# Effects of QCD equation of state on Stochastic Gravitational Wave background

## Sampurn Anand

Theoretical Physics Division, Physical Research Laboratory, Ahmedabad, India

In collaboration with: Ujjal Dey & S. Mohanty

 $6^{\mathrm{th}}$  Feb, 2018

## Motivation

- In cosmology, one of the important signal observed so far is CMBR.
- It gives us our earliest electromagnetic view of the state of the universe.
- Information about the universe at the surface of last scattering is contained in it.
- Gravitational waves are NOT electromagnetic radiation like CMBR.
- They carrying information about cosmic objects and events that are not carried by electromagnetic radiation.
- We can investigate some of the early universe phenomenon with GW

## Outline

- Gravitational Waves (GW) and its type
- 2 Trace anomaly and QCD equation of state
  - GW spectrum with trace anomaly
- Results
  - GW spectrum with trace anomaly
- Conclusion

# GW and its type

- Distortion in space-time in such a way that the "wave" of distorted space would radiate from the source.
- These ripples in the fabric of space-time are known as Gravitational Wave (GW).

Gravitational Waves (GW) and its type

000000

 Compact binary inspiral GW: Binary neutron stars (BNS), binary black hole (BBH), Neutron star Black hole binary (NSBH)



Continuous GW: spinning massive stars (neutron stars)



Burst GW: supernova, GRB



## Sources and types of GW contd..

### Stochastic GW (SGW):

- Stochastic gravitational waves are the relic gravitational waves from the early evolution of the universe
- These GWs arise from large number of independent and uncorrelated events



## Sources of SGW

#### First order Phase transition

- Bubble collision: 10PT occurring explosively, through the nucleation of fast broken phase bubbles, can be a source of GW
- MHD turbulence:
   Magnetohydrodynamic (MHD) turbulence in the plasma forming after the bubbles have collided

## The GW spectrum

 To estimate the observable GW background today, we propagate the GW from the epoch of phase transition to the current epoch using Boltzmann equation

$$\frac{d}{dt}(\rho_{gw} a^4) = 0 \quad \to \rho_{gw} a^4 = \rho_{*gw} a_*^4 \tag{1}$$

 $\bullet$  Assuming adiabatic expansion of the universe  $\Rightarrow$  5  $\propto$  a^3  $g_{s}$   $T^{3}$  remains constant, we get

$$\frac{dT}{dt} = -HT \left( 1 + \frac{T}{3g_s} \frac{dg_s}{dT} \right)^{-1} \tag{2}$$

where  $g_s$  is the effective number of relativistic degrees of freedom that contributes to the entropy density.

- Integrating Eq. (2)  $\Rightarrow \frac{a_*}{a_0} = \exp\left[\int_{T_*}^{T_0} \frac{1}{T} \left(1 + \frac{T}{3g_s} \frac{dg_s}{dT}\right) dT\right]$
- The fractional energy density of the gravitational waves at current epoch is given as

$$\frac{\rho_{\rm gw}}{\rho_{\rm cr}} = \Omega_{\rm gw} = \Omega_{\rm gw} * \left(\frac{H_*}{H_0}\right)^2 \exp\left[\int_{T_*}^{T_0} \frac{4}{T} \left(1 + \frac{T}{3g_s} \frac{dg_s}{dT}\right) dT\right] \tag{3}$$



 To evaluate the ratio of the Hubble parameters, we consider the continuity equation, given

$$\dot{\rho}_t = -3H\rho_t (1 + p_t/\rho_t) \tag{4}$$

with  $\rho_t(p_t)$  being the total energy (pressure) density of the universe and dot denotes the derivative with respect to cosmic time.

• In terms of temperature above equation reduces to,

$$\frac{d\rho_t}{\rho_t} = \frac{3}{T} \left( 1 + w_{\text{eff}} \right) \left( 1 + \frac{T}{3g_s} \frac{dg_s}{dT} \right) dT, \tag{5}$$

where  $w_{\rm eff} = p_t/\rho_t$  is the effective equation of state parameter.

Integrating above equation leads to

$$\rho_t(T_*) = \rho_t(T_r) \exp\left[\int_{T_r}^{T_*} \frac{3}{T} \left(1 + w_{\text{eff}}\right) \left(1 + \frac{T}{3g_s} \frac{dg_s}{dT}\right) dT\right]. \tag{6}$$

## QCD EoS and evolution of the universe

 Using lattice simulation, the equation of state around QCD epoch can be computed using the parametrization of the pressure due to u, d, s quarks and gluons <sup>1</sup>

$$\frac{2p}{T^4} = \left(1 + \tanh[c_{\tau}(\tau - \tau_0)]\right) \left(\frac{p_i + a_n/\tau + b_n/\tau^2 + d_n/\tau^4}{1 + a_d/\tau + b_d/\tau^2 + d_d/\tau^4}\right)$$
(7)

where  $\tau=T/T_c$  with  $T_c=154$  MeV and  $p_i=(19\,\pi^2)/36$  is the ideal gas value of  $p/T^4$ .  $c_\tau=3.8706$ ,  $a_n=-8.7704$ ,  $b_n=3.9200$ ,  $d_n=0.3419$ ,  $a_d=-1.2600$ ,  $b_d=0.8425$ ,  $d_d=-0.0475$  and  $\tau_0=0.9761$ .

The energy density can be computed from the trace anomaly <sup>2</sup>.

$$\frac{\rho - 3p}{T^4} = T \frac{\partial}{\partial T} (\rho/T^4) \tag{8}$$

<sup>&</sup>lt;sup>1</sup>Bazavov et. al. PRD **90** (2014) 094503

<sup>&</sup>lt;sup>2</sup>Cheng. et. al. PRD **77**, 014511 (2008)



- Apart from quarks and gluons, contribution to the total energy density and pressure will come from other particles as well.
- energy density and pressure of a non-relativistic particle is exponentially smaller than that of the relativistic particles. Hence,  $\rho_{\rm rel} = (\pi^2/30) \big( \sum_{i={\rm bosons}} g_i + \sum_{j={\rm fermions}} (7/8) g_j \big) T^4 \text{ and } \rho_{\rm rel} = \rho_{\rm rel}/3, \text{ respectively.}$

Using  $H_*^2 = \rho_*/(3 m_p^2)$ , we can define <sup>3</sup>

$$\left(\frac{H_*}{H_0}\right)^2 = \Omega_{r0} \left(\frac{a_0}{a_r}\right)^4 \exp\left[\int_{T_r}^{T_*} \frac{3(1+w_{\rm eff})}{T} \left(1+\frac{T}{3g_s}\frac{dg_s}{dT}\right) dT\right], \tag{9}$$





<sup>&</sup>lt;sup>3</sup>Anand et. al. JCAP **1703** (2017) no.03, 018

# GW spectrum with trace anomaly

$$\Omega_{\text{gw}} = \Omega_{r0} \Omega_{\text{gw*}} \exp \left[ \int_{T_*}^{T_r} \frac{4}{T'} \left( 1 + \frac{T}{3g_s} \frac{dg_s}{dT} \right) dT \right] \\
\times \exp \left[ \int_{T_r}^{T_*} \frac{3}{T} \left( 1 + w_{\text{eff}} \right) \left( 1 + \frac{T}{3g_s} \frac{dg_s}{dT} \right) dT \right].$$
(10)

We have set :  $\Omega_{r0} \simeq 8.5 \times 10^{-5}$  and  $T_r = 10^4$  GeV We also need to know about  $\Omega_{\rm gw*}$ 

- It is considered that the QCD transition is just a cross-over. However, this can change in beyond standard model (of particle physics) scenario.
   e.g. A large neutrino chemical potential can make QCD transition first order<sup>4</sup>.
- $\bullet$  Contribution to  $\Omega_{\rm GW*}$  comes from two important processes at first order phase transition  $^5$ 
  - collision of bubble walls:

$$\Omega_{\rm gw*}^{(b)}(\nu) = \left(\frac{H_*}{\beta}\right)^2 \left(\frac{\kappa_b \alpha}{1+\alpha}\right)^2 \left(\frac{0.11\nu^3}{0.42+\nu^2}\right) S_b(\nu),\tag{11}$$

Magnetohydrodynamics (MHD) turbulence:

$$\Omega_{\rm gw*}^{\rm (mhd)}(\nu) = \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_{\rm mhd} \alpha}{1+\alpha}\right)^{3/2} \nu \, S_{\rm mhd}(\nu),\tag{12}$$

 $\beta^{-1}$  is the time duration of the phase transition,  $\alpha$  is the ratio of the vacuum energy density released in the phase transition to that of the radiation,  $\nu$  is the wall velocity and  $\kappa_b$  denotes the fraction of the latent heat of the phase transition deposited on the bubble wall. The function  $S(\nu)$  parametrizes the spectral shape which is given by simulation  $^6$ .

<sup>&</sup>lt;sup>4</sup>Schwarzet. al. JCAP **0911** (2009) 025

<sup>&</sup>lt;sup>5</sup>see Caprini et. al. JCAP **1604** (2016) no.04, 001 for detail

<sup>&</sup>lt;sup>6</sup>Huber et. al. JCAP **0805** (2008) 017

# Results





# GW spectrum with trace anomaly

- The effective equation of state parameter  $w_{\rm eff}$ , which depicts the energy content of the universe and hence governs the background evolution, decreases from 1/3, the ideal value.
- This implies that the density will fall slower than  $a^{-4}$ .
- Thus, the Hubble parameter will change slower than  $T^2$ .
- which implies that the value of Hubble parameter at the time of transition  $H_*$  will be higher than its value obtained without QCD equation of state.
- Therefore, we expect an overall enhancement in the GW signal

## Conclusion

- Lattice result have shown a deviation from the ideal gas equation of state during QCD epoch.
- This can alter the evolution of the universe during that phase.
- If QCD transition is a first order phase transition, then the signal of the GW generated during that epoch will be enhanced.
- Enhancement in the amplitude is 50% and 25% in the frequency.

# Thank You