_{\rm D} \rightarrow \text{Small scale}$

Power-law type (Upper bound) 3.2

3.3 Anisotropic reheating(Preliminary)

- 1. Introduction to PMFs
- 2. Reheating of the CMB photon
- 3. Magnetic Reheating
- 4. Summary

4. Summary

Magnetic Reheating is the novel mechanism to explore **small-scale PMFs**.

In the case of power-law type spectrum, bluer tilt is strongly constrained:

```
for example,

B \leq 10^{-17} \text{ nG} for n_{\text{B}} = 1.0

10^{-23} \text{ nG} for n_{\text{B}} = 2.0

\Leftrightarrow \text{Planck} \sim \text{O}(1.0 \text{ nG}) !!!
```

+ Magnetic anisotropic reheating?