
On fermionic ghosts and the removal  
from scalar-fermion systems

ref. Rampei Kimura, YS, Masahide Yamaguchi   
        Phys. Rev. D96 (2017) 044015,  
        another paper in prep. 

Yuki Sakakihara (Osaka City University)

15:50-16:10, 9th Feb., GC2018



WHY FERMIONS?
How are inflaton and SM particles coupled with each other?

Interactions between inflation and SM particles … unknown  
e.g. Reheating process depends on the details of the interactions

Generalization of interactions including only bosonic fields has 
been more frequently discussed. 
　e.g. Horndeski, Beyond Horndeski,Vector-tensor theories, …

How can fermions be coupled to gravity? 

Examination of the interaction between scalar fields and fermions 
can be a first step to investigate gravity-fermion system 

Can we have quadratic terms of derivatives of fermion?  

Usually it is difficult because of the appearance of ghosts.  
It may be possible by the introduction of scalar fields.



WHAT KINDS OF INTERACTIONS 
ARE ALLOWED IN PRINCIPLE?

Avoidance of negative norm states is crucial  

Let us consider systems both with bosons and fermions and  
how we can avoid such the negative norm states

Fermions can easily have negative norm states (because of extra dofs)

In the sense that we should eliminate “extra degrees of freedom”, 
the analysis is technically similar to  
that of higher derivative theories of scalar fields  
ref. H. Motohashi, et.al., JCAP 1607 (2016) 033.

Extra dofs become explicit in Hamiltonian formulation  



CLASSICAL SETUP

bosons: commuting(Grassmann-even) property
fermions: anti-commuting (Grassmann-odd) property 
　　　　　　　　　　　　　　　　　　　　 ,

Let us consider simplest models
Grassmann-even real Lagrangian 
No spatial derivatives (not field theories)  
Up to first time derivatives (no higher derivatives) 
Real variables (complex variables can be decomposed)
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fermionic system and explain that the absence of negative norm states requires the reduction in the dimension of
phase space. In Sec. IV, we give our setup of coexistence system with bosonic and fermionic point particles and derive
the condition for avoiding fermionic ghosts, which we call the maximally-degenerate condition. We then perform
Hamiltonian analysis of the system satisfying the condition and find another condition guaranteeing that secondary
constraints are not produced and all the Lagrange multipliers are uniquely determined. In the last part of Sec. IV, we
also show how these conditions can be understood in Lagrangian formulation. In Sec. V, we provide concrete examples,
which are free from the fermionic ghosts, and explicitly show the consistency with our analysis. The final section
is devoted to summary. In Appendix A, we mention how to produce primary constraints properly even when the
maximally-degenerate condition is not satisfied. In Appendix B, we discuss Hamiltonian analysis including fermions
when we possibly have also secondary constraints. In Appendix C, we explicitly prove that the maximally-degenerate
condition is equivalent to the presence of N primary constraints. In Appendix D, we calculate the Dirac brackets
between canonical variables in the maximally-degenerate case. In Appendix E, we give a simple extension to ghost
free boson-fermion co-existence field theory.

II. GRASSMANN ALGEBRA AND CANONICAL FORMALISM

In quantum field theories, fermionic fields obey canonical anti-commutation relations, { a(t,x),⇡b(t,y)}+ =
i�ab(x � y), where  a is a fermion and ⇡a is its conjugate momentum. For the purpose of constructing general
action with bosons and fermions, we would like to start with classical (or “pseudo-classical”) treatment of them.
To deal with fermions in the context of classical mechanics, one needs to reformulate canonical formalism such that
classical analysis is consistent with anti-commutation relations in quantum theory. In the first part of this section, we
briefly provide an overview of the basics of Grassmann algebra. Then, we focus on Hamiltonian formulation including
fermionic degrees of freedom. (All the materials described in this section and Sec. III are based on [44].)

A. Grassmann algebra

A Grassmann algebra is formed by generators ⇠A with A = 1, 2, ...,M satisfying the anti-symmetric relations,
⇠A⇠B + ⇠B⇠A = 0. From this definition, it is clear that each generator squared should be zero, ⇠A⇠A = 0 (no
summation), which suggests the Pauli exclusion principle at the level of classical mechanics. In terms of generators
⇠A, an arbitrary function g can be expressed as

g = g0 + gA⇠
A + gAB⇠

A⇠B + · · ·+ gA1...AM ⇠
A1 ... ⇠AM , (1)

where the coe�cients gA1...An are completely anti-symmetric. The terms made of an even (odd) number of ⇠A are
called “Grassmann-even” (“Grassmann-odd”). Now we introduce even dynamical variables qi(t) (i = 1, 2, · · ·n) and
odd ones ✓↵(t) (↵ = 1, 2, · · ·N) as follows,

qi(t) = qi0(t) + qiAB(t)⇠
A⇠B + · · · , (2)

✓↵(t) = ✓↵A(t)⇠
A + ✓↵ABC(t)⇠

A⇠B⇠C + · · · , (3)

where the coe�cients qiA1...An
and ✓↵A1...An

are completely anti-symmetric and time-dependent. (Since we do not
require the covariance, superscripts and subscripts are just labels of the variables, e.g., ✓↵ = ✓↵, except for Appendix
E.) These variables satisfy the following (anti-)commutation relations:

qiqj � qjqi = 0 , (4)

✓↵qi � qi✓↵ = 0 , (5)

✓↵✓� + ✓�✓↵ = 0 . (6)

From the above relations, qi(t) can be regarded as bosons and ✓↵(t) as fermions.

Function: because of Grassmann nature, an arbitrary (super)function f(qi, ✓↵), which depends on ⇠A only through
qi and ✓↵, can be expanded in powers of the odd variables ✓↵,

f(qi, ✓↵) = f0(q
i) + f↵(q

i)✓↵ + f↵�(q
i)✓↵✓� + · · · , (7)

where f0(qi) and f↵1...↵k(q
i) are Grassmann-even functions with fully anti-symmetric indices.
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Derivative: left derivatives with respect to Grassmann-odd variables are defined by removing the variable from the
left,

�f = �✓↵
@Lf

@✓↵
. (8)

Throughout this paper, we use left derivatives and omit the superscript L for the derivative operator, @/@✓↵ ⌘
@L/@✓↵.

Complex conjugate: let us define complex conjugate in Grassmann algebra. In order to be consistent with Hermi-
tian conjugation of operators, the complex conjugation is required to have the following properties:

(✓↵✓�)⇤ = ✓� ⇤ ✓↵ ⇤, (9)

(✓↵ ⇤)⇤ = ✓↵, (10)

(a ✓↵)⇤ = a⇤ ✓↵ ⇤, (11)

where a is a complex number.

Inverse matrix: whether a matrix is invertible or not plays an important role in degenerate theories as we will see in
Sec. IV. The condition for the existence of the inverse matrix of a Grassmann valued square matrix is obtained
as follows. We introduce two square matrices that are functions of the variables qi and ✓↵, which can be in
general written as

A(qi, ✓↵) = A0(q
i) +A↵(q

i)✓↵ +A↵�(q
i)✓↵✓� + · · · , (12)

B(qi, ✓↵) = B0(q
i) +B↵(q

i)✓↵ +B↵�(q
i)✓↵✓� + · · · , (13)

where A0, A↵, ..., B0, B↵, ... are fully anti-symmetric matrices depending on qi. The condition that B is the
inverse of A is given by AB = I, where I is the identity matrix, which leads to the following equations,

A0B0 = I , (14)

A0B↵ +A↵B0 = 0 , (15)

A0B↵� +
1

2
(A↵B� �A�B↵) +A↵�B0 = 0 , (16)

... .

You will find that if and only if A0 has the inverse, the equations can be solved successively as

B0 = A�1
0 , (17)

B↵ = �A�1
0 A↵A

�1
0 , (18)

B↵� =
1

2
A�1

0 (A↵A
�1
0 A�A

�1
0 �A�A

�1
0 A↵A

�1
0 )�A�1

0 A↵�A
�1
0 , (19)

...

which also satisfy BA = I. Therefore, we conclude that a matrix A has the inverse if and only if A0 has the

inverse, i.e.,

det(A0) 6= 0 , where A0 = A|✓=0 . (20)

B. Hamiltonian formulation

Now we move on to Hamiltonian formulation both with n Grassmann-even variables qi(t) and N Grassmann-odd
ones ✓↵(t). In the present paper, we consider the Lagrangian containing up to the first derivatives, namely,

S =

Z t2

t1

L(qi, q̇i, ✓↵, ✓̇↵)dt . (21)



FERMIONIC GHOST

Purely fermionic non-degenerate system

 and π have the one-to-one correspondence. (No primary constraints)
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III. NECESSITY OF DEGENERACY - EXAMPLE: PURELY FERMIONIC SYSTEM

Contrary to purely bosonic system, N -fermionic system needs constraints eliminatingN/2 ghostly degrees of freedom
to realize healthy system. We will see the appearance of negative norm states for the fermionic system without any
constraints, i.e., in non-degenerate theories. We also show how the negative norm states are avoided for usual
Dirac-type fermions. We omit bosonic degrees of freedom here for simplicity, but the essence does not change for
boson-fermion co-existence system as we will see in the next section.

A. Non-degenerate fermionic system

In this subsection, we begin with the action given by

S =

Z t2

t1

L(✓↵, ✓̇↵)dt . (34)

We assume that the Lagrangian is non-degenerate,

det

✓
@2L

@✓̇�@✓̇↵

◆(0)

6= 0 , where

✓
@2L

@✓̇�@✓̇↵

◆(0)

=
@2L

@✓̇�@✓̇↵

����
✓,✓̇=0

, (35)

and the Euler-Lagrange equations (22) then contain the second time derivatives of ✓↵. In other words, this system
does not have any constraints, and the total number of degrees of freedom is the same with the number of the original
variables N . (The phase space is spanned by 2N canonical variables.)

Now we would like to show that non-degenerate fermionic system inevitably gives negative norm states. Similar
situations are known to be found in the non-degenerate Lagrangian with higher derivatives of bosonic variables. In
bosonic case, after the replacement of the higher derivative terms with newly defined variables, one finds that the
Hamiltonian is linear in momentum and not bounded from below, which leads to the Ostrogradsky’s ghost instabil-
ity [46, 47]. This ghost can be interpreted as the appearance of negative norm states in the quantized theory [48].
In fermionic system, the positivity of Hamiltonian is not guaranteed in the classical level, and we should discuss the
stability after the quantization. Based on the canonical quantization (32), we obtain anti-commutation relations,

{✓̂↵, ⇡̂�}+ = �i�↵� ,

{✓̂↵, ✓̂�}+ = {⇡̂↵, ⇡̂�}+ = 0 .
(36)

Here, the canonical operators ✓̂↵ and ⇡̂↵ are now Hermitian and anti-Hermitian operators, respectively. Then, we
introduce orthogonal Hermitian operators,

Â↵ =
1p
2
(✓̂↵ � i⇡̂↵) , B̂↵ =

1p
2
(✓̂↵ + i⇡̂↵) , (37)

and the anti-commutation relations between them are given by

{Â↵, Â�}+ = ��↵� , {Â↵, B̂�}+ = 0 , {B̂↵, B̂�}+ = �↵� . (38)

One immediately notices that all eigenvalues of the first anti-commutator have the negative sign, leading to the
negative norm states, while those of the third anti-commutator have the correct sign guaranteeing the positivity of
norm of states. This fact tells us that each fermionic degree of freedom in physical space should carry 1 degree of

freedom in phase space, otherwise negative norm states inevitably appear, which implies that N/2 physical degrees of
freedom (N degrees of freedom in phase space) are extra degrees of freedom corresponding to fermionic ghosts. Since
this is a direct consequence of the canonical quantization of the canonical variables ✓↵ and ⇡↵ (36), any fermionic
non-degenerate theories always su↵er from negative norm states even if we have bosonic variables in addition.

B. Degenerate fermionic system

Although the appearance of negative norm states seems to be a generic feature of non-degenerate fermionic system
as we saw in the previous subsection, we have already known that a Dirac field, for example, does not su↵er from
such a problem. Here, we review why such a theory can avoid negative norm states by illustrating a simplest model,

L = � i

2
✓̇↵✓↵ . (39)
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Inverse matrix: whether a matrix can be invertible or not plays an important role in degenerate theories as we will
see in Sec. IV. The condition for the existence of an inverse matrix of a Grassmann valued square matrix is
obtained as follows. We introduce two square matrices that are functions of the variables qi and ✓↵, which can
be in general written as

A(qi, ✓↵) = A0(q
i) +A↵(q

i)✓↵ +A↵�(q
i)✓↵✓� + · · · , (12)

B(qi, ✓↵) = B0(q
i) +B↵(q

i)✓↵ +B↵�(q
i)✓↵✓� + · · · , (13)

where A0, A↵, ..., B0, B↵, ... are matrices depending on qi. The condition that B is the inverse of A is given by
AB = I, where I is the identity matrix, leads to the following equations,

A0B0 = 0, (14)

A0B↵ +A↵B0 = 0, (15)

A0B↵� +
1

2
(A↵B� �A�B↵) +A↵�B0 = 0, (16)

...

A�1 =A�1
0 �A�1

0 A↵A
�1
0

+
1

2
A�1

0 (A↵A
�1
0 A�A

�1
0 �A�A

�1
0 A↵A

�1
0 )�A�1

0 A↵�A
�1
0 + · · · (17)

The above equations can be solved in succession if and only if A0 has an inverse. Then, assuming A�1
0 exists,

we get

B0 = A�1
0 , (18)

B↵ = �A�1
0 A↵A

�1
0 , (19)

B↵� =
1

2
A�1

0 (A↵A
�1
0 A�A

�1
0 �A�A

�1
0 A↵A

�1
0 )�A�1

0 A↵�A
�1
0 , (20)

...

which also satisfy BA = I. Therefore, we conclude that a matrix A has the inverse if and only if A0 has the

inverse, i.e.,

det(A0) 6= 0, where A0 = A|✓=0. (21)

B. Hamiltonian formalism

Now we move on to Hamiltonian formalism with both n Grassmann even variables qi(t) and N Grassmann odd
ones ✓↵(t). In the present paper, we consider the Lagrangian containing up to first derivatives, namely,

✓̇ ⇡ (22)

S =

Z t2

t1

L(qi, q̇i, ✓↵, ✓̇↵)dt. (23)

The Lagrangian should be an even and real function, and the dynamical variables qi and ✓↵ are taken to be real1

throughout this paper. The variation with respect to zA = (qi, ✓↵) yields the Euler-Lagrange equations,

d

dt

✓
@L

@żA

◆
� @L

@zA
= 0, (24)

1 Since complex variables can be decomposed into real and imaginary parts and expressed in terms of a set of two real variables, we can
always identify complex variables with doubled real variables without loss of generality.
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where we require the variation of zA to vanish at the endpoints, �zA(t1) = �zA(t2) = 0. The canonical momenta are
defined by

pi =
@L

@q̇i
, ⇡↵ =

@L

@✓̇↵
. (25)

Note that pi are even and real variables as usual while ⇡↵ are odd and imaginary variables from the reality of the
Lagrangian. Then, the Hamiltonian is given by

H = q̇ipi + ✓̇↵⇡↵ � L(qi, q̇i, ✓↵, ✓̇↵), (26)

and the variational principle the action yields Hamilton’s equations,

q̇i =
@H

@pi
, ṗi = �@H

@qi
, ✓̇↵ = � @H

@⇡↵
, ⇡̇↵ = � @H

@✓↵
. (27)

The time-evolution of a function F (qi, ✓↵) can be expressed as Ḟ = @F/@t + {F,H}, where the Poisson bracket of
arbitrary variables F and G is defined as [38]

{F,G} =

✓
@F

@qi
@G

@pi
� @F

@pi

@G

@qi

◆
+ (�)"F

✓
@F

@✓↵
@G

@⇡↵
+

@F

@⇡↵

@G

@✓↵

◆
. (28)

{F,G} = (�)"F
✓
@F

@✓↵
@G

@⇡↵
+

@F

@⇡↵

@G

@✓↵

◆
. (29)

Here, "F represents the Grassmann parity of F , i.e., "F = 0 if F is even, and "F = 1 if F is odd. As a consequence,
the Poisson brackets of the canonical variables are found to be

{qi, pj} = �ij , {✓↵,⇡�} = ��↵� , {qi, qj} = {pi, pj} = {✓↵, ✓�} = {⇡↵,⇡�} = 0 . (30)

{✓↵,⇡�} = ��↵� ,

{✓↵, ✓�} = {⇡↵,⇡�} = 0 . (31)

The Poisson bracket satisfies the following identities,

{F, G} = (�)"F "G+1{G, F}, (32)

{F, G1G2} = {F, G1}G2 + (�)"F "G1G1{F, G2}, (33)

{F1F2, G} = F1{F2, G}+ (�)"F2"G{F1, G}F2, (34)

which are easily proved from the definition of the Poisson bracket (28).
If the system contains (second class) constraints2, one should rather use the Dirac bracket instead of the Poisson

bracket, defined by

{A,B}D = {A,B}� {A,�a}(C�1)ab{�b, B}, (35)

where �a are second class constraints and Cab = {�a,�b}.
The prescription of the canonical quantization is simply replacing the Poisson brackets of canonical variables (or

the Dirac brackets if secondary constraints exist) by commutation relations for bosons and anti-commutation relations
for fermions,

{A,B} !

8
><

>:

(i~)�1{Â, B̂}� if A and B are bosons,

(i~)�1{Â, B̂}� if A is a boson (fermion) and B is a fermion (boson),

(i~)�1{Â, B̂}+ if A and B are fermions,

(36)

where the commutator and anti-commutator are respectively defined as {Â, B̂}� = ÂB̂�B̂Â and {Â, B̂}+ = ÂB̂+B̂Â.
Hereafter, we set ~ = 1 in this paper. One should note that real variables such as qi, pi, and ✓↵ will be promoted
to Hermitian operators, and then the imaginary variables ⇡↵ become anti-Hermitian operators through canonical
quantization.

2 When the system contains first class constraints (sometimes in addition to second class constraints), we add gauge fixing conditions to
the set of the constraints, which e↵ectively leads to a system only with second class constraints.
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III. NECESSITY OF DEGENERACY - EXAMPLE: PURELY FERMIONIC SYSTEM

Contrary to purely bosonic system, N -fermionic system needs constraints eliminatingN/2 ghostly degrees of freedom
to realize healthy system. We will see the appearance of negative norm states for the fermionic system without any
constraints, i.e., in non-degenerate theories. We also show how the negative norm states are avoided for usual
Dirac-type fermions. We omit bosonic degrees of freedom here for simplicity, but the essence does not change for
boson-fermion co-existence system as we will see in the next section.

A. Non-degenerate fermionic system

In this subsection, we begin with the action given by

S =

Z t2

t1

L(✓↵, ✓̇↵)dt . (34)

We assume that the Lagrangian is non-degenerate,

det

✓
@2L

@✓̇�@✓̇↵

◆(0)

6= 0 , where

✓
@2L

@✓̇�@✓̇↵

◆(0)

=
@2L

@✓̇�@✓̇↵

����
✓,✓̇=0

, (35)

and the Euler-Lagrange equations (22) then contain the second time derivatives of ✓↵. In other words, this system
does not have any constraints, and the total number of degrees of freedom is the same with the number of the original
variables N . (The phase space is spanned by 2N canonical variables.)

Now we would like to show that non-degenerate fermionic system inevitably gives negative norm states. Similar
situations are known to be found in the non-degenerate Lagrangian with higher derivatives of bosonic variables. In
bosonic case, after the replacement of the higher derivative terms with newly defined variables, one finds that the
Hamiltonian is linear in momentum and not bounded from below, which leads to the Ostrogradsky’s ghost instabil-
ity [46, 47]. This ghost can be interpreted as the appearance of negative norm states in the quantized theory [48].
In fermionic system, the positivity of Hamiltonian is not guaranteed in the classical level, and we should discuss the
stability after the quantization. Based on the canonical quantization (32), we obtain anti-commutation relations,

{✓̂↵, ⇡̂�}+ = �i�↵� ,

{✓̂↵, ✓̂�}+ = {⇡̂↵, ⇡̂�}+ = 0 .
(36)

Here, the canonical operators ✓̂↵ and ⇡̂↵ are now Hermitian and anti-Hermitian operators, respectively. Then, we
introduce orthogonal Hermitian operators,

Â↵ =
1p
2
(✓̂↵ � i⇡̂↵) , B̂↵ =

1p
2
(✓̂↵ + i⇡̂↵) , (37)

and the anti-commutation relations between them are given by

{Â↵, Â�}+ = ��↵� , {Â↵, B̂�}+ = 0 , {B̂↵, B̂�}+ = �↵� . (38)

One immediately notices that all eigenvalues of the first anti-commutator have the negative sign, leading to the
negative norm states, while those of the third anti-commutator have the correct sign guaranteeing the positivity of
norm of states. This fact tells us that each fermionic degree of freedom in physical space should carry 1 degree of

freedom in phase space, otherwise negative norm states inevitably appear, which implies that N/2 physical degrees of
freedom (N degrees of freedom in phase space) are extra degrees of freedom corresponding to fermionic ghosts. Since
this is a direct consequence of the canonical quantization of the canonical variables ✓↵ and ⇡↵ (36), any fermionic
non-degenerate theories always su↵er from negative norm states even if we have bosonic variables in addition.

B. Degenerate fermionic system

Although the appearance of negative norm states seems to be a generic feature of non-degenerate fermionic system
as we saw in the previous subsection, we have already known that a Dirac field, for example, does not su↵er from
such a problem. Here, we review why such a theory can avoid negative norm states by illustrating a simplest model,

L = � i

2
✓̇↵✓↵ . (39)
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where we require the variation of zA to vanish at the endpoints, �zA(t1) = �zA(t2) = 0. The canonical momenta are
defined by

pi =
@L

@q̇i
, ⇡↵ =

@L

@✓̇↵
. (25)

Note that pi are even and real variables as usual while ⇡↵ are odd and imaginary variables from the reality of the
Lagrangian. Then, the Hamiltonian is given by

H = q̇ipi + ✓̇↵⇡↵ � L(qi, q̇i, ✓↵, ✓̇↵), (26)

and the variational principle the action yields Hamilton’s equations,

q̇i =
@H

@pi
, ṗi = �@H

@qi
, ✓̇↵ = � @H

@⇡↵
, ⇡̇↵ = � @H

@✓↵
. (27)

The time-evolution of a function F (qi, ✓↵) can be expressed as Ḟ = @F/@t + {F,H}, where the Poisson bracket of
arbitrary variables F and G is defined as [38]

{F,G} =

✓
@F

@qi
@G

@pi
� @F

@pi

@G

@qi

◆
+ (�)"F

✓
@F

@✓↵
@G

@⇡↵
+
@F

@⇡↵

@G

@✓↵

◆
. (28)

{F,G} = (�)"F
✓
@F

@✓↵
@G

@⇡↵
+
@F

@⇡↵

@G

@✓↵

◆
. (29)

Here, "F represents the Grassmann parity of F , i.e., "F = 0 if F is even, and "F = 1 if F is odd. As a consequence,
the Poisson brackets of the canonical variables are found to be

{qi, pj} = �ij , {✓↵,⇡�} = ��↵� , {qi, qj} = {pi, pj} = {✓↵, ✓�} = {⇡↵,⇡�} = 0 . (30)

{✓↵,⇡�} = ��↵� ,

{✓↵, ✓�} = {⇡↵,⇡�} = 0 . (31)

L =
i

2
( ̄↵̇�µ

↵↵̇@µ 
↵ � @µ ̄

↵̇�µ
↵↵̇ 

↵)

= i 1
R ̇

1
R + i 1

I  ̇
1
I + i 2

R ̇
2
R + i 2

I  ̇
2
I (32)

 ↵ =  ↵
R + i ↵

I (33)

The Poisson bracket satisfies the following identities,

{F, G} = (�)"F "G+1{G, F}, (34)

{F, G1G2} = {F, G1}G2 + (�)"F "G1G1{F, G2}, (35)

{F1F2, G} = F1{F2, G}+ (�)"F2"G{F1, G}F2, (36)

which are easily proved from the definition of the Poisson bracket (28).
If the system contains (second class) constraints2, one should rather use the Dirac bracket instead of the Poisson

bracket, defined by

{A,B}D = {A,B}� {A,�a}(C�1)ab{�b, B}, (37)

where �a are second class constraints and Cab = {�a,�b}.
The prescription of the canonical quantization is simply replacing the Poisson brackets of canonical variables (or

the Dirac brackets if secondary constraints exist) by commutation relations for bosons and anti-commutation relations
for fermions,

{A,B} !

8
><

>:

(i~)�1{Â, B̂}� if A and B are bosons,

(i~)�1{Â, B̂}� if A is a boson (fermion) and B is a fermion (boson),

(i~)�1{Â, B̂}+ if A and B are fermions,

(38)

where the commutator and anti-commutator are respectively defined as {Â, B̂}� = ÂB̂�B̂Â and {Â, B̂}+ = ÂB̂+B̂Â.
Hereafter, we set ~ = 1 in this paper. One should note that real variables such as qi, pi, and ✓↵ will be promoted
to Hermitian operators, and then the imaginary variables ⇡↵ become anti-Hermitian operators through canonical
quantization.

2 When the system contains first class constraints (sometimes in addition to second class constraints), we add gauge fixing conditions to
the set of the constraints, which e↵ectively leads to a system only with second class constraints.
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arbitrary variables F and G is defined as [38]

{F,G} =

✓
@F

@qi
@G

@pi
� @F

@pi

@G

@qi

◆
+ (�)"F

✓
@F

@✓↵
@G

@⇡↵
+
@F

@⇡↵

@G

@✓↵

◆
. (28)

{F,G} = (�)"F
✓
@F

@✓↵
@G

@⇡↵
+
@F

@⇡↵

@G

@✓↵

◆
. (29)

Here, "F represents the Grassmann parity of F , i.e., "F = 0 if F is even, and "F = 1 if F is odd. As a consequence,
the Poisson brackets of the canonical variables are found to be

{qi, pj} = �ij , {✓↵,⇡�} = ��↵� , {qi, qj} = {pi, pj} = {✓↵, ✓�} = {⇡↵,⇡�} = 0 . (30)

{✓↵,⇡�} = ��↵� ,

{✓↵, ✓�} = {⇡↵,⇡�} = 0 . (31)

L =
i

2
( ̄↵̇�µ

↵↵̇@µ 
↵ � @µ ̄

↵̇�µ
↵↵̇ 

↵)

= i 1
R ̇

1
R + i 1

I  ̇
1
I + i 2

R ̇
2
R + i 2

I  ̇
2
I (32)

 ↵ =  ↵
R + i ↵

I (33)

The Poisson bracket satisfies the following identities,
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{F, G1G2} = {F, G1}G2 + (�)"F "G1G1{F, G2}, (35)

{F1F2, G} = F1{F2, G}+ (�)"F2"G{F1, G}F2, (36)

which are easily proved from the definition of the Poisson bracket (28).
If the system contains (second class) constraints2, one should rather use the Dirac bracket instead of the Poisson

bracket, defined by

{A,B}D = {A,B}� {A,�a}(C�1)ab{�b, B}, (37)

where �a are second class constraints and Cab = {�a,�b}.
The prescription of the canonical quantization is simply replacing the Poisson brackets of canonical variables (or

the Dirac brackets if secondary constraints exist) by commutation relations for bosons and anti-commutation relations
for fermions,

{A,B} !

8
><

>:

(i~)�1{Â, B̂}� if A and B are bosons,

(i~)�1{Â, B̂}� if A is a boson (fermion) and B is a fermion (boson),

(i~)�1{Â, B̂}+ if A and B are fermions,

(38)

where the commutator and anti-commutator are respectively defined as {Â, B̂}� = ÂB̂�B̂Â and {Â, B̂}+ = ÂB̂+B̂Â.
Hereafter, we set ~ = 1 in this paper. One should note that real variables such as qi, pi, and ✓↵ will be promoted
to Hermitian operators, and then the imaginary variables ⇡↵ become anti-Hermitian operators through canonical
quantization.

2 When the system contains first class constraints (sometimes in addition to second class constraints), we add gauge fixing conditions to
the set of the constraints, which e↵ectively leads to a system only with second class constraints.

+ (without time derivatives)
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B. Non-degenerate fermionic system

In this subsection, we begin with the action given by

S =

Z t2

t1

L(✓↵, ✓̇↵)dt. (46)

We assume that the Lagrangian is non-degenerate,

det

✓
@2L

@✓̇�@✓̇↵

◆����
✓↵=✓̇↵=0

6= 0 , (47)

and the Euler-Lagrange equations (24) then contain the second time derivatives of ✓↵. In other words, this system
does not have any constraints, and the total number of degrees of freedom are the same with the number of the
original variables N . (The phase space is spanned by 2N canonical variables.)

Now we would like to show that non-degenerate fermionic systems inevitably give negative norm states. Similar
situations are well-known to be found in a non-degenerate Lagrangian with higher derivatives of bosonic variables.
After the replacement of the higher derivative terms with newly defined variables, one find that the Hamiltonian is
linear in momentum and is not bounded from below, which leads to the Ostrogradsky’s ghost instability [39, 40].
This ghost can be interpreted as the appearance of negative norm states in the quantized theory [41]. In fermionic
systems, the positivity of Hamiltonian are not guaranteed in the classical level, and we should discuss the stability
after the quantization. Based on the canonical quantization (38), we obtain anti-commutation relations,

{✓̂↵, ⇡̂�}+ = �i�↵� , (48)

{✓̂↵, ✓̂�}+ = {⇡̂↵, ⇡̂�}+ = 0 . (49)

Here, the canonical operators ✓̂↵ and ⇡̂↵ are now Hermitian and anti-Hermitian, respectively. Then, we introduce
orthogonal operators,

Â↵ =
1p
2
(✓̂↵ � i⇡̂↵), B̂↵ =

1p
2
(✓̂↵ + i⇡̂↵), (50)

where both Â↵ and B̂↵ are Hermitian, and the anti-commutation relations between these operators are given by

{Â↵, Â�}+ = ��↵� , {Â↵, B̂�}+ = 0, {B̂↵, B̂�}+ = �↵� . (51)

(Since we do not require the covariance, superscripts and subscripts are just labels of the variables, e.g., ✓↵ = ✓↵.)
One immediately notice that all eigenvalues of the first commutator have the negative sign, leading to the negative
norm states, while those of the third commutator have the correct sign guaranteeing the positivity of the norm. This
fact tells us that each fermionic degree of freedom in physical space should carry 1 degree of freedom in phase space,

otherwise negative norm states inevitably appear, which implies that N/2 degrees of freedom are extra degrees of
freedom corresponding to Ostrogradsky’s ghosts. Since this is a direct consequence of canonical quantization of the
Poisson brackets (49) of the canonical variables ✓↵ and ⇡↵, any fermionic non-degenerate theories always su↵er from
negative norm states even if we have both bosonic and fermionic variables in the Lagrangian.

C. Degenerate fermionic system

Although the appearance of negative norm states looks generic for fermionic system as we saw in the previous
subsection, we have already known that a Dirac field, for example, does not su↵er from such a problem. Here, we
review why such a theory can avoid negative norm states by illustrating a simplest model,

L =
i

2
✓↵✓̇

↵ . (52)

Obviously, the Euler-Lagrange equations are first-order di↵erential equations, and this could be regarded as a classical
counterpart of a Dirac fermion. The canonical momenta are given by ⇡↵ = �i✓↵/2, which lead to the primary
constraints,

�↵ ⌘ ⇡↵ +
i

2
✓↵ = 0 , (53)
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B. Non-degenerate fermionic system

In this subsection, we begin with the action given by

S =

Z t2

t1

L(✓↵, ✓̇↵)dt. (46)

We assume that the Lagrangian is non-degenerate,

det

✓
@2L

@✓̇�@✓̇↵

◆����
✓↵=✓̇↵=0

6= 0 , (47)

and the Euler-Lagrange equations (24) then contain the second time derivatives of ✓↵. In other words, this system
does not have any constraints, and the total number of degrees of freedom are the same with the number of the
original variables N . (The phase space is spanned by 2N canonical variables.)

Now we would like to show that non-degenerate fermionic systems inevitably give negative norm states. Similar
situations are well-known to be found in a non-degenerate Lagrangian with higher derivatives of bosonic variables.
After the replacement of the higher derivative terms with newly defined variables, one find that the Hamiltonian is
linear in momentum and is not bounded from below, which leads to the Ostrogradsky’s ghost instability [39, 40].
This ghost can be interpreted as the appearance of negative norm states in the quantized theory [41]. In fermionic
systems, the positivity of Hamiltonian are not guaranteed in the classical level, and we should discuss the stability
after the quantization. Based on the canonical quantization (38), we obtain anti-commutation relations,

{✓̂↵, ⇡̂�}+ = �i�↵� , (48)

{✓̂↵, ✓̂�}+ = {⇡̂↵, ⇡̂�}+ = 0 . (49)

Here, the canonical operators ✓̂↵ and ⇡̂↵ are now Hermitian and anti-Hermitian, respectively. Then, we introduce
orthogonal operators,

Â↵ =
1p
2
(✓̂↵ � i⇡̂↵), B̂↵ =

1p
2
(✓̂↵ + i⇡̂↵), (50)

where both Â↵ and B̂↵ are Hermitian, and the anti-commutation relations between these operators are given by

{Â↵, Â�}+ = ��↵� , {Â↵, B̂�}+ = 0, {B̂↵, B̂�}+ = �↵� . (51)

(Since we do not require the covariance, superscripts and subscripts are just labels of the variables, e.g., ✓↵ = ✓↵.)
One immediately notice that all eigenvalues of the first commutator have the negative sign, leading to the negative
norm states, while those of the third commutator have the correct sign guaranteeing the positivity of the norm. This
fact tells us that each fermionic degree of freedom in physical space should carry 1 degree of freedom in phase space,

otherwise negative norm states inevitably appear, which implies that N/2 degrees of freedom are extra degrees of
freedom corresponding to Ostrogradsky’s ghosts. Since this is a direct consequence of canonical quantization of the
Poisson brackets (49) of the canonical variables ✓↵ and ⇡↵, any fermionic non-degenerate theories always su↵er from
negative norm states even if we have both bosonic and fermionic variables in the Lagrangian.

C. Degenerate fermionic system

Although the appearance of negative norm states looks generic for fermionic system as we saw in the previous
subsection, we have already known that a Dirac field, for example, does not su↵er from such a problem. Here, we
review why such a theory can avoid negative norm states by illustrating a simplest model,

L =
i

2
✓↵✓̇

↵ . (52)

Obviously, the Euler-Lagrange equations are first-order di↵erential equations, and this could be regarded as a classical
counterpart of a Dirac fermion. The canonical momenta are given by ⇡↵ = �i✓↵/2, which lead to the primary
constraints,

�↵ ⌘ ⇡↵ +
i

2
✓↵ = 0 , (53)N primary constraints

α = 1, …, N
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where ⇡ means the weak equality. Since the Hamiltonian vanishes H = 0, the total Hamiltonian is simply given by
HT = �↵µ

↵, where µ↵ is the Lagrange multiplier3. The Poisson brackets of the primary constraints are

{�↵,��} = �i�↵� (54)

which means that all �↵ are the second-class constraints, and no further constraints are not added. Then the time
evolution of the constraints (53) determines the Lagrange multipliers as �̇↵ ⇡ {�↵,��}µ� = �iµ↵ ⇡ 0. The dimension
of the phase space spanned by the canonical variables is 2N . Since we have N primary constraints, the number of
physical degrees of freedom is (2N �N)/2 = N/2 as it should be.

For confirmation, we now check the absence of negative norm states in this system. Since we have second class
constraints, we evaluate the Dirac brackets of all canonical variables,

{✓↵, ✓�}D = �i�↵� , {✓↵,⇡�}D = �1

2
�↵� , {⇡↵,⇡�}D =

i

4
�↵� , (55)

and the canonical quantization leads to the following anti-commutation relation,

{✓̂↵, ✓̂�}+ = �↵� , {✓̂↵, ⇡̂�}+ = � i

2
�↵� , {⇡̂↵, ⇡̂�}+ = �1

4
�↵� . (56)

One should note that these anti-commutation relations between the canonical variables are consistent with the pri-
mary constraints, i.e., plugging in ⇡̂↵ = �i✓̂↵/2 for the second and third expressions in (56) recovers the first
anti-commutation relations. It is clear that that the negative norm state does not appear in this system since the
relations {✓̂↵, ✓̂�}+ is positive definite4.

III. DEGENERATE THEORIES IN BOSON-FERMION CO-EXISTENCE SYSTEM

As seen in the previous section, the unique solution to avoid negative norm states in fermionic system is to have a
su�cient number of constraints eliminatingN/2 ghostly degrees of freedom in phase space. In this section, we provide a
general approach to constructing degenerate Lagrangian of boson-fermion co-existence system, whose physical degrees
of freedom is n+N/2 with n being the number of bosonic variables and N that of fermionic ones. We focus on the most
general Lagrangian containing up to first derivatives of bosons and fermions (23). In the first part of this section, we
derive (su�cient) conditions, which yield N constraints to eliminate fermionic Ostrogradsky’s ghosts, in Hamiltonian
formulation. In the latter part, we show that the condition imposed in Hamiltonian formulation is equivalent to
requiring that the equations of motion of fermions are first-order di↵erential equations.

A. Degeneracy conditions

If the time derivatives of qi and ✓↵ are expressed in terms of the canonical variables (qi, pi, ✓↵,⇡↵), we do not have
any primary constraints. Then, we look for the conditions where the time derivatives of qi and ✓↵ are not written in
terms of the canonical variables.

Let us consider the infinitesimal variation of the canonical momenta with respect to all variables,
✓
�pi
�⇡↵

◆
= K

✓
�q̇j

�✓̇�

◆
+

✓
Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�

◆✓
�qj

�✓�

◆
, (57)

✓
�pi
�⇡↵

◆
=

✓
Lq̇iq̇j �Lq̇i✓̇�

L✓̇↵✓̇j L✓̇↵✓̇�

◆✓
�q̇j

�✓̇�

◆
+

✓
Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�

◆✓
�qj

�✓�

◆
, (58)

where K is the kinetic matrix,

K =

✓
Aij Bi�

C↵j D↵�

◆
, (59)

3 The order of the constraints �↵ and the Lagrange multipliers µ↵ in the total Hamiltonian should be like �↵µ↵ in the left derivative
notation. We also note that µ↵ are Grassmann odd numbers.

4 Here, we adopt ✓̂↵ as independent variables since they are Hermitian operators. If one would like to adopt ⇡̂↵ instead, they should be
multiplied by i to be Hermitian.
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where ⇡ means the weak equality. Since the Hamiltonian vanishes H = 0, the total Hamiltonian is simply given by
HT = �↵µ

↵, where µ↵ is the Lagrange multiplier3. The Poisson brackets of the primary constraints are

{�↵,��} = �i�↵� (54)

which means that all �↵ are the second-class constraints, and no further constraints are not added. Then the time
evolution of the constraints (53) determines the Lagrange multipliers as

�̇↵ ⇡ {�↵,��}µ� = �iµ↵ ⇡ 0 . (55)

The dimension of the phase space spanned by the canonical variables is 2N . Since we have N primary constraints,
the number of physical degrees of freedom is (2N �N)/2 = N/2 as it should be.

For confirmation, we now check the absence of negative norm states in this system. Since we have second class
constraints, we evaluate the Dirac brackets of all canonical variables,

{✓↵, ✓�}D = �i�↵� , {✓↵,⇡�}D = �1

2
�↵� , {⇡↵,⇡�}D =

i

4
�↵� , (56)

and the canonical quantization leads to the following anti-commutation relation,

{✓̂↵, ✓̂�}+ = �↵� , {✓̂↵, ⇡̂�}+ = � i

2
�↵� , {⇡̂↵, ⇡̂�}+ = �1

4
�↵� . (57)

One should note that these anti-commutation relations between the canonical variables are consistent with the pri-
mary constraints, i.e., plugging in ⇡̂↵ = �i✓̂↵/2 for the second and third expressions in (57) recovers the first
anti-commutation relations. It is clear that that the negative norm state does not appear in this system since the
relations {✓̂↵, ✓̂�}+ is positive definite4.

III. DEGENERATE THEORIES IN BOSON-FERMION CO-EXISTENCE SYSTEM

As seen in the previous section, the unique solution to avoid negative norm states in fermionic system is to have a
su�cient number of constraints eliminatingN/2 ghostly degrees of freedom in phase space. In this section, we provide a
general approach to constructing degenerate Lagrangian of boson-fermion co-existence system, whose physical degrees
of freedom is n+N/2 with n being the number of bosonic variables and N that of fermionic ones. We focus on the most
general Lagrangian containing up to first derivatives of bosons and fermions (23). In the first part of this section, we
derive (su�cient) conditions, which yield N constraints to eliminate fermionic Ostrogradsky’s ghosts, in Hamiltonian
formulation. In the latter part, we show that the condition imposed in Hamiltonian formulation is equivalent to
requiring that the equations of motion of fermions are first-order di↵erential equations.

A. Degeneracy conditions

If the time derivatives of qi and ✓↵ are expressed in terms of the canonical variables (qi, pi, ✓↵,⇡↵), we do not have
any primary constraints. Then, we look for the conditions where the time derivatives of qi and ✓↵ are not written in
terms of the canonical variables.

Let us consider the infinitesimal variation of the canonical momenta with respect to all variables,
✓
�pi
�⇡↵

◆
= K

✓
�q̇j

�✓̇�

◆
+

✓
Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�

◆✓
�qj

�✓�

◆
, (58)

✓
�pi
�⇡↵

◆
=

✓
Lq̇iq̇j �Lq̇i✓̇�

L✓̇↵✓̇j L✓̇↵✓̇�

◆✓
�q̇j

�✓̇�

◆
+

✓
Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�

◆✓
�qj

�✓�

◆
, (59)

3 The order of the constraints �↵ and the Lagrange multipliers µ↵ in the total Hamiltonian should be like �↵µ↵ in the left derivative
notation. We also note that µ↵ are Grassmann odd numbers.

4 Here, we adopt ✓̂↵ as independent variables since they are Hermitian operators. If one would like to adopt ⇡̂↵ instead, they should be
multiplied by i to be Hermitian.

π are determined by constraints
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where ⇡ means the weak equality. Since the Hamiltonian vanishes H = 0, the total Hamiltonian is simply given by

HT = �↵µ
↵ (54)

where µ↵ is the Lagrange multiplier3. The Poisson brackets of the primary constraints are

{�↵,��} = �i�↵� (55)

which means that all �↵ are the second-class constraints, and no further constraints are not added. Then the time
evolution of the constraints (53) determines the Lagrange multipliers as

�̇↵ ⇡ {�↵,��}µ� = �iµ↵ ⇡ 0 . (56)

The dimension of the phase space spanned by the canonical variables is 2N . Since we have N primary constraints,
the number of physical degrees of freedom is (2N �N)/2 = N/2 as it should be.

For confirmation, we now check the absence of negative norm states in this system. Since we have second class
constraints, we evaluate the Dirac brackets of all canonical variables,

{✓↵, ✓�}D = �i�↵� , {✓↵,⇡�}D = �1

2
�↵� , {⇡↵,⇡�}D =

i

4
�↵� , (57)

and the canonical quantization leads to the following anti-commutation relation,

{✓̂↵, ✓̂�}+ = �↵� , {✓̂↵, ⇡̂�}+ = � i

2
�↵� , {⇡̂↵, ⇡̂�}+ = �1

4
�↵� . (58)

One should note that these anti-commutation relations between the canonical variables are consistent with the pri-
mary constraints, i.e., plugging in ⇡̂↵ = �i✓̂↵/2 for the second and third expressions in (58) recovers the first
anti-commutation relations. It is clear that that the negative norm state does not appear in this system since the
relations {✓̂↵, ✓̂�}+ is positive definite4.

III. DEGENERATE THEORIES IN BOSON-FERMION CO-EXISTENCE SYSTEM

As seen in the previous section, the unique solution to avoid negative norm states in fermionic system is to have a
su�cient number of constraints eliminatingN/2 ghostly degrees of freedom in phase space. In this section, we provide a
general approach to constructing degenerate Lagrangian of boson-fermion co-existence system, whose physical degrees
of freedom is n+N/2 with n being the number of bosonic variables and N that of fermionic ones. We focus on the most
general Lagrangian containing up to first derivatives of bosons and fermions (23). In the first part of this section, we
derive (su�cient) conditions, which yield N constraints to eliminate fermionic Ostrogradsky’s ghosts, in Hamiltonian
formulation. In the latter part, we show that the condition imposed in Hamiltonian formulation is equivalent to
requiring that the equations of motion of fermions are first-order di↵erential equations.

A. Degeneracy conditions

If the time derivatives of qi and ✓↵ are expressed in terms of the canonical variables (qi, pi, ✓↵,⇡↵), we do not have
any primary constraints. Then, we look for the conditions where the time derivatives of qi and ✓↵ are not written in
terms of the canonical variables.

Let us consider the infinitesimal variation of the canonical momenta with respect to all variables,
✓
�pi
�⇡↵

◆
= K

✓
�q̇j

�✓̇�

◆
+

✓
Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�

◆✓
�qj

�✓�

◆
, (59)

✓
�pi
�⇡↵

◆
=

✓
Lq̇iq̇j �Lq̇i✓̇�

L✓̇↵✓̇j L✓̇↵✓̇�

◆✓
�q̇j

�✓̇�

◆
+

✓
Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�

◆✓
�qj

�✓�

◆
, (60)

3 The order of the constraints �↵ and the Lagrange multipliers µ↵ in the total Hamiltonian should be like �↵µ↵ in the left derivative
notation. We also note that µ↵ are Grassmann odd numbers.

4 Here, we adopt ✓̂↵ as independent variables since they are Hermitian operators. If one would like to adopt ⇡̂↵ instead, they should be
multiplied by i to be Hermitian.

Hamiltonian: H=0, Total Hamiltonian: 

No secondary constraints
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where ⇡ means the weak equality. Since the Hamiltonian vanishes H = 0, the total Hamiltonian is simply given by

HT = �↵µ
↵ (54)

where µ↵ is the Lagrange multiplier3. The Poisson brackets of the primary constraints are

{�↵,��} = �i�↵� (55)

which means that all �↵ are the second-class constraints, and no further constraints are not added. Then the time
evolution of the constraints (53) determines the Lagrange multipliers as

�̇↵ ⇡ {�↵,��}µ� = �iµ↵ ⇡ 0 . (56)

The dimension of the phase space spanned by the canonical variables is 2N . Since we have N primary constraints,
the number of physical degrees of freedom is (2N �N)/2 = N/2 as it should be.

For confirmation, we now check the absence of negative norm states in this system. Since we have second class
constraints, we evaluate the Dirac brackets of all canonical variables,

{✓↵, ✓�}D = �i�↵� , {✓↵,⇡�}D = �1

2
�↵� , {⇡↵,⇡�}D =

i

4
�↵� , (57)

and the canonical quantization leads to the following anti-commutation relation,

{✓̂↵, ✓̂�}+ = �↵� , {✓̂↵, ⇡̂�}+ = � i

2
�↵� , {⇡̂↵, ⇡̂�}+ = �1

4
�↵� . (58)

One should note that these anti-commutation relations between the canonical variables are consistent with the pri-
mary constraints, i.e., plugging in ⇡̂↵ = �i✓̂↵/2 for the second and third expressions in (58) recovers the first
anti-commutation relations. It is clear that that the negative norm state does not appear in this system since the
relations {✓̂↵, ✓̂�}+ is positive definite4.

III. DEGENERATE THEORIES IN BOSON-FERMION CO-EXISTENCE SYSTEM

As seen in the previous section, the unique solution to avoid negative norm states in fermionic system is to have a
su�cient number of constraints eliminatingN/2 ghostly degrees of freedom in phase space. In this section, we provide a
general approach to constructing degenerate Lagrangian of boson-fermion co-existence system, whose physical degrees
of freedom is n+N/2 with n being the number of bosonic variables and N that of fermionic ones. We focus on the most
general Lagrangian containing up to first derivatives of bosons and fermions (23). In the first part of this section, we
derive (su�cient) conditions, which yield N constraints to eliminate fermionic Ostrogradsky’s ghosts, in Hamiltonian
formulation. In the latter part, we show that the condition imposed in Hamiltonian formulation is equivalent to
requiring that the equations of motion of fermions are first-order di↵erential equations.

A. Degeneracy conditions

If the time derivatives of qi and ✓↵ are expressed in terms of the canonical variables (qi, pi, ✓↵,⇡↵), we do not have
any primary constraints. Then, we look for the conditions where the time derivatives of qi and ✓↵ are not written in
terms of the canonical variables.

Let us consider the infinitesimal variation of the canonical momenta with respect to all variables,
✓
�pi
�⇡↵

◆
= K

✓
�q̇j

�✓̇�

◆
+

✓
Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�

◆✓
�qj

�✓�

◆
, (59)

✓
�pi
�⇡↵

◆
=

✓
Lq̇iq̇j �Lq̇i✓̇�

L✓̇↵✓̇j L✓̇↵✓̇�

◆✓
�q̇j

�✓̇�

◆
+

✓
Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�

◆✓
�qj

�✓�

◆
, (60)

3 The order of the constraints �↵ and the Lagrange multipliers µ↵ in the total Hamiltonian should be like �↵µ↵ in the left derivative
notation. We also note that µ↵ are Grassmann odd numbers.

4 Here, we adopt ✓̂↵ as independent variables since they are Hermitian operators. If one would like to adopt ⇡̂↵ instead, they should be
multiplied by i to be Hermitian.
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where ⇡ means the weak equality. Since the Hamiltonian vanishes H = 0, the total Hamiltonian is simply given by

HT = �↵µ
↵ (54)

where µ↵ is the Lagrange multiplier3. The Poisson brackets of the primary constraints are

{�↵,��} = �i�↵� (55)

which means that all �↵ are the second-class constraints, and no further constraints are not added. Then the time
evolution of the constraints (53) determines the Lagrange multipliers as

�̇↵ ⇡ {�↵,��}µ� = �iµ↵ ⇡ 0 . (56)

The dimension of the phase space spanned by the canonical variables is 2N . Since we have N primary constraints,
the number of physical degrees of freedom is (2N �N)/2 = N/2 as it should be.

For confirmation, we now check the absence of negative norm states in this system. Since we have second class
constraints, we evaluate the Dirac brackets of all canonical variables,

{✓↵, ✓�}D = �i�↵� , {✓↵,⇡�}D = �1

2
�↵� , {⇡↵,⇡�}D =

i

4
�↵� , (57)

and the canonical quantization leads to the following anti-commutation relation,

{✓̂↵, ✓̂�}+ = �↵� , {✓̂↵, ⇡̂�}+ = � i

2
�↵� , {⇡̂↵, ⇡̂�}+ = �1

4
�↵� . (58)

One should note that these anti-commutation relations between the canonical variables are consistent with the pri-
mary constraints, i.e., plugging in ⇡̂↵ = �i✓̂↵/2 for the second and third expressions in (58) recovers the first
anti-commutation relations. It is clear that that the negative norm state does not appear in this system since the
relations {✓̂↵, ✓̂�}+ is positive definite4.

III. DEGENERATE THEORIES IN BOSON-FERMION CO-EXISTENCE SYSTEM

As seen in the previous section, the unique solution to avoid negative norm states in fermionic system is to have a
su�cient number of constraints eliminatingN/2 ghostly degrees of freedom in phase space. In this section, we provide a
general approach to constructing degenerate Lagrangian of boson-fermion co-existence system, whose physical degrees
of freedom is n+N/2 with n being the number of bosonic variables and N that of fermionic ones. We focus on the most
general Lagrangian containing up to first derivatives of bosons and fermions (23). In the first part of this section, we
derive (su�cient) conditions, which yield N constraints to eliminate fermionic Ostrogradsky’s ghosts, in Hamiltonian
formulation. In the latter part, we show that the condition imposed in Hamiltonian formulation is equivalent to
requiring that the equations of motion of fermions are first-order di↵erential equations.

A. Degeneracy conditions

If the time derivatives of qi and ✓↵ are expressed in terms of the canonical variables (qi, pi, ✓↵,⇡↵), we do not have
any primary constraints. Then, we look for the conditions where the time derivatives of qi and ✓↵ are not written in
terms of the canonical variables.

Let us consider the infinitesimal variation of the canonical momenta with respect to all variables,
✓
�pi
�⇡↵

◆
= K

✓
�q̇j

�✓̇�

◆
+

✓
Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�

◆✓
�qj

�✓�

◆
, (59)
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Lq̇iq̇j �Lq̇i✓̇�

L✓̇↵✓̇j L✓̇↵✓̇�
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�q̇j

�✓̇�

◆
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Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�
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�qj

�✓�

◆
, (60)

3 The order of the constraints �↵ and the Lagrange multipliers µ↵ in the total Hamiltonian should be like �↵µ↵ in the left derivative
notation. We also note that µ↵ are Grassmann odd numbers.

4 Here, we adopt ✓̂↵ as independent variables since they are Hermitian operators. If one would like to adopt ⇡̂↵ instead, they should be
multiplied by i to be Hermitian.

Dirac brackets

Positive norm
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NEGATIVE NORM STATES

In addition, another condition, the constraint matrix is invertible, should be  
satisfied in order that Hamiltonian analysis becomes closed.  
(This condition is actually important since it guarantees definite time  
evolution of the system. Here we will not discuss this point.)

In the system with m bosons and N fermions,  
we need N constraints for eliminating N dofs of fermions in phase sp.

A fermionic variable should carry  
1 dof in phase space (1/2 dof in physical sp.) to avoid the fermionic ghost
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Obviously, the Euler-Lagrange equations are first-order di↵erential equations, and this model could be regarded as
a classical counterpart of a Dirac fermion. The canonical momenta are given by ⇡↵ = �i✓↵/2, which lead to the
primary constraints,

�↵ ⌘ ⇡↵ +
i

2
✓↵ = 0 . (40)

Since the Hamiltonian vanishes, H = 0, the total Hamiltonian is simply given by HT = �↵µ
↵, where µ↵ are the

Lagrange multipliers 4. The Poisson brackets between the primary constraints are {�↵,��} = �i�↵� , which means
that all �↵ are second class constraints, and no further constraints are added. Then the time evolution of the
constraints (40) determines the Lagrange multipliers as �̇↵ = {�↵,��}µ� = �iµ↵ ⇡ 0, where ⇡ means the weak
equality. The dimension of the phase space spanned by the canonical variables is 2N . Since we have N (second class)
primary constraints, the number of physical degrees of freedom is (2N �N)/2 = N/2 as it should be.

For confirmation, we now check the absence of negative norm states in this system. Since we have second class
constraints, we evaluate the Dirac brackets between all canonical variables,

{✓↵, ✓�}D = �i�↵� , {✓↵,⇡�}D = �1

2
�↵� , {⇡↵,⇡�}D =

i

4
�↵� , (41)

and the canonical quantization leads to the following anti-commutation relations,

{✓̂↵, ✓̂�}+ = �↵� , {✓̂↵, ⇡̂�}+ = � i

2
�↵� , {⇡̂↵, ⇡̂�}+ = �1

4
�↵� . (42)

One should note that these anti-commutation relations between the canonical variables are consistent with the primary
constraints, i.e., plugging ⇡̂↵ = �i✓̂↵/2 into the second and the third expressions in (42) recovers the first one. It is
clear that negative norm states do not appear in this system since the relations {✓̂↵, ✓̂�}+ are positive definite. 5
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As seen in the previous section, the unique solution to avoid negative norm states in N -fermionic system is to have
a su�cient number of constraints eliminating N/2 ghostly degrees of freedom. In this section, we provide a general
approach to constructing degenerate Lagrangian of boson-fermion co-existence system, whose physical degrees of
freedom is n+N/2 with n being the number of bosonic variables. We focus on the most general Lagrangian containing
up to first time derivatives of bosons and fermions (21). In the former part of this section, we derive a (su�cient)
condition which yields N constraints to eliminate fermionic ghosts in Hamiltonian formulation. In the latter part, we
show that the condition, imposed in Hamiltonian formulation, is equivalent to requiring that the equations of motion
of fermions are first-order di↵erential equations. We also introduce another condition, which we call the uniqueness
condition, to have no more constraints in Hamiltonian formulation and show that it is responsible for the unique time
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✓
�pi
�⇡↵

◆
= K

✓
�q̇j

�✓̇�

◆
+

✓
Lq̇iqj �Lq̇i✓�

L✓̇↵qj L✓̇↵✓�

◆✓
�qj

�✓�

◆
, (43)

where K is the kinetic matrix,

K =

✓
Aij Bi�

C↵j D↵�

◆
, (44)

4 The order of the constraints �↵ and the Lagrange multipliers µ↵ in the total Hamiltonian should be like �↵µ↵ in the left derivative
notation. We also note that µ↵ are Grassmann-odd numbers.

5 Here, we adopt ✓̂↵ as independent variables since they are Hermitian operators. If one would like to adopt ⇡̂↵ instead, they should be
multiplied by i to be Hermitian.
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2
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freedom is n+N/2 with n being the number of bosonic variables. We focus on the most general Lagrangian containing
up to first time derivatives of bosons and fermions (21). In the former part of this section, we derive a (su�cient)
condition which yields N constraints to eliminate fermionic ghosts in Hamiltonian formulation. In the latter part, we
show that the condition, imposed in Hamiltonian formulation, is equivalent to requiring that the equations of motion
of fermions are first-order di↵erential equations. We also introduce another condition, which we call the uniqueness
condition, to have no more constraints in Hamiltonian formulation and show that it is responsible for the unique time
evolution of the system in Lagrangian formulation.

A. Degeneracy condition

If the time derivatives of qi and ✓↵ are expressed in terms of the canonical variables (qi, pi, ✓↵,⇡↵), we do not have
any primary constraints. Therefore, we need to look for the condition where the time derivatives of qi and ✓↵ are not
written in terms of the canonical variables. Let us then consider the infinitesimal variations of the canonical momenta
with respect to all variables,
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�pi
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◆
= K
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◆
+
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Lq̇iqj �Lq̇i✓�
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�qj

�✓�

◆
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where K is the kinetic matrix,

K =

✓
Aij Bi�

C↵j D↵�

◆
, (44)

4 The order of the constraints �↵ and the Lagrange multipliers µ↵ in the total Hamiltonian should be like �↵µ↵ in the left derivative
notation. We also note that µ↵ are Grassmann-odd numbers.

5 Here, we adopt ✓̂↵ as independent variables since they are Hermitian operators. If one would like to adopt ⇡̂↵ instead, they should be
multiplied by i to be Hermitian.

Assumption: No degeneracy in bosonic sector

7

whose components are defined by

Aij =
@pi
@q̇j

= Lq̇iq̇j , Bi� = � @pi

@✓̇�
= �Lq̇i✓̇� ,

C↵j = @⇡↵

@q̇j
= L✓̇↵q̇j , D↵� =

@⇡↵

@✓̇�
= L✓̇↵✓̇�

�
= �L✓̇� ✓̇↵

�
. (45)

Here we have introduced an abbreviated notation,

LXY =
@2L

@Y @X
=

@

@Y

⇣ @L

@X

⌘
. (46)

It should be noticed that all the sub-matrices depend on (qi, q̇i, ✓↵, ✓̇�) in general. By construction, Aij is a Hermitian
symmetric matrix, while D↵� is an anti-Hermitian anti-symmetric matrix, both of which are Grassmann-even 6 Bi�

and C↵j are Grassmann-odd and related as CT = �B. In the present paper, we assume that the bosonic submatrix of
the kinetic matrix Aij is non-degenerate, i.e., invertible. This assumption is equivalent to requiring

detA(0)
ij 6= 0 , where A

(0)
ij = Aij |✓,✓̇=0 , (47)

as discussed in Sec. II. A.
Multiplied by the inverse of Aij , Aij , the first line of (43) can be solved for �q̇i as

�q̇i = Aij�pj �AijBj↵�✓̇
↵ �AijLq̇jqk�q

k +AijLq̇j✓↵�✓↵ , (48)

and plugging this into the second line of (43) gives

(D↵� � C↵iAijBj�)�✓̇
� = �⇡↵ � C↵iAij�pj +

⇣
C↵iAijLq̇jqk � L✓̇↵qk

⌘
�qk � �C↵iAijLq̇j✓� + L✓̇↵✓�

�
�✓� . (49)

Now we would like to consider the situation such that the velocities ✓̇↵ cannot be expressed in terms of other canonical
variables, that is, the coe�cient matrix of �✓̇↵ does not have the inverse, equivalent to imposing the degeneracy
condition,

detD(0)
↵� = 0 , where D

(0)
↵� = D↵� |✓,✓̇=0 . (50)

We consider the cases of N = 1, N = 2, and N � 3 separately.

• N = 1 case:

Let us start with a single fermionic variable, N = 1. In this case, both D and CA�1B are zero due to the Grass-
mann property, and the degeneracy condition of the kinetic matrix is automatically satisfied. More importantly,
the coe�cient matrix D�CA�1B always vanishes, and we have a primary constraint �1 = ⇡1�f1(q, p, ✓), which
will remove the fermionic ghost properly.

• N = 2 case:

When N = 2, the matrix D is no longer zero, which, in general, has the following form,

D =

✓
0 D12

�D12 0

◆
. (51)

Let us explicitly write the Lagrangian for this case.

L = GI(q
i, q̇i)xI , where x =

0

BBBBBBBBBB@

1
i✓1✓2
i✓1✓̇1
i✓2✓̇2
i✓1✓̇2
i✓2✓̇1
i✓̇1✓̇2

✓1✓2✓̇1✓̇2

1

CCCCCCCCCCA

, (52)

6 The product of two real fermionic variables is not real but imaginary because of the Grassmann property (11) and should be always
accompanied by the imaginary unit i in (Grassmann-even real) Lagrangian. Then, the matrix D↵� is a pure imaginary matrix, which

is consistent with its anti-Hermitian property. For instance, when Lagrangian includes 1
2 ✓↵✓� ✓̇↵✓̇� , D↵� includes ✓↵✓� , which is anti-

Hermitian as (✓↵✓�)† = (✓⇤�✓
⇤
↵)

T = (✓�✓↵)T = ✓↵✓� = �✓�✓↵. We note that the transpose defined by replacing subscripts of the

elements of a matrix implies a property (EF )T = (�)|E||F |FTET .

Kinetic matrix

7

where K is the kinetic matrix,

K =

✓
Aij Bi�

C↵j D↵�

◆
, (61)

which components are defined by

Aij =
@pi
@q̇j

= Lq̇iq̇j , Bi� = � @pi

@✓̇�
= �Lq̇i✓̇� ,

C↵j =
@⇡↵

@q̇j
= L✓̇↵q̇j , D↵� =

@⇡↵

@✓̇�
= L✓̇↵✓̇�

�
= �L✓̇� ✓̇↵

�
. (62)

Here

LXY =
@

@Y

⇣ @L

@X

⌘
. (63)

It should be notice that all sub-matrices depend on (qi, q̇i, ✓↵, ✓̇�) in general. By construction, the symmetric matrix
Aij and the anti-symmetric matrix D↵� are Grassmann-even and Hermitian5, and Bi� and C↵j are Grassmann-odd
and related as CT = �B. In the present paper, we assume that the purely bosonic submatrix of the kinetic matrix
Aij is non-degenerate, i.e., invertible. This assumption is equivalent to requiring

detA(0)
ij 6= 0 , where A

(0)
ij = Aij |✓,✓̇=0 , (64)

as discussed in Sec. II. A.
Multiplied by the inverse of Aij , Aij , the first line of (59) can be solved for �q̇i as

�q̇i = Aij�pj �AijBj↵�✓̇
↵ �AijLq̇jqk�q

k +AijLq̇j✓↵�✓↵ , (65)

�q̇i = (Lq̇q̇)
�1�p+ (Lq̇q̇)

�1Lq̇✓̇�✓̇ � (Lq̇q̇)
�1Lq̇q�q + (Lq̇q̇)

�1Lq̇✓�✓ , (66)

and plugging in this for the second line of (59) gives

(D↵� � C↵iAijBj�)�✓̇
� = �⇡↵ � C↵iAij�pj +

⇣
C↵iAijLq̇jqk � L✓̇↵qk

⌘
�qk �

�
C↵iAijLq̇j✓� + L✓̇↵✓�

�
�✓� . (67)

(L✓̇✓̇ + L✓̇q̇(Lq̇q̇)
�1Lq̇✓̇)�✓̇ = �⇡ � L✓̇q̇(Lq̇q̇)

�1�p+
⇣
L✓̇q̇(Lq̇q̇)

�1Lq̇q � L✓̇q

⌘
�q �

⇣
L✓̇q̇(Lq̇q̇)

�1Lq̇✓ + L✓̇✓

⌘
�✓ . (68)

L✓̇✓̇ + L✓̇q̇(Lq̇q̇)
�1Lq̇✓̇ = 0 (69)

Now we would like to consider the situation such that the velocities ✓̇↵ cannot be expressed in terms of other canonical
variables, that is, the coe�cient matrix of �✓̇↵ does not have the inverse. According to the property of the Grassmann

valued matrix (21), this condition is equivalent to impose detD(0)
↵� = 0, where D

(0)
↵� = D↵� |✓,✓̇=0 .

We consider the cases of N = 1, N = 2, and N � 3 separately.

• N = 1 case:

Let us start with a single fermionic variable, N = 1. In this case, both D and CA�1B are zero due to the
Grassmann property, and then, the degeneracy of the kinetic matrix is automatically satisfied. More importantly,
the coe�cient matrix D�CA�1B always vanishes, and we have a primary constraint �1 = ⇡1�f1(q, p, ✓), which
removes Ostrogradsky’s ghost properly.

5 Since ✓↵ is real and Lagrangian should be Hermite, ✓̇↵✓̇� is always accompanied by the imaginary unit i in Lagrangian, which can be
easily checked by referring (11). Then, the anti-symmetric matrix D↵� is a pure imaginary matrix, guaranteeing its Hermitian property.
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whose components are defined by

Aij =
@pi
@q̇j

= Lq̇iq̇j , Bi� = � @pi

@✓̇�
= �Lq̇i✓̇� ,

C↵j = @⇡↵

@q̇j
= L✓̇↵q̇j , D↵� =

@⇡↵

@✓̇�
= L✓̇↵✓̇�

�
= �L✓̇� ✓̇↵

�
. (45)

Here we have introduced an abbreviated notation,

LXY =
@2L

@Y @X
=

@

@Y

⇣ @L

@X

⌘
. (46)

It should be noticed that all the sub-matrices depend on (qi, q̇i, ✓↵, ✓̇�) in general. By construction, Aij is a Hermitian
symmetric matrix, while D↵� is an anti-Hermitian anti-symmetric matrix, both of which are Grassmann-even 6 Bi�

and C↵j are Grassmann-odd and related as CT = �B. In the present paper, we assume that the bosonic submatrix of
the kinetic matrix Aij is non-degenerate, i.e., invertible. This assumption is equivalent to requiring

detA(0)
ij 6= 0 , where A

(0)
ij = Aij |✓,✓̇=0 , (47)

as discussed in Sec. II. A.
Multiplied by the inverse of Aij , Aij , the first line of (43) can be solved for �q̇i as

�q̇i = Aij�pj �AijBj↵�✓̇
↵ �AijLq̇jqk�q

k +AijLq̇j✓↵�✓↵ , (48)

and plugging this into the second line of (43) gives

(D↵� � C↵iAijBj�)�✓̇
� = �⇡↵ � C↵iAij�pj +

⇣
C↵iAijLq̇jqk � L✓̇↵qk

⌘
�qk � �C↵iAijLq̇j✓� + L✓̇↵✓�

�
�✓� . (49)

Now we would like to consider the situation such that the velocities ✓̇↵ cannot be expressed in terms of other canonical
variables, that is, the coe�cient matrix of �✓̇↵ does not have the inverse, equivalent to imposing the degeneracy
condition,

detD(0)
↵� = 0 , where D

(0)
↵� = D↵� |✓,✓̇=0 . (50)

We consider the cases of N = 1, N = 2, and N � 3 separately.

• N = 1 case:

Let us start with a single fermionic variable, N = 1. In this case, both D and CA�1B are zero due to the Grass-
mann property, and the degeneracy condition of the kinetic matrix is automatically satisfied. More importantly,
the coe�cient matrix D�CA�1B always vanishes, and we have a primary constraint �1 = ⇡1�f1(q, p, ✓), which
will remove the fermionic ghost properly.

• N = 2 case:

When N = 2, the matrix D is no longer zero, which, in general, has the following form,

D =

✓
0 D12

�D12 0

◆
. (51)

Let us explicitly write the Lagrangian for this case.

L = GI(q
i, q̇i)xI , where x =

0

BBBBBBBBBB@

1
i✓1✓2
i✓1✓̇1
i✓2✓̇2
i✓1✓̇2
i✓2✓̇1
i✓̇1✓̇2

✓1✓2✓̇1✓̇2

1

CCCCCCCCCCA

, (52)

6 The product of two real fermionic variables is not real but imaginary because of the Grassmann property (11) and should be always
accompanied by the imaginary unit i in (Grassmann-even real) Lagrangian. Then, the matrix D↵� is a pure imaginary matrix, which

is consistent with its anti-Hermitian property. For instance, when Lagrangian includes 1
2 ✓↵✓� ✓̇↵✓̇� , D↵� includes ✓↵✓� , which is anti-

Hermitian as (✓↵✓�)† = (✓⇤�✓
⇤
↵)

T = (✓�✓↵)T = ✓↵✓� = �✓�✓↵. We note that the transpose defined by replacing subscripts of the

elements of a matrix implies a property (EF )T = (�)|E||F |FTET .

The first line of ＊ can be solved for 

― ＊
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as discussed in Sec. II. A.
Multiplied by the inverse of Aij , Aij , the first line of (57) can be solved for �q̇i as

�q̇i = Aij�pj �AijBj↵�✓̇
↵ �AijLq̇jqk�q

k +AijLq̇j✓↵�✓↵ , (62)

and plugging this into the second line of (57) gives

(D↵� � C↵iAijBj�)�✓̇
� = �⇡↵ � C↵iAij�pj +

⇣
C↵iAijLq̇jqk � L✓̇↵qk

⌘
�qk

� �C↵iAijLq̇j✓� + L✓̇↵✓�

�
�✓� (63)

Now we would like to consider the situation such that the velocities ✓̇↵ cannot be expressed in terms of other
canonical variables, that is, the coe�cient matrix of �✓̇↵ does not have the inverse, equivalent to imposing the
degeneracy condition,

detD(0)
↵� = 0 , where D

(0)
↵� = D↵� |✓,✓̇=0 . (64)

We consider the cases of N = 1, N = 2, and N � 3 separately.

• N = 1 case:

Let us start with a single fermionic variable, N = 1. In this case, both D and CA�1B are zero due to the Grass-
mann property, and the degeneracy condition of the kinetic matrix is automatically satisfied. More importantly,
the coe�cient matrix D�CA�1B always vanishes, and we have a primary constraint �1 = ⇡1�f1(q, p, ✓), which
will remove the fermionic ghost properly.

• N = 2 case:

When N = 2, the matrix D is no longer zero, which, in general, has the following form,

D =

✓
0 D12

�D12 0

◆
. (65)

Let us explicitly write the Lagrangian for this case.

L = GI(q
i, q̇i)xI , where x =

0

BBBBBBBBBB@
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i✓1✓̇2
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CCCCCCCCCCA

, (66)

and GI (I = 1, 2, · · · , 8) are functions depending on qi and q̇i only. Therefore, we obtain

D12 = iG7 +G8✓1✓2 . (67)

Applying the degeneracy condition, we have G7 = 0. The momenta are now7

⇡1 = GI
@xI

@✓̇1
= �iG3✓1 � iG6✓2 +G8✓1✓2✓̇2 , ⇡2 = GI

@xI

@✓̇2
= �iG5✓1 � iG4✓2 �G8✓1✓2✓̇1 . (68)

The explicit form of Aij is

Aij = A
(0)
ij +

X

I>1

AI
ijxI , where AI

ij =
@2GI

@q̇j@q̇i
, A

(0)
ij = A1

ij . (69)

7 When we do not require the degeneracy condition, iG7✓̇2 and �iG7✓̇1, does appear in (68), which makes them solvable for ✓̇2 and ✓̇1,
and extra degrees of freedom, corresponding to the fermionic ghost, remain in the fermionic sector.
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as discussed in Sec. II. A.
Multiplied by the inverse of Aij , Aij , the first line of (57) can be solved for �q̇i as

�q̇i = Aij�pj �AijBj↵�✓̇
↵ �AijLq̇jqk�q

k +AijLq̇j✓↵�✓↵ , (62)

and plugging this into the second line of (57) gives

(D↵� � C↵iAijBj�)�✓̇
� = �⇡↵ � C↵iAij�pj +

⇣
C↵iAijLq̇jqk � L✓̇↵qk

⌘
�qk

� �C↵iAijLq̇j✓� + L✓̇↵✓�

�
�✓� (63)

Now we would like to consider the situation such that the velocities ✓̇↵ cannot be expressed in terms of other
canonical variables, that is, the coe�cient matrix of �✓̇↵ does not have the inverse, equivalent to imposing the
degeneracy condition,

detD(0)
↵� = 0 , where D

(0)
↵� = D↵� |✓,✓̇=0 . (64)

We consider the cases of N = 1, N = 2, and N � 3 separately.

• N = 1 case:

Let us start with a single fermionic variable, N = 1. In this case, both D and CA�1B are zero due to the Grass-
mann property, and the degeneracy condition of the kinetic matrix is automatically satisfied. More importantly,
the coe�cient matrix D�CA�1B always vanishes, and we have a primary constraint �1 = ⇡1�f1(q, p, ✓), which
will remove the fermionic ghost properly.

• N = 2 case:

When N = 2, the matrix D is no longer zero, which, in general, has the following form,

D =

✓
0 D12
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◆
. (65)

Let us explicitly write the Lagrangian for this case.

L = GI(q
i, q̇i)xI , where x =

0
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and GI (I = 1, 2, · · · , 8) are functions depending on qi and q̇i only. Therefore, we obtain
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Applying the degeneracy condition, we have G7 = 0. The momenta are now7
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AI
ijxI , where AI

ij =
@2GI

@q̇j@q̇i
, A

(0)
ij = A1

ij . (69)

7 When we do not require the degeneracy condition, iG7✓̇2 and �iG7✓̇1, does appear in (68), which makes them solvable for ✓̇2 and ✓̇1,
and extra degrees of freedom, corresponding to the fermionic ghost, remain in the fermionic sector.
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↵ �AijLq̇jqk�q

k +AijLq̇j✓↵�✓↵ , (62)
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(D↵� � C↵iAijBj�)�✓̇
� = �⇡↵ � C↵iAij�pj +

⇣
C↵iAijLq̇jqk � L✓̇↵qk

⌘
�qk

� �C↵iAijLq̇j✓� + L✓̇↵✓�

�
�✓� (63)

Now we would like to consider the situation such that the velocities ✓̇↵ cannot be expressed in terms of other
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detD(0)
↵� = 0 , where D

(0)
↵� = D↵� |✓,✓̇=0 . (64)
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• N = 1 case:
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✓
0 D12

�D12 0

◆
. (65)
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✓1✓2✓̇1✓̇2

1
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Inverse matrix: whether a matrix can be invertible or not plays an important role in degenerate theories as we will
see in Sec. IV. The condition for the existence of an inverse matrix of a Grassmann valued square matrix is
obtained as follows. We introduce two square matrices that are functions of the variables qi and ✓↵, which can
be in general written as

A(qi, ✓↵) = A0(q
i) +A↵(q

i)✓↵ +A↵�(q
i)✓↵✓� + · · · , (12)

B(qi, ✓↵) = B0(q
i) +B↵(q

i)✓↵ +B↵�(q
i)✓↵✓� + · · · , (13)

where A0, A↵, ..., B0, B↵, ... are matrices depending on qi. The condition that B is the inverse of A is given by
AB = I, where I is the identity matrix, leads to the following equations,

A0B0 = 0, (14)

A0B↵ +A↵B0 = 0, (15)

A0B↵� +
1

2
(A↵B� �A�B↵) +A↵�B0 = 0, (16)

...

A�1 =A�1
0 �A�1

0 A↵A
�1
0

+
1

2
A�1

0 (A↵A
�1
0 A�A

�1
0 �A�A

�1
0 A↵A

�1
0 )�A�1

0 A↵�A
�1
0 + · · · (17)

The above equations can be solved in succession if and only if A0 has an inverse. Then, assuming A�1
0 exists,

we get

B0 = A�1
0 , (18)

B↵ = �A�1
0 A↵A

�1
0 , (19)

B↵� =
1

2
A�1

0 (A↵A
�1
0 A�A

�1
0 �A�A

�1
0 A↵A

�1
0 )�A�1

0 A↵�A
�1
0 , (20)

...

which also satisfy BA = I. Therefore, we conclude that a matrix A has the inverse if and only if A0 has the

inverse, i.e.,

det(A0) 6= 0, where A0 = A|✓=0. (21)

B. Hamiltonian formalism

Now we move on to Hamiltonian formalism with both n Grassmann even variables qi(t) and N Grassmann odd
ones ✓↵(t). In the present paper, we consider the Lagrangian containing up to first derivatives, namely,

✓̇ ⇡ (22)

S =

Z t2

t1

L(qi, q̇i, ✓↵, ✓̇↵)dt. (23)

The Lagrangian should be an even and real function, and the dynamical variables qi and ✓↵ are taken to be real1

throughout this paper. The variation with respect to zA = (qi, ✓↵) yields the Euler-Lagrange equations,

d

dt

✓
@L

@żA

◆
� @L

@zA
= 0, (24)

1 Since complex variables can be decomposed into real and imaginary parts and expressed in terms of a set of two real variables, we can
always identify complex variables with doubled real variables without loss of generality.
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The inverse is easily obtained since we have assumed A
(0)
ij has the inverse and xI (I > 1) have at least one of ✓1

and ✓2 except for I = 7, which does not contribute because of the degeneracy condition.

Ajk =

 
�jl �Ajm(0)

X

I>1

AI
mlxI

!
Alk(0) (70)

Each component of the coe�cient in the left hand side of Eq. (63) is calculated straightforwardly and we have

D11 � C1iAijBj1 = D22 � C2iAijBj2 = 0 ,

D12 � C1iAijBj2 =
h
G8 +

��G3,q̇jG4,q̇k +G6,q̇jG5,q̇k
�
Ajk(0)

i
✓1✓2 ,

D21 � C2iAijBj1 = �(D12 � C1iAijBj2) . (71)

Since D � CA�1B has terms with ✓1✓2, we need to multiply (63) by ✓1 or by ✓2 to have relations among the
canonical variables. For instance, we multiply it by ✓1, and however, we cannot have reasonable ones since they
have ✓1�⇡↵, which means @⇡↵/@z (z = qi, pi, ✓1, ✓2) cannot be determined uniquely as we can add arbitrary
functions proportional to ✓1,

@⇡↵

@z
! @⇡↵

@z
+ g↵z(q, p)✓1 . (72)

Therefore, no phase space variable is properly constrained by these relations 8. A quite similar discussion applies
for when we multiply (63) by ✓2. To avoid such a situation, the coe�cient matrix of �✓̇ in (63), D � CA�1B,
must vanish for N = 2 case, and we then have two primary constraints,

��↵ = �⇡↵ � C↵iAij�pj +
⇣
C↵iAijLq̇jqk � L✓̇↵qk

⌘
�qk �

⇣
C↵iAijLq̇j✓� + L✓̇↵✓�

⌘
�✓� = 0 , (73)

whose number is su�cient to eliminate half degrees of freedom in phase space.

• N � 3 case:

Let us consider N � 3 case. In this case, the degenerate condition is no longer enough to eliminate all the extra
degrees of freedom, and the analysis becomes quite involved. Thus, we just comment on the general analysis in
Appendix A and concentrate on the case where all the extra degrees of freedom are eliminated only by primary
constraints from now on, as similarly done in bosonic case [41]. Here we suppose that all the elements in the
coe�cient matrix of the left hand side in (63) vanish,

D↵� � C↵iAijBj� = 0 , (74)

which yields N primary constraints,

�⇡↵ � C↵iAij�pj+
⇣
C↵iAijLq̇jqk � L✓̇↵qk

⌘
�qk�

⇣
C↵iAijLq̇j✓� + L✓̇↵✓�

⌘
�✓� = 0 . (75)

A straightforward calculation shows that they actually satisfy the integrable condition (including the case of
N = 2), and therefore, they have the integrated form,

�↵ = ⇡↵ � F↵(q, p, ✓) = 0 . (76)

In Appendix C, we give an alternative proof of the equivalence of (74) and the existence of the primary con-
straints.

To summarize, the degeneracy condition, detD(0)
↵� = 0, is equivalent to the maximally-degenerate condition, D �

CA�1B = 0, for N = 1 and N = 2 cases. For N � 3, the latter one is a su�cient (but not necessary) condition for
the former. In the following, we simply adopt the condition D � CA�1B = 0 for any N .

8 This requirement is referred to as “regularity condition”, where the Jacobian matrix of the M 0 (independent) constraints with respect to
the canonical variables should have rank M 0, and hence, the constraints properly reduce the dimension of the phase space, as explained
in [44].
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where we have used (101) and (103) in the second line, and (106) in the third line. Therefore, we find

@Y↵

@✓̇�

����
q,p,✓

= �{�↵,��} =
@Y↵

@✓̇�

����
q,q̇,✓

+AijBj�
@Y↵

@q̇i

����
q,✓,✓̇

, (108)

where we again used (106) in the right hand side of (105), and

�C
(0)
↵� = J

(0)
↵� . (109)

As a result, we explicitly see that the invertibility of C↵� , (84), coincides with the non-zero determinant of J (0)
↵� ,

the uniqueness condition (95). In other words, the condition that all the Lagrange multipliers are uniquely fixed is
equivalent to the condition that the time evolution of the system is uniquely determined.

V. CONCRETE MODELS

In the previous section, we have derived the conditions to successfully eliminate unwanted degrees of freedom in the
fermionic sector. In this section, we provide some examples of degenerate (boson-)fermion system, having n + N/2
physical degrees of freedom.

Example 1 : Let us first consider the simplest example, where the bosonic sector is absent. In this case, one
can immediately notice that the Lagrangian should be linear in the time derivatives of fermions from the maximally-
degenerate condition (76). Then, the most general Lagrangian in this case is given by

L = if↵(✓
�)✓̇↵ , (110)

where f↵ are arbitrary Grassmann-odd functions of ✓� . The momenta are easily found as

⇡↵ = �if↵ , (111)

which lead to the constraints, �↵ = ⇡↵ + if↵. As long as the matrix,

C↵� = �i
@f↵
@✓�

� i
@f�
@✓↵

, (112)

is invertible, the number of degrees of freedom is N/2.

Example 2 : The second example is a Lagrangian for n = 1 and N = 2,

L =
1

2
q̇2 + iq̇(✓1 + ✓2)✓̇1 , (113)

which satisfies the condition (76). The momenta are given by

p = q̇ + i(✓1 + ✓2)✓̇1 , ⇡1 = �iq̇(✓1 + ✓2) , ⇡2 = 0 , (114)

where the last two ones lead to the primary constraints, �1 = ⇡1 + ip(✓1 + ✓2) and �2 = ⇡2. Then, the constraint
matrix C↵� is invertible (for a non-zero value of p) since

detC↵� = p2 . (115)

Thus, the total number of degrees of freedom is 2 = 1 + 2⇥ 1/2.

Example 3 : An example for n = 1 and arbitrary N is given by

L =
1

2
q̇2 + i

�
f1(q, ✓

�) + f2(q, ✓
�)q̇

�
✓↵✓̇

↵ +
1

2
g(q, ✓�)✓↵✓� ✓̇

↵✓̇� . (116)

The maximally-degenerate condition,

L✓̇↵✓̇� + L✓̇↵q̇L
�1
q̇q̇ Lq̇✓̇� =

�
g � (f2)

2
�
✓↵✓� = 0 , (117)
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�
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Example: 1 scalar + N fermions

Maximally degenerate condition 13

implies g = f2
2 , which we suppose from now on. The conjugate momenta are

p = q̇ + if2✓↵✓̇
↵ , (118)

⇡↵ = �i(f1 + f2q̇)✓↵ + g✓↵✓� ✓̇
� = �i(f1 + f2p)✓↵ , (119)

where the last line is again regarded as the primary constraints, �↵ = ⇡↵+ i(f1+ f2p)✓↵. As long as (f1 + f2p)|✓=0 =

f
(0)
1 + f

(0)
2 p 6= 0, the constraint matrix C↵� is invertible since

detC(0)
↵� =

��2i(f (0)
1 + f

(0)
2 p)

�N
. (120)

Then, the system has N second class constraints, and the total number of degrees of freedom is 1 +N/2.

Example 4 : A similar but practically di↵erent model to the previous one is

L =
1

2
(q̇ + i✏↵�✓

↵✓̇�)2 +
i

2
✓↵✓̇

↵ . (121)

We should note that it is not an essentially new model since there exists an invertible transformation as q ! q +
(i/2)✏↵�✓↵✓� and ✓↵ ! ✓↵ between this Lagrangian and L = q̇2/2 + (i/2) ✓↵✓̇↵. However, it would be worthwhile
to examine this model because we have found a field theoretical extension of this model as exhibited in Appendix E.
The conjugate momenta are
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↵✓̇� , (122)
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Therefore, N primary constraints are found as �↵ = ⇡↵ � i✏↵�✓
�p+ (i/2)✓↵. The Poisson brackets,

{�↵,��} = �i�↵� , (124)

imply the invertibility since

detC↵� = (�i)N . (125)

As a result, the number of degrees of freedom is 1 + N/2. If the canonical kinetic term, (i/2)✓↵✓̇↵, is absent, this
system will generate secondary constraints and/or have first class constraints since {�↵,��} vanishes. The use of
(i/2)✏↵�✓↵✓̇� instead of (i/2)✓↵✓̇↵ also gives the vanishing Poisson brackets and does not work as well. In those cases,
we will have a less number of degree of freedom than 1+N/2, which shows the explicit di↵erence from Example 3. In
a field theoretical extension given in Appendix E, the standard Weyl kinetic term plays the same role with (i/2)✓↵✓̇↵.

VI. SUMMARY

As mentioned in [44], even when the Lagrangian contains only up to first derivatives of fermions, non-degenerate
fermionic system always su↵ers from the presence of negative norm states, which come as a consequence of the existence
of extra degrees of freedom. Although the situation in fermionic case is more involved because of the Grassmann
property of fermionic variables, this can be contrasted with non-degenerate bosonic system containing second or higher
derivatives in the Lagrangian. In such bosonic system, the Hamiltonian should include terms linear in momentum,
making the Hamiltonian unbounded from below. This is what is called Ostrogradsky’s ghost instability. So far, there
seems to be no obvious criteria to determine the existence of the ghosts in fermionic system at classical level, which
are, in turn, transparently observed as negative norm states once the system is quantized. (The relation between
the Ostrogradsky’s ghosts and negative norm states is more obvious in bosonic system as shown in [48].) To avoid
these negative norm states, the fermionic system must be degenerate and contain a su�cient number of constraints to
eliminate half degrees of freedom in phase space, whose situation is similar for bosonic Lagrangian including second
derivatives as investigated in [41].
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Then, the system has N second class constraints, and the total number of degrees of freedom is 1 +N/2.
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VI. SUMMARY

As mentioned in [44], even when the Lagrangian contains only up to first derivatives of fermions, non-degenerate
fermionic system always su↵ers from the presence of negative norm states, which come as a consequence of the existence
of extra degrees of freedom. Although the situation in fermionic case is more involved because of the Grassmann
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making the Hamiltonian unbounded from below. This is what is called Ostrogradsky’s ghost instability. So far, there
seems to be no obvious criteria to determine the existence of the ghosts in fermionic system at classical level, which
are, in turn, transparently observed as negative norm states once the system is quantized. (The relation between
the Ostrogradsky’s ghosts and negative norm states is more obvious in bosonic system as shown in [48].) To avoid
these negative norm states, the fermionic system must be degenerate and contain a su�cient number of constraints to
eliminate half degrees of freedom in phase space, whose situation is similar for bosonic Lagrangian including second
derivatives as investigated in [41].
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eliminate half degrees of freedom in phase space, whose situation is similar for bosonic Lagrangian including second
derivatives as investigated in [41].

AN EXAMPLE OF 
HEALTHY THEORIES

 g= f2 or -f2

Quadratic terms of the time derivative of fermions are included!



SUMMARY

We have … 

discussed that, when we construct new interactions between bosons and 
fermions, we need to avoid what we call fermionic ghosts, coming from 
the extra degrees of freedom in fermionic sector.  Analogy with 
Ostrogradsky’s ghost may be pointed out. (See also J.Phys. A35 (2002) 
6169-6182)  

found ghost free conditions, which eliminate such the ghosts, in general 
formulation and non-trivial examples. Remarkably, some of them 
include quadratic terms of the time derivative of fermionic variables.
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