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Lovelock’s Theorem

In 4 dimensions the most general 2-covariant divergence-free tensor,
which is constructed solely from the metric gµν and its derivatives
up to second differential order, is the Einstein tensor Gµν plus a
cosmological constant (CC) term Λgµν .

This result suggests a natural route to Einstein’s equations in
vacuum:

Gµν ≡ Rµν −
1

2
gµνR = −Λgµν .
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The Action

With the additional requirement that the eqs. for the gravitational field
and the matter fields be derived by a diff.-invariant action, Lovelock’s
theorem singles out in 4 dimensions the action of GR with a CC term:

SGR =
1

16πGN

∫
d4x
√
−g
(
KijK

ij − K 2 +R− 2Λ
)

+ SM [gµν , ψM ] .

The variation with respect to the metric gives rise to the field equations
of GR in presence of matter:

Gµν + Λgµν = 8πGN Tµν ,

where

Tµν ≡
−2√
−g

δSM
δgµν

.
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The Problems

GR is not a Renormalizable Theory
Renormalization at one-loop demands that GR should be
supplemented by higher-order curvature terms, such as R2 and
RαβσγR

αβσγ (Utiyama and De Witt ’62). However such theories are
not viable as they contain ghost degrees of freedom (Stelle ’77).

The Cosmological Constant
The observed cosmological value for the CC is smaller than the value
derived from particle physics at best by 60 orders of magnitude.

The Dark Side of the Universe
The most recent data tell us that about the 95% of the current
Universe is made by unknown components, Dark Energy and Dark
Matter.
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Beyond General Relativity

Higher-Dimensional Spacetimes
One can expect that for any higher-dimensional theory, a
4-dimensional effective field theory can be derived in the IR, that is
what we are interested in.

Adding Extra Fields (or Higher-Order Derivatives)
One can take into account the possibility to modify the gravitational
action by considering more degrees of freedom. This can be
achieved by adding extra dynamical fields or equivalently considering
theories with higher-order derivatives.

Giving Up Diffeomorphism Invariance
Lorentz symmetry breaking can lead to a modification of the
graviton propagator in the UV, thus rendering the theory
renormalizable.
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Hǒrava’s Proposal

In 2009, Hǒrava proposed an UV completion to GR modifying the
graviton propagator by adding to the gravitational action
higher-order spatial derivatives without adding higher-order time
derivatives.

This prescription requires a splitting of spacetime into space and
time and leads to Lorentz violations.

Lorentz violations in the IR are requested to stay below current
experimental constraints.

P. Hǒrava, JHEP 0903, 020 (2009)
P. Hǒrava, PRD 79, 084008 (2009)
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Foundations of the Theory

The theory is constructed using the full ADM metric:

ds2 = N2dt2 − hij(dx
i + N idt)(dx j + N jdt),

and it is invariant under foliation-preserving diffeomorphysms, i.e.,

t → t̃(t), x i → x̃ i (t, x j).

The most general action is:

SH = SK + SV .

The Kinetic Term

SK =
1

16πGH

∫
dtd3x

√
hN
(
KijK

ij − λK 2
)
.
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Foundations of the Theory

The Potential Term

SV =
1

16πGH

∫
dtd3x

√
hN

[
L2 +

1

M2
∗
L4 +

1

M4
∗
L6

]
.

Power-counting renormalizability requires as a minimal prescription
at least 6th-order spatial derivatives in V .

The most general potential V with operators up to 6th-order in
derivatives, contains tens of terms ∼ O(102).

The theory propagates both a spin-2 and a spin-0 graviton.
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Foundations of the Theory

In the most general theory some of the terms that one can consider in
the potential are:

L2 = ξR, ηaiai ,

L4 = R2, RijRij , R∇ia
i , ai∆ai ,

(
aia

i
)2
, aiajRij , ... ,

L6 = (∇iRjk)2 , (∇iR)2 , ∆R∇ia
i , ai∆

2ai ,
(
aia

i
)3
, ... ,

where ai = ∂i lnN.

D. Blas, O. Pujolas & S. Sibiryakov, PRL 104, 181302 (2010)
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Hǒrava Gravity Constraints

BBN:

|Gcosmo/GN − 1| < 0.38 (99.7%C.L.) ;

S. M. Carroll and E. A. Lim, PRD 70, 123525 (2004)

PPN:

α1 < 3.0 · 10−4 , α2 < 7.0 · 10−7 (99.7%C.L.) ;

C. M. Will, LRR 17, 4 (2014)

Cosmological scales:

|Gcosmo/GN − 1| < 6.1× 10−5 (99.7%C.L.) ;

N. Frusciante, M. Raveri, DV, B. Hu, A. Silvestri, PDU 13, 7 (2016)

Astrophysical scales (Binary pulsar)
K. Yagi et al., PRL 112, 161101 (2014)
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Æ-Theory

Æ-theory is essentially GR coupled to a timelike, unit-norm vector field,
uα, called the æther. It cannot vanish and thus breaks boost invariance
by defining (locally) a preferred frame.
Æ-theory is defined by the action:

Sæ =
1

16πGæ

∫
d4x
√
−g
(
−R − 2Λ−Mαβµν∇αuµ∇βuν

)
,

where

Mαβµν = c1g
αβgµν + c2g

αµgβν + c3g
ανgβµ + c4u

αuβgµν ,

and the æther is assumed to satisfy the unit-constraint:

gµνu
µuν = 1 .
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Hǒrava Gravity & Æ-Theory

The IR part (L2) of Hǒrava gravity can be formulated in a covariant
fashion, and it then becomes equivalent to a restricted version of
Æ-theory. Restricting the æther to be orthogonal to the constant-T
hypersurfaces, i.e.,

uα =
∂αT√

gµν∂µT∂νT
,

and choosing T as the time coordinate, the action of Æ-theory reduces to
that of Hǒrava gravity in the IR, with the correspondence of parameters:

GH

Gæ
= ξ =

1

1− c13
,

λ

ξ
= 1 + c2 ,

η

ξ
= c14 ,

where cij = ci + cj .

T. Jacobson, PRD 81, 101502 (2010)

Daniele Vernieri Anisotropic Interior Solutions in Hǒrava Gravity and Einstein-Æther Theory
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Anisotropic Stars in Hǒrava Gravity

Let us now consider a spherically symmetric spacetime where the metric
can be written as:

ds2 = A(r)dt2 − B(r)dr2 − r2
(
dθ2 + sin2 θdφ2

)
,

with the addition of an anisotropic fluid with stress-energy tensor

Tµ
ν = diag

(
ρ,−pr ,−pt ,−pt

)
,

where ρ is the density of the fluid, pr and pt are the radial and
transversal pressure respectively. Furthermore let us take into account,
for simplicity, a static æther uµ

uµ =

(
1√
A
, 0, 0, 0

)
,

which is always hypersurface-orthogonal.
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Field Equations

Equation 0-0

η

ξ

[
− A′′(r)

2A(r)2B(r)
+

A′(r)B ′(r)

4A(r)2B(r)2
+

3A′(r)2

8A(r)3B(r)
− A′(r)

rA(r)2B(r)

]
+

+
B ′(r)

rA(r)B(r)2
− 1

r2A(r)B(r)
+

1

r2A(r)
=

8πGæρ(r)

A(r)
,

Equation 1-1

ηA′(r)2

8ξA(r)2B(r)2
+

A′(r)

rA(r)B(r)2
+

1

r2B(r)2
− 1

r2B(r)
=

8πGæpr (r)

B(r)
,
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Field Equations

Equation 2-2

− ηA′(r)2

8ξr2A(r)2B(r)
+

A′′(r)

2r2A(r)B(r)
− A′(r)B ′(r)

4r2A(r)B(r)2
+

A′(r)

2r3A(r)B(r)
+

− A′(r)2

4r2A(r)2B(r)
− B ′(r)

2r3B(r)2
=

8πGæpt(r)

r2
,

Conservation Equation

p′r (r) + [ρ(r) + pr (r)]
A′(r)

2A(r)
=

2

r
[pt(r)− pr (r)] .
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A Reconstruction Algorithm

The 3 independent field equations can be written as:

ρ(r) =
1

8πGæ

[
− ηA′′(r)

2ξA(r)B(r)
+
ηA′(r)B ′(r)

4ξA(r)B(r)2
+

3ηA′(r)2

8ξA(r)2B(r)
− ηA′(r)

ξrA(r)B(r)

+
B ′(r)

rB(r)2
− 1

r2B(r)
+

1

r2

]
,

pr (r) =
1

8πGæ

[
ηA′(r)2

8ξA(r)2B(r)
+

A′(r)

rA(r)B(r)
+

1

r2B(r)
− 1

r2

]
,

pt(r) =
1

8πGæ

[
A′′(r)

2A(r)B(r)
− A′(r)B ′(r)

4A(r)B(r)2
+

A′(r)

2rA(r)B(r)
− ηA′(r)2

8ξA(r)2B(r)

− A′(r)2

4A(r)2B(r)
− B ′(r)

2rB(r)2

]
.
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Physical Conditions

The thermodinamical quantities ρ, pr and pt should be finite and
positive inside the star;

The gradients dρ
dr , dpr

dr and dpt
dr should be negative;

The anisotropy should be zero in the centre: pr (r = 0) = pt(r = 0);

Stability at the surface and junction to exterior vacuum:
pr (r = R) = 0;

Subluminal propagation speeds: 0 < c2r = dpr
dρ < 1,

0 < c2t = dpt
dρ < 1;

Absence of curvature singularities: R, RµνR
µν and RµνγσR

µνγσ are
finite.
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A Specific Example

Let us consider the following choice of the metric coefficients:

A(r) = D1 + D2r
2 , B(r) =

D3 + D4r
2

D3 + D5r2 + D6r4
,

which are qualitatively the same as the ones characterizing the Tolmann
IV solution in GR for an isotropic fluid.

The choice of A(r) is motivated by the fact that it reproduces the
Newtonian potential for a fluid sphere of constant density while B(r)
has been chosen for convenience in the calculations.

Notice that the choice of the constants in B(r) guarantees the
avoidance of a divergence in the centre for the curvature invariants,
ρ(r) and pr (r).
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A Specific Example

ρ

pr
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Figure: It is shown the behaviour of the density ρ (blue line), the radial
pressure pr (orange line), the tangential pressure pt (green line), the squared
radial c2r (red line) and the tangential c2t (purple line) speeds of sound as
functions of the radius for a wide choice of the constants in units GN = 1.
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Conclusions and Future Perspectives

Hǒrava gravity is a quantum renormalizable theory, very well tested
at astrophysical and cosmological scales.

It is very hard to find exact analytical solutions because of the
intrinsic highly non-linear structure of its field equations.

Considering anisotropic fluids and a static æther in spherical
symmetry it is possible to find a double-infinity of interior solutions.

The solutions have to satisfy many physical requirements in order to
represent realistic stellar objects, as in the specific case we studied.

A deep understanding of the phase space of solutions is needed, as
well as a comprehensive study of the deviations obtained in the case
of a non-static æther.
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Lorentz Violations as Field Theory Regulator

We take a scalar field theory whose action has the following form:

Sφ =

∫
dtdxd

[
φ̇2 −

z∑
m=1

amφ(−∆)mφ+
N∑

n=1

bnφ
n

]
.

Space and time coordinates have the following dimensions in units of the
spatial momentum p:

[dt] = [p]−z , [dx ] = [p]−1 .

A theory is said to be “power-counting renormalizable” if all of its
interaction terms scale like momentum to some non-positive power, as in
this case Feynman diagrams are expected to be convergent or have at
most a logarithmic divergence.
⇒ z ≥ d , for d = 3 at least 6th-order spatial derivatives in the action.
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Dispersion Relations and Propagators

In general the dispersion relation one gets for such a Lorentz-violating
field theory is of the following form:

ω2 = m2 + a1p
2 +

z∑
n=2

an
p2n

P2n−2 ,

where P is the momentum-scale suppressing the higher-order operators.
The resulting Quantum Field Theory (QFT) propagator is then:

G (ω, p) =
1

ω2 −
[
m2 + a1p2 +

∑z
n=2 anp

2n/P2n−2
] .

The very rapid fall-off as p →∞ improves the behaviour of the integrals
one encounters in the QFT Feynman diagram calculations.
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