Theoretical Consistency of Stochastic Approach

D1 Junsei Tokuda (Kyoto Univ.)

in collaboration with Takahiro Tanaka (Kyoto Univ. & YITP)

Refs. : JT and T.Tanaka JCAP02(2018)014, arXiv: 1708.01734 JT and T.Tanaka In prep.

2018/2/9 GC2018@YITP

IR divergences

QFT expectation values contain IR divergent terms.

 ϕ : a minimally coupled massless scalar in de Sitter space

e.g. $\lambda \phi^4$ theory ($\lambda \ll 1$) ($a(t) \propto e^{Ht}$)

$$\frac{\langle \phi_{\mathrm{IR}}^2(x) \rangle}{H^2} \sim \ln \frac{a}{a_0} + 1 + \lambda \left[\left(\ln \frac{a}{a_0} \right)^3 + \left(\ln \frac{a}{a_0} \right)^2 + \left(\ln \frac{a}{a_0} \right) + 1 \right]$$
$$+ \lambda^2 \left[\left(\ln \frac{a}{a_0} \right)^5 + \left(\ln \frac{a}{a_0} \right)^4 + \left(\ln \frac{a}{a_0} \right)^3 + \cdots \right]$$
$$+ \cdots$$

IR loops \gg Tree level amplitudes.

Contributions from deep IR modes beyond the current observable scale.

IR loops affect observables for local observers (us)?

In Classical theory

Deep IR modes cannot affect observables, because for local observers, deep IR modes = homogeneous background.

In Quantum theory

Deep IR modes = Environmental degrees of freedom.

Deep IR modes should be integrated out. ⇔ Taking into account IR loops !!

Clarify whether IR loops affect observables for us.

Need to

- reconsider what are observables for us.
- understand the physical meaning of IR loops.

Stochastic approach may give us the consistent physical interpretation of IR loops.

If one treats UV modes as harmonic oscillators,

Stochastic Formalism^{A. A. Starobinsky (1986) A. A. Starobinsky and J. Yokoyama(1994)}

IR dynamics of ϕ_{IR} =Brownian motion with an external force.

$$\dot{\phi}_{\mathrm{IR}} = \frac{-\frac{1}{3H}V'(\phi_{\mathrm{IR}}) + \xi}{\frac{1}{4\pi^2}\delta(t_1 - t_2)\frac{\sin(\epsilon a(t_1)H|\vec{x_1} - \vec{x_2}|)}{\epsilon a(t_1)H|\vec{x_1} - \vec{x_2}|}}$$

deterministic stochastic
$$\dot{\phi}_{\mathrm{IR}} = \frac{-\frac{1}{3H}V'(\phi_{\mathrm{IR}}) + \xi}{\frac{1}{4\pi^2}\delta(t_1 - t_2)\frac{\sin(\epsilon a(t_1)H|\vec{x_1} - \vec{x_2}|)}{\epsilon a(t_1)H|\vec{x_1} - \vec{x_2}|}}$$

- \checkmark This eq. can be solved non-perturbatively.
- \checkmark This eq. can correctly recover parts of IR loops.

N. C. Tsamis and R. P. Woodard (2005) 5

Classical Stochastic Picture of the inflationary universe

A. Linde(1986) A. A. Starobinsky (1986) Y. Nambu and M. Sasaki (1989)

classical stochastic process

Brownian Motion

In this picture, one assumes that

The time evolution of

the inflationary universe

a certain value of ϕ_{IR} is **classically realized** at each patch.

$$\dot{\phi}_{\mathrm{IR}} = -\frac{1}{3H}V'(\phi_{\mathrm{IR}}) + \xi$$

Observables in the stochastic picture

 ✓ The prescription of calculating adiabatic perturbations based on this classical picture is proposed.

> T. Fujita, M. Kawasaki, Y. Tada, and T. Takesako (2013) V. Vennin and A. A. Starobinsky (2015)

Observables $\neq \langle \hat{\phi}_{IR} \cdots \hat{\phi}_{IR} \rangle$

Loops from deep-IR modes beyond observable scale do not affect observables.

Brownian motion cannot capture correctly all the IR loops.

$$\frac{\langle \phi_{\mathrm{IR}}^{2}(x) \rangle}{H^{2}} \sim \ln \frac{a}{a_{0}} + 1$$
These terms are not correctly recovered.
$$+\lambda \left[\left(\ln \frac{a}{a_{0}} \right)^{3} + \left(\ln \frac{a}{a_{0}} \right)^{2} + \left(\ln \frac{a}{a_{0}} \right) + 1 \right]$$

$$+\lambda^{2} \left[\left(\ln \frac{a}{a_{0}} \right)^{5} + \left(\ln \frac{a}{a_{0}} \right)^{4} + \left(\ln \frac{a}{a_{0}} \right)^{3} + \cdots \right]$$

$$+\cdots$$

IR dynamics = Classical stochastic process ?

If it fails seriously, IR loops may modify the current predictions drastically.

Our work: Setup
• Model:
$$\mathcal{H} = \frac{1}{2}v^2 + \frac{1}{2a^2}(\nabla\phi)^2 + V(\phi, v)$$
 on de Sitter background.

• Defs. of UV modes and IR modes
IR modes
$$k = \epsilon a H$$
UV modes
 $\phi^{IR}(\vec{x},t), v^{IR}(\vec{x},t)$
 $\phi^{UV}(\vec{x},t), v^{UV}(\vec{x},t)$
K
Time evolution

• Assumptions

- 1. No IR mode initially (at $t = t_0$).
- 2. $V(\phi, v)$ is turned on at $t = t_0$, and we take the Bunch-Davies vacuum states for a free field at $t = t_0$.

Derive an effective IR dynamics by integrating out UV modes Decompose the path integral into UV parts and IR parts. $\mathcal{D}\phi_{+}\mathcal{D}v_{+}\mathcal{D}\phi_{-}\mathcal{D}v_{-}e^{i(S^{+}-S^{-})}$ $S = \int d^4 x \, a^3 \left(v \dot{\phi} - \mathcal{H}(v, \phi) \right)$ $\rightarrow \left(\mathcal{D}\phi_{+}^{\mathrm{IR}}\mathcal{D}v_{+}^{\mathrm{IR}}\mathcal{D}\phi_{-}^{\mathrm{IR}}\mathcal{D}v_{-}^{\mathrm{IR}} e^{iS_{\mathrm{IR}}} \right) \left(\mathcal{D}\phi_{+}^{\mathrm{UV}}\mathcal{D}v_{+}^{\mathrm{UV}}\mathcal{D}\phi_{-}^{\mathrm{UV}}\mathcal{D}v_{-}^{\mathrm{UV}} e^{iS_{\mathrm{UV}}}e^{iS_{\mathrm{int}}^{\mathrm{UV}-\mathrm{IR}}} \right)$ JT and T. Tanaka (2017) An effective IR dynamics Stochastic noises $\dot{\phi}_c^{\mathrm{IR}} = v_c^{\mathrm{IR}} + \mu(\phi_c^{\mathrm{IR}}, v_c^{\mathrm{IR}}) + \xi_{\phi}$ $\phi_c \equiv \frac{\phi_+ + \phi_-}{2}, \ \phi_\Delta \equiv \phi_+ - \phi_ \dot{v}_c^{\mathrm{IR}} = -3Hv_c^{\mathrm{IR}} - \partial_{\phi}V_{\mathrm{eff}}(\phi_c^{\mathrm{IR}}, v_c^{\mathrm{IR}}) + \xi_v$

Probability distribution of ξ_{ϕ} and ξ_{v} : $P[\xi_{\phi}, \xi_{v}; \phi_{c}^{\mathrm{IR}}, v_{c}^{\mathrm{IR}}]$ $P = \int Dv_{\Delta}^{\mathrm{IR}} D\phi_{\Delta}^{\mathrm{IR}} \left(e^{-A_{1}v_{\Delta}^{\mathrm{IR}^{2}} - iA_{2}v_{\Delta}^{\mathrm{IR}^{3}} - \cdots} \right) \left(e^{-B_{1}\phi_{\Delta}^{\mathrm{IR}^{2}} - \cdots} \right) \left(e^{-C_{1}v_{\Delta}^{\mathrm{IR}}\phi_{\Delta}^{\mathrm{IR}} - \cdots} \right) e^{i\xi_{\phi}v_{\Delta}^{\mathrm{IR}} - i\xi_{v}\phi_{\Delta}^{\mathrm{IR}}}$

An effective IR dynamics=Classical process?

$$P = \int Dv_{\Delta}^{\mathrm{IR}} D\phi_{\Delta}^{\mathrm{IR}} \left(e^{-A_{1}v_{\Delta}^{\mathrm{IR}^{2}} - iA_{2}v_{\Delta}^{\mathrm{IR}^{3}} - \cdots} \right) \left(e^{-B_{1}\phi_{\Delta}^{\mathrm{IR}^{2}} - \cdots} \right) \left(e^{-C_{1}v_{\Delta}^{\mathrm{IR}}\phi_{\Delta}^{\mathrm{IR}} - \cdots} \right) e^{i\xi_{\phi}v_{\Delta}^{\mathrm{IR}} - i\xi_{\nu}\phi_{\Delta}^{\mathrm{IR}}}$$

$$\equiv \exp[i\Gamma_{(s)}]$$

$$\frac{A_{1}}{H^{4}} \sim \frac{\langle\xi_{\phi}\xi_{\phi}\rangle}{H^{4}} \sim O(1), \quad \frac{B_{1}}{H^{2}} \sim \frac{\langle\xi_{\nu}\xi_{\nu}\rangle}{H^{2}} \sim O(\lambda^{2}) \left(\frac{C_{1}}{H^{3}} \sim \frac{\langle\xi_{\phi}\xi_{\nu}\rangle}{H^{3}} - O(\lambda) \right).$$
Gaussian part of $\phi_{\Delta}^{\mathrm{IR}}$: suppressed by λ .
Regarding $\phi_{\Delta}^{\mathrm{IR}}$, non-Gaussian parts contribute at the same order.

$$P[\xi_{\phi},\xi_{\nu};\phi_{c}^{\mathrm{IR}},v_{c}^{\mathrm{IR}}] \text{ can be negative.}$$

Path integral for IR modes can be written as $\int \mathcal{D}\phi_{c}^{\mathrm{IR}} \mathcal{D}v_{c}^{\mathrm{IR}} \mathcal{D}\phi_{\Delta}^{\mathrm{IR}} \mathcal{D}v_{\Delta}^{\mathrm{IR}} e^{i\int d^{4}x \, a^{3}v_{\Delta}^{\mathrm{IR}} (\dot{\phi}_{c}^{\mathrm{IR}} - v_{c}^{\mathrm{IR}} - \mu)} e^{i\Gamma_{(\mathrm{s})} \left[v_{\Delta}^{\mathrm{IR}}, \phi_{\Delta}^{\mathrm{IR}}, v_{c}^{\mathrm{IR}}, \phi_{c}^{\mathrm{IR}}\right]} e^{i\int d^{4}x \, a^{3}\phi_{\Delta}^{\mathrm{IR}} (-\dot{v}_{c}^{\mathrm{IR}} - 3Hv_{c}^{\mathrm{IR}} - \partial_{\phi}V_{\mathrm{eff}})}$ Partial integration over v_c^{IR} . $\phi_{\Delta}^{\text{IR}}(t) \rightarrow -\hat{F} \equiv i \int_t^{t_f} \frac{\mathrm{d}t'}{a^3(t')} \frac{\delta}{\delta v_c^{\text{IR}}(t')} (1 + \cdots)$ $\nabla \mathbf{R} \sigma \mathbf{R} [i \int d^4x a^3 v^{\mathrm{IR}} (\dot{a}^{\mathrm{IR}} - v^{\mathrm{IR}} - u)] \int \sigma \mathbf{R} [i \int d^4x a^3 a^{\mathrm{IR}} (-i)^{\mathrm{IR}} - 2Hv^{\mathrm{IR}} - \partial V - v]$ ſ

$$\int \mathcal{D}\phi_{c}^{\mathrm{IR}} \mathcal{D}v_{\Delta}^{\mathrm{IR}} \mathcal{D}v_{c}^{\mathrm{IR}} e^{i \prod_{(s)}} \Big|_{\phi_{\Delta}^{\mathrm{IR}} \to \hat{F}} \Big[e^{i \int \mathrm{d}^{s} x \, d^{s} v_{\Delta}^{\mathrm{IR}}(\phi_{c}^{\mathrm{IR}} - v_{c}^{\mathrm{IR}} - \mu)} \Big] \int \mathcal{D}\phi_{\Delta}^{\mathrm{IR}} e^{i \int \mathrm{d}^{s} x \, d^{s} \phi_{\Delta}^{\mathrm{IR}}(-v_{c}^{\mathrm{IR}} - 3Hv_{c}^{\mathrm{IR}} - \partial_{\phi} v_{\mathrm{eff}})} \\ \simeq e^{i \Gamma_{(s)} \Big[v_{\Delta}^{\mathrm{IR}}, \phi_{\Delta}^{\mathrm{IR}} = 0, v_{c}^{\mathrm{IR}}, \phi_{c}^{\mathrm{IR}} \Big] e^{i \int \mathrm{d}^{4} x \, a^{3} v_{\Delta}^{\mathrm{IR}}(\dot{\phi}_{c}^{\mathrm{IR}} - v_{c}^{\mathrm{IR}} - \mu)}$$

$$\dot{\phi}_{c}^{\text{IR}} = v_{c}^{\text{IR}} + \mu + \underbrace{\mathcal{E}}_{C} \text{ Approximately Gaussian noise}$$

$$\dot{v}_{c}^{\text{IR}} = -3Hv_{c}^{\text{IR}} - \partial_{\phi}V_{\text{eff}} \longrightarrow \text{Positive probability !}$$

 $x v_c^{-1}$ no longer corresponds to conjugate momentum.

IR dynamics of ϕ_c^{IR} = a classical stochastic process.

Classical Aspects of Stochastic Inflation

By changing the definition of v_c^{IR} appropriately, we can rewrite the IR dynamics as

 \rightarrow Positive probability !

IR dynamics of ϕ_c^{IR} = a classical stochastic process.

Summary

Motivation

Light scalar ϕ_{IR} : $\langle \hat{\phi}_{IR} \cdots \hat{\phi}_{IR} \rangle \cdots$ IR div. \rightarrow What are observables for us? If IR dynamics = classical stochastic process, classical stochastic picture allows us to propose observables.

An IR dynamics of $\phi_{IR} =$ classical stochastic process?

Conclusions and Discussions

- 1. Yes! IR loop contributions = increase of statistical variance.
- In this picture, classicalization of IR modes is assumed. However, it 2. is known that decoherence during inflation is not exact. We have to define observables within a framework of QFT with taking into account the effects of decoherence. 15