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According to GR: Singularity exists inside a black hole.
Theorems on singularities: Penrose and Hawking.

There exists a curvature singularity inside
a stationary BH in the Einstein gravity =
This theory is UV incomplete.

Expectations: When curvature becomes high (e.g. reaches
the Planckian value) the classical GR should be modified.
Singularities of GR would be resolved.
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Consider a sphere of the
gravitational radius r;.

What volume iIs Inside 1t?
IS It ~rg3? WRONG!!!
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Modified gravity: Options:

(i) Vacuum polarization and particle creation —»
Effective action (higher derivatives and
non-locality);

(ii)) Modified fundamental gravity (higher derivatives,
f(R) theory, etc.);

(iii) Non-local modification (Ghost-free gravity);

(iv) Gravity as an emergent phenomenon

(strings, loops, etc.)



Phenomenological description

(i) There exists the critical energy scale parameter u . The corresponding

fundamental length is €=i;
uc

(i) In the domain where R <« ¢ the metric obeys the Einstein equations

with small corrections;

(iii) In the domain where R ~ ¢ the Einstein equations should be modified:;

(iv) Limiting curvature condition: |R |< 7 C is a universal constant, defined

by the theory and independent of the parameters of the solution.
[Markov, JETP Lett. 36, 265 (1982)]
Remark on inflation theory.



"Quasi-local definition’ of BH:
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Apparent horizon

A compact smooth surface B is called a trapped
surface If both, in- and out-going null surfaces,
orthogonal to B, are non-expanding .

A trapped region is a region inside B.

A boundary of all trapped regions is called
an apparent horizon.



Null energy condition: T 1“1 >0

B

" Trapped surface + NEC
=Event horizon existence
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In a ST obeying the null-energy condition the
apparent horizon lies inside (or coincides with)
the true event horizon.

In classical physics in order to prove the existence

of a BH (in an exact mathematical sense) it is not

necessary to wait infinite time, but it is sufficient
to check the existence of the trapped surface now'.



In quantum physics the energy conditions could
be violated. An example is an evaporating black
hole (negative energy flux through the horizon
reduces its mass).

It is possible, in principle, that the apparent
horizon exists, but there is no event horizon.

We shall focus on this option.



General form of SS metric in
advanced time coordinates

ds* =—a’f dv’ +2advdr+ridQ°, f=(Vr¥=g"rr,.
f(v,r)| _,.=1. Apparent horizon: f =0.
Red-shift function: a(v,r). In a static ST: &* = —a*f,
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R’ ~ 4([(Vr) “j — If STis regular at r =0, the
r

apparent horizon cannot cross this line.



ST is regular at r =0, if curvature

invariants are finite there:
f=1+if,(V)r’+... ,

a=o,(V)[1+1a,(V)r’+..].

=1,

then the rate of the proper time at the

We use normalization: a(v,r)|

r—o0

center, 7, and the rate of the Killing time

at infinity, v, are connected as: dr = «,(v)dv.



(i) An apparent horizon in a regular metric cannot cross r =0.

(ii) It has two branches: outer- and inner-horizons.

(iii) Non-singular BH model with a closed apparent horizon
[V.F. and G.Vilkovisky, Phys. Lett., 106B, 307 (1981)]

Fig. 1. Penrose diagram for the collapse of the null shell

(M = 1), Solid (dashed) lines are used for the known (hypo-
thetical) details of the picture, The shaded region is the re-
gion of validity of the obtained asymptotic solution, The line
N7 U N s the world line of the null shell. The closed and
dashed bold line ABCD is the apparent horizon. The light
lines are the level lines r = const,
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Static SSnon-singular black-hole metrics

Remark: All stationary vacuum BH solutions in General Relativity
can be written in the form, where the metric coefficients

are rational functions of the coordinates.

P (r) rip st 1

. It has the form =
Qs(ry RS

n

We assume that f = —>latr— oo,

=21

Example 1: Bardeen regular black hole [1968]

2Mr? 2M M
f=1- L35 PR it 081

(P +a " "7 |qF G
Neither this metric nor its modification (g — /)

satisfies the limiting curvature condition.



2Mr 2M
FEid 0’
is finite at r =0 but non-regular.

Example 2: Metricwithf =1—

Metrics with n <2 cannot be consistent metrics of
a non-singular black hole. [V.F. PR D94,104056 (2016)].

Example 3 (n=3): Hayward metric [2007]:
2Mr?
rP+2M02 + 03

e = (o= 1];

Non-singular evaporating black hole: M = M(v).



Non-singular model of black hole

dS’ =—a’fdv’ + 2advdr + r’da?’,
2Mr?
f T 1_ 3 2 V4
r-+2M/
Standard: a=1;
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Non-singular model of an
evaporating black hole

dS’ =—fdv’ +2dvdr +r’dw’,

2M(v)r?
f He= 1 ity - (a = 1)
r’+2M(v)/
M(V)Mo
s R M 0
! v
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Information Loss Puzzle

Pure Collapse B| aCk Evaporation Therma|
state —4 hole 5 i radiation



Information Loss Puzzle

Pure Collapse B| aCk Evaporation Therma|
state —=4 hole ) radiation

A model of a black hole with a closed apparent
horizon is one of the options that were discussed
in the connection with the information loss paradox.



Aharonov, Casher, Nussinov [1987];Carlitz, Willey [1987]:
Preskill [1992]

"The final stage of the evaporation process

must take a very long time," T, >M".

Self-consistency problem
[Bolashenko and V.F. (1986)]



Quantum effects

We consider a quantum massless scalar fields,
propagating in the background of a non-singular

black hole. We use 2D approximation. The corresponding
expectation value of the stress-energy tensor can be
easily obtained from the known conformal anomaly.
Christensen and Fulling, PD, D15, 2088 (1977)].

t can also be derived from Polyakov effective action.
V.F. and Vilkovisky, in Quantum Gravity, p.267 (1984)]




Polyakov action:
b , 1
W[g]:—EId xAJg R=R, o® =R,
O]

i3 1 oWlg]
)= e

Jo 4g,

b{20V* V'O -V*OV'O +g"" [2R+ %(VCD)Z]},

<T”V>g — 2bR.






Radial null rays provide us with maps:

ﬁ/

I3 : u=uu)andu, =u_(u)




Gain function

The gain function B describes amplification
of the particles energy, i.e., the ratio of the
final energy of a photon to its initial energy.

To compute the energy fluxes £ and the gain

5 du_
function B = ﬁ = e’, one needs to know the
+

map u_(u,).

IB:E:iexp[—jKdv] KZ%ar(af).

B



Sandwich black hole

7 We assume that a regular metric
v /|
. s ds? = — a*f dv* + 2a dvdr + r* dw?
L - - == == -— III
7 describes the black hole, which is created as a result
N of a spherical collapse of null shell of mass M at the
g < moment v = 0, and which disappears after some finite
VL | time g after the collapse of the second shell -M.
£ 3? v, *l f=a=1 forv< 0 and v >gq
8 -
. £ \\ . 3
| - hia| ;
| Between the shells - (modified) Hayward metric.
O R |
A
< Consider an incoming radial null ray described by the
e equation v = const . It propagates from the past null
L e U,  infinity I~ and reaches the center r = 0 . After
passing the center, it becomes an outgoing radial null
—_ 7 ray.




Penrose diagram of a sandwich

flat metric |
u, =v-—2r

|
|
|

flat metric
u_=v-—2r

black hole

We choose the retarded null time
parameter u_ so that at r=0 one has
u_ = v . In the initial flat domain, where
v<O0

Uu_ =v-—2r

However, in a general case, for v > 0
this relation between u_ and v is not
valid. In particular, in the final flat
domain, where v > q , the null coordinate
u, = v — 2r differs from u_ , and one
has relations

uy = uy(uo), u_ =u_(uy)

" nonsingular black hole
\



Scheme of calculations:

u =-2r ,u,_=q-2r,,

= 2_[—:>r =)



Useful parametrization of the Hayward metric: (M, /) —>(r_,r, .).

2
We denote p=-2-, and use r,, as a scale parameter:
r

_{r=p)r=1ir+p/(p+1)]

; r’+p°/(p+1)
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Outgoing rays: u=Vv—2Q(r)=const



Radial null rays
in a nonsingular
- sandwich black
hole
2 = —a?fdv? + 2a dv

ds .
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Sequence of events (as seen by

an external observer):
(1) black hole formation;
(11) Hawking radiation;
(111) signal from the second shell;
(1v) radiation from the black hole interior;
(v) ourburst of radiation from the inner
domain (near inner horizon);
(vi) Mass inflation; x ~ —«,;
(vil) Total emitted energy Is always positive,
Its density can be negative during short time.



Hawking radiation

The Hawking result for the quantum energy flux from a black hole is correctly
reproduced, when the mass parameter p and the lifetime of the blackhole g
are large. The shape of the curve is almost the same for both standard and
modified models. Duration of the almost constant tail of quantum radiation is
approximately equal to q (lifetime of the black hole).

(c’ / é:Hawk

Beginning of Hawking radiation
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"Mass inflation" is cured, however "gravity acceleration”

mechanism still works. Self-consistency problem.



Main results:

(i) Properly reproduced Hawking radiation from the outer
horizon (for g > M);

(ii) For a=1 -- huge outburst of the quantum radiation from
the inner horizon: AE ~ exp(q) ~ exp(Av//¢) . This radiation
comes from the inner horizon during time interval
Au, ~exp(-q) ~ exp(-Av//);

(iii) Mass inflation mechanism (Israel, Poisson [1990]);

(iv) For a special choice of o (¢, < 1) outburst of the energy
can be reduced to the power law;

(v) Self-consistency problem remains [Bolashenko and V.F. (1986)].



"Realistic” non-singular model
of an evaporating black hole






"Bracket" formalism

Let y(x) be a function, and x(y) is its inverse.

2
’ /4 ”m 3 /4

[y, x]=In|y'|, < y,X>=y—,, {y,x}:y—,——(y—,j ;
y Yt “2X3Y

Schwarz derivative

[y,X]Z—[X,y], <y9X>:_y’<X9y>9 {y,X}Z—(y')Z{X,y}.

Chainrule: fog(z)=f(g(z))=

[feog,2]=[f.0]_,,+[9.2].

<fogz>=<f,g> _  0g'(0)+<g,z>,

{fog.2b={f. 0} _,,,(9'(2)" +{9.2}.

9=9(2)



Beam of out-going null rays:
r(v,x) =r(v)+ > r,v) x"=
n=1

A set of ODEs for r_ (v).



Basic equations in the bracket formalism

dr 1 0" Z(v,r)
—=Z\W,r), Z=—af, Z_ (V)=
dv Wir) 2 ! W) or”

r,(v)
L(v)

r=ry(v)

p(v) =Inr(v), wlv)=




=i |n£du]=[U,U+]:_p(Q)_|naoa
du,

W =<u_,u, >= ep(‘”{ w(q) ——}

0‘0
—247E={u_,u-}=~e2rD F a(qRE iz{x, u_ }},
4 a,

2
{x,u_ }_ aoa +ﬁ—§(ﬁ] .
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Observables on I* in terms of "brackets".

Gain function: g = ji RIS T B EE L
u

+

"Radiation entropy"” S(v) = —% b

[Bianchi, DeLorenzo, Smerlak, JHEP, 06, 1280 (2015)]

Density of out-going trajectories: W =<u_,u, >.

Energy flux: E = —%{u,u+ }.{u_,u, } - Schwarz derivative,
7T

[M.Reuter, CQG, 6, 1149 (1989)]



14
10
6|

0

PE———

0 2 4 6 8 1012 14 16 18

11
2.x10 ]

11]
1.5x10

11
1.x10 |

1
ixloq

0 123456 78

M=3, a=1

E

0

2 4 6 8 1012 14 16 18

1.2

0.8,
0.6
0.4
0.2

0

1 2 3 45 6 7 8

M=3, a,~M"



Summary and Discussion

(i) Non-singular models of evaporating BHs

(i) Quantum radiation from BH interior
2D approximation (its validity?);

(iii) "Bracket" formalism;

(iv) Sandwich model [2 shells, 2 parameres]
vs. a ""realistic" non-singular models

(v) Two mechanisms of energy amplification:
"Gravity accelerator" vs "Mass inflation";

(vi) Properly chosen red-shift factor helps to cure
the mass inflation problem;

(vii) Information loss and self-consistency problems;

(viii) Back-reaction of created radiation?!
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Polyakov action:
b , 1
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<T”V>g — 2bR.
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Realistic” non-singular model of
an evaporating black hole
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