

Constraining Black Hole Horizon Effect in LIGO

Adrian K. H. Lai and Tjonnie G. F. Li The Chinese University of Hong Kong

Outline

Motivation

- Interesting physics of black-hole horizons: thermodynamics, perturbation ...
- Black-hole horizons: extremely strong gravity

Motivation (in LIGO)

- - ringdown: echo?
 - merger: separate horizon effect from a highly dynamical spacetime?
 - inspiral: black-hole absorption

Frank Ohme (2012)

Configuration

Inspiralling binary black-holes

Event horizon and apparent horizon are indistinguishable

K. H. Lai Gravity and Cosmology 2018

Area, mass and spin growth

- Base on:
 - Black hole perturbation
 - First law of black-hole thermodynamics
- Gravitational energy-momentum flux flow into a horizon
 Area, mass and spin growth (Eric Poisson et al.)

$$m_i(t) = m_i + \delta m_i(t)$$
 Mass growth
 $J_i(t) = J_i + \delta J_i(t)$ Spin growth
 $\frac{\kappa}{8\pi} \langle \dot{A}_i \rangle = \langle \dot{m}_i \rangle - \Omega_H \langle \dot{J}_i \rangle$ First law of black-hole
thermodynamics: area, mass, spin

Tool: Parameterized horizon effect

- Unlike black-hole horizon, mass and spin can be measured directly
- \blacksquare Introduce mass growth parameter $\alpha_1,\alpha_2\,$ and spin growth parameter β_1,β_2

$$\left\langle \frac{dm_i}{dt} \right\rangle \to (1 + \alpha_i) \left\langle \frac{dm_i}{dt} \right\rangle,$$

 $\left\langle \frac{dJ_i}{dt} \right\rangle \to (1 + \beta_i) \left\langle \frac{dJ_i}{dt} \right\rangle.$

Tool: Parameterized horizon effect in waveform

Frequency domain waveform:

 $h(f) = A(f)e^{-i\Psi(f)}$

- Phase correction with the horizon effect parameterization: $h(f) = A(f)e^{-i[\Psi(f) + \Psi_H(f,\alpha_1,\alpha_2,\beta_1,\beta_2)]}$
- TaylorF2 model
 - inaccurate starting from the late inspiral
 - frequency cut in real search

Target order of the parameters

- Area theorem
 - non-decreasing black-hole area
- Minimal parameterization

$$\alpha_1 = \alpha_2 = \beta_1 = \beta_2 = \alpha$$
$$\left\langle \frac{dA}{dt} \right\rangle \to (1+\alpha) \left\langle \frac{dA}{dt} \right\rangle$$

black-hole area growth, assuming that the first law of black hole thermodynamics holds

¬ Search α at order 1

Bayesian constraint from simulation

Simulate signal ($\alpha = 0$) + noise → LIGO-Virgo constraint

¬ Constrain horizon effect parameter α from multiple events E_i

$$P(\alpha|E_1, ..., E_n) \propto P(\alpha) \prod_{i=1}^n P(E_i|\alpha) \propto \prod_{i=1}^n P(\alpha|E_i)$$

Bayesian constraint from simulation

- 70Hz cut-off: data with frequencies higher than 70Hz is ignored in the analysis process
- Slightly weakened constraint
- \blacksquare Approximately, $\Delta \alpha \sim 20$ for 100 events

K. H. Lai Gravity and Cosmology 2018

Bayesian constraint from simulation

90% confidence interval $\Delta \alpha$

- **¬** Approach $\alpha = 0$ as number of events increases
- Lower mass → better constraint

(a) (5,5) M_{\odot}

(b) (30,30) M_{\odot}

Application: related theory

- Area theorem?
 - Need $\Delta \alpha \sim 2$: future detectors
- Modified black-hole thermodynamics $dA \neq T dS = dm \Omega_H dJ$
- Modified black hole perturbation

$\frac{\alpha'}{\alpha' + \sqrt{1 + \alpha'}}$
=

Table 1: Symbols α' , Ξ are the independent parameters in the corresponding models, while A is the area of a black hole.

Application: related theory

Check: if a modified gravity theory predicts dominating correction to horizon effect over other corrections
 compare with LIGO-Virgo data

Still far from Planck scale

Conclusion

- We conduct mock data study on the horizon effect constraint using simulated LIGO-Virgo signals and parameterized horizon effect
- The constraint can be improved by considering multiple detections
 - insufficient to test area theorem at the current state of the art
 - maybe sufficient to test certain modified gravity theories with dominating horizon effect corrections

Future prospect:

- test a self-consistent theory?
- numerical relativity?
- combine with other related constraints?
- future detectors

Thank you & Q & A