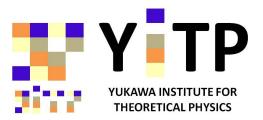
Gravitational waves from a spinning particle orbiting a Kerr black hole

Ryuichi Fujita (藤田 龍一)

Yukawa Institute for Theoretical Physics, Kyoto University

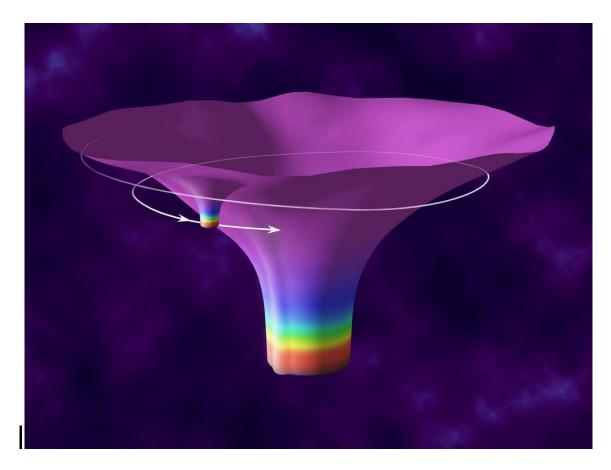
[with Norichika Sago (Kyushu University, Japan), in preparation]

Gravity and Cosmology 2018, YITP, Feb. 6, 2018

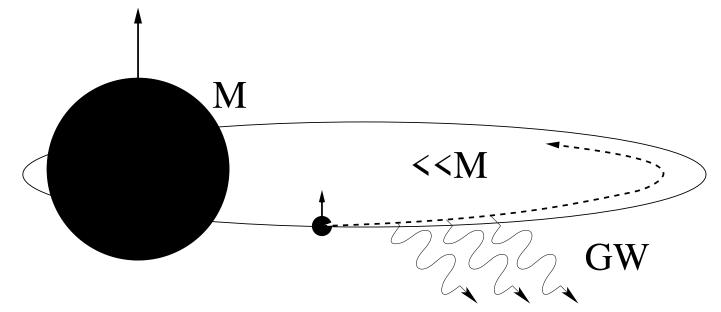


Motivation

- To study extreme-mass ratio inspirals (EMRIs) as GW sources using black hole perturbation theory
 - $\star\,$ One of the main targets for LISA



Motion of a spinning particle in Kerr spacetime



• Zeroth order in the mass ratio $O[(\mu/M)^0]$:

* Geodesic orbits with (E, L_z, C)

• First order in the mass ratio $O[(\mu/M)^1]$:

Deviation from the geodesic orbits because of

- * Radiation reaction
- * Spin of the particle, ...

How important is the spin of the partcle for orbits and GWs?

Equations of motion of the spinning particle

- * Mathisson-Papapetrou-Pirani (MPP) equation:
 - * Neglect higher multipoles than quadrupole, accurate up to the linear order in the spin

$$\begin{aligned} \frac{D}{d\tau} p^{\mu}(\tau) &= -\frac{1}{2} R^{\mu}_{\nu\rho\sigma}(z(\tau)) v^{\nu}(\tau) S^{\rho\sigma}(\tau), \\ \frac{D}{d\tau} S^{\mu\nu}(\tau) &= 2 p^{[\mu}(\tau) v^{\nu]}(\tau) (= 0), \end{aligned}$$

- * $v^{\mu}(au) = dz^{\mu}(au)/d au$: four-velocity
- * $p^{\mu}(\tau)$: four-momentum
- * $S^{\mu
 u}(au)$: spin tensor
- \Rightarrow 14 degrees of freedom for 10 equations
- * Spin supplementary condition (4 equations): $S^{\mu\nu}(\tau)p_{\nu}(\tau) = 0$ (determines COM of the particle)

Energy flux in the adiabatic approximation

- $T_{\text{orbit}} \ll T_{\text{radiation}} [T_{\text{orbit}} = O(M), T_{\text{radiation}} = O(M^2/\mu)]$
 - \star Energy balance argument

$$\left\langle \frac{dE}{dt} \right\rangle_{t}^{\text{GW}} = \sum_{\ell m} \frac{\mu^{2}}{4\pi\omega^{2}} \left(\underbrace{\left| Z_{\ell m \omega}^{\infty} \right|^{2}}_{\text{Infinity part}} + \underbrace{\alpha_{\ell m \omega} \left| Z_{\ell m \omega}^{\text{H}} \right|^{2}}_{\text{Horizon part}} \right),$$

where
$$\omega=m\Omega_{\phi}$$
, $lpha_{\ell m\omega}\propto\omega-mq/(2r_+)$ and

$$Z_{\ell m \omega}^{\infty,\mathrm{H}} \sim \int d\tau R_{\ell m \omega}^{\mathrm{in/up}}(r) T_{\ell m \omega}(r),$$

 $R_{\ell m\omega}^{in/up}(r)$: Homogeneous solutions of the radial Teukolsky equation $T_{\ell m\omega}(r)$: Source term constructed from energy-momuntum tensor \star Energy-momuntum tensor :

$$T^{\alpha\beta} = \int d\tau \left\{ p^{(\alpha} v^{\beta)} \frac{\delta^{(4)}(x - z(\tau))}{\sqrt{-g}} - \nabla_{\mu} \left(\frac{S^{\mu(\alpha} v^{\beta)} \frac{\delta^{(4)}(x - z(\tau))}{\sqrt{-g}}}{\sqrt{-g}} \right) \right\}$$

How to calculate the energy flux

- Solve the EOM for a spinning particle: $v^{\mu}(\tau)$, $p^{\mu}(\tau)$, $S^{\mu\nu}(\tau)$
- Construct energy-momentum tensor
 - \star The source term of the Teukolsky equation $T_{\ell m\omega}(r)$
- Solve the Teukolsky equation $R_{\ell m\omega}^{\rm in/up}(r)$
 - \star The analytic method by Mano et al. (1995)

*
$$R_{\ell m \omega}^{\mathrm{in/up}}(r) \sim \sum_{n} a_n^{\nu} F_{n+\nu}(r)$$

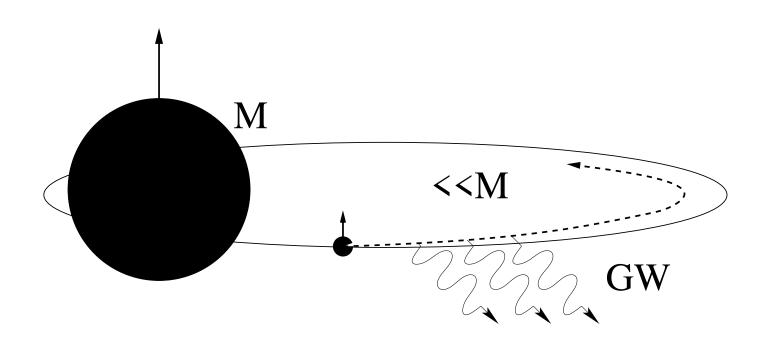
* $a_{n+1}^{\nu} \alpha_n^{\nu} + a_n^{\nu} \beta_n^{\nu} + a_{n-1}^{\nu} \gamma_n^{\nu} = 0$

• Calculate the amplitude of each mode $Z_{\ell m\omega}^{\infty/\mathrm{H}}$

• Sum over all modes
$$\left\langle \frac{dE}{dt} \right\rangle^{\text{GW}} \sim \sum_{\ell m} \left| Z_{\ell m \omega}^{\infty/\text{H}} \right|^2$$

spin-aligned binary in circular orbit

- As a first step:
 - * Circular and equatorial orbits
 - * Particle's spin is parallel to the BH spin



PN flux for spin-aligned binary in circular orbit

	$(spin)^1$	(spin) ²	(spin) ³
PN	3.5PN (NNLO)	3PN (NLO)	3.5PN (LO)
	[Bohé+(2013)]	[Bohé+(2015)]	[Marsat (2015)]
BHP	2.5PN for μ 's spin	*	*
	$[Tanaka{+}(1996)]$		
This	6PN for μ 's spin	*	*
work	[+ BH absorption]		

[*: In BHP, PN fluxes are derived without expanding in *M*'s spin]

- * nPN means $(M\Omega_{\phi})^{2n/3}$ correction to leading order
- * 4PN means $(M\Omega_{\phi})^{8/3}$ correction to leading order where $M\Omega_{\phi}$ is the orbital frequency

Phase shift due to the particle's spin

- Orbital phase $\Phi \equiv \int \Omega_{\phi}(t) dt = \int \Omega_{\phi} \frac{dE}{d\Omega_{\phi}} \left(\frac{dE}{dt}\right)^{-1} d\Omega_{\phi}$
- Phase shift due to μ 's spin: $\delta \Phi = \Phi(\hat{s} \neq 0) \Phi(\hat{s} = 0)$
 - * Early inspiral for one-year observation of LISA
 - * $(M\Omega_{\phi}^{(i)})^{1/3} \sim 0.2$, $(M\Omega_{\phi}^{(f)})^{1/3} \sim 0.25$ and $(M,\mu) = (10^5,10) M_{\odot}$
 - * Late inspiral for one-year observation of LISA

*
$$(M\Omega_{\phi}^{(i)})^{1/3} \sim 0.3$$
, $(M\Omega_{\phi}^{(f)})^{1/3} \sim 0.4$ and $(M, \mu) = (10^{6}, 10) M_{\odot}$

$(a,s) = (0.9M, 0.9\mu)$	Early inspiral	Late inspiral
$\delta\Phi$ at 1.5PN	3.96	2.14
$\delta \Phi$ at 2PN	-1.25	-1.04
$\delta\Phi$ at 2.5PN	1.17	1.51
$\delta \Phi$ at 3PN	-0.64	-1.28
$\delta\Phi$ at 3.5PN	0.34	1.06
$\delta \Phi$ at 4PN	-0.14	-0.66
$\delta \Phi$ at 4.5PN	0.05	0.41
$\delta \Phi$ at 5PN	-0.01	-0.19
$\delta\Phi$ at 5.5PN	-0.0003	0.02
$\delta \Phi$ at 6PN	0.003	0.07
Φ up through 6PN	700472.95	1051632.90

Summary

- Gravitational waves from a spinning particle around a Kerr BH
 - * 6PN energy flux for circular and spin-aligned orbits
 - * New terms beyond 3.5PN
 - * BH absorption is also derived
 - $\star\,$ Phase shift due to the particle's spin $\delta\Phi$
 - * $\delta \Phi \lesssim 1$ at 4PN and beyond for typical binaries in the LISA band $[\delta \Phi = \Phi(\hat{s} \neq 0) \Phi(\hat{s} = 0)]$
- Future
 - * Circular and slightly inclined orbits
 - * Spin-spin precessions
 - * Eccentric and spin-aligned orbits in the equatorial plane
 - * Periastron shift
 - * More generic orbits? Coupling between orbit and spins
 - * Ω_{ϕ} , Ω_{r} , Ω_{θ} and $\Omega_{\mathrm{spin-prec}}$?