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A TALK ABOUT LARGE SCALE STRUCTURES …From Past to Present 
Galaxy Surveys 

2dF	

SDSS	

•  2dF: spectroscopic redshifts of ~200.000 galaxies in 
1500 deg2  at z < 0.3 

•  SDSS-I: spectroscopic redshifts of ~300.000 galaxies 
in ~4000 deg2  at z < 0.7 

•  SDSS/BOSS: spectroscopic redshifts of 
~1.000.000 galaxies from 8500 deg2 in 
0.2 < z < 0.7 

Anderson	et	al.	(2014)		

•  α(z=0.57) = 1.0144 ± 0.0098 (stat+sys) 

BOSS: Fourier-space analysis of BAO 17
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Figure 12. Comparison between the best fitting model and the BOSS DR12 measurements in the three redshift bins used in this analysis.
The errors on the data points are the diagonal of the corresponding covariance matrix. The red line represents the best fitting model to
the SGC, while the black line shows the best fitting model for the NGC. The SGC best fitting model includes a small discreteness e↵ect
mainly visible at small k. The NGC and SGC have been fit simultaneously, using the same cosmological fitting parameters. However,
the SGC and NGC have a separate amplitude nuisance parameter and di↵erent window functions, which leads to the di↵erence between
the red and black line. The reason for having separate nuisance parameters for NGC and SGC are slight di↵erences in the galaxy sample
selection (see section 2 and Alam et al. 2016). See Table 3 for more details.
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Figure 14. The best fitting models (black solid line) of the isotropic BAO analysis compared to the power spectrum monopole measure-
ments (data points). Both the model and the data have been plotted relative to the smooth model, and the data points for NGC and SGC
have been combined using the corresponding covariance matrices (see appendix B). The left panel shows the pre-reconstruction result,
while the right panel presents the post reconstruction result. Similar plots for the NGC and SGC separately are included in appendix A.
See Table 3 for more details.

c� 2013 RAS, MNRAS 000, 1–25

Beutler et al. 2016



… BUT ALSO ABOUT MODIFICATIONS OF GR!
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NGr



… BUT ALSO ABOUT MODIFICATIONS OF GR!

NGr = (Newtonian Gravity)



COARSE-GRAINED VLASOV EQUATION

No divergences from shell-crossing for R > 0 
Physics at scale L insensitive to R in the R/L ->0 limit (to be checked!)

window function
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UV INFORMATION ?

J i
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�
hnmicri�mici(x)� n(x)ri�(x)

�
Need input on the UV  

“sources”

Measure them from N-body simulations  
(MP, Mangano, Saviano, Viel 1108.5203, Manzotti, Peloso, MP, Viel, Villaescusa-Navarro 1407.1342)

EFToLSS: Expand in terms of long wavelength fields + power law expansion 
in momentum, with arbitrary  coefficients to be fitted 
(Carrasco, Hertzberg, Senatore, 1206.2926 …. )

Compute them from first principles. Shell-crossing!  
1+1 dim attempts 
(Mc Quinn, White, 1502.07389; Taruya, Colombi, 1701.09088; Rampf, Frisch, 1705.08456;  
McDonald, Vlah, 1709.02834, Pajer, van der Woude, 1710.01736…)



UV SOURCES FROM N-BODY

no shell crossing,  
non-linearities up to PT order

shell crossing,  
fully non-linear
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Figure 1. Dependence on the CG cuto↵ scale R of the coe�cient ↵R

k2
m

(blue curve),
↵R,ss

k2
m

(green curve), and of their di↵erence �↵
k2
m

(orange curve). The coe�cients are
obtained from b = 1 in eq. (18), for k = 0.1h/Mpc and at z = 0. As discussed
in the text, the di↵erence exhibits a much smaller dependence on the cut-o↵ scale.

Right panel: Scale dependence of k2 �↵(z0)
k2
m

for three di↵erent values of the cut-o↵ scale

R. The dotted curve is the theoretical prediction k2 times a z�dependent coe�cient,
obtained as explained in Appendix A.

source terms, eq. (10), is expanded in terms of the linear filtered fields, and therefore

the coe�cients of this expansion are obtained from the cross-correlator of the sources

with the linear fields. Here, on the other hand, the relevant cross-correlators involve

the sources and the nonlinear fields '
R
a , and therefore include e↵ects, like short scale

displacements and source-source correlators ( hh
R
a h

R
b i

0, where the second h
R
b is contained

in the nonlinear evolution of the '
R
b field) which are not included at 1-loop order in

EFToLSS. Moreover, we will directly measure these sources, and the coe�cient �↵(⌘),

from N-body simulation and then include the result into our evolution equations for the

PS. While this procedure can be followed also in the EFToLSS, more often, in practical

applications, one first derives an expression for the PS containing the “sound speed”

and other counterterms as parameters to be fitted from the PS measured in simulations.

In doing so, the physical meaning of these counterterms is less transparent, and the

amount of “overfitting”, in order to get the PS right, is di�cult to estimate.

In summary, we can choose R in the plateau region, or equivalently, take the formal

R ! 0 limit, and consider the evolution equation

@⌘�Pab(k; ⌘) =


� ⌦ac �Pcb(k; ⌘)

� �↵(⌘)
k
2

k2
m

h
P
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i
�a2 + (a $ b)

�
. (20)

In fig. 2 we show the ratios between eq. (17) (orange line) and the PS computed with

the Coyote interpolator of N-body simulations [23]. The agreement clearly improves over

the 1-loop SPT result (blue line) showing that the UV correction represented by the

h
R
a sources plays a decisive role, already at the lowest order considered here, namely,

correcting the UV of the 1-loop PS. At k = 0.1hMpc�1, the source correlator modifies

the PS by ' �0.6% at z = 1, by ' �1.1% at z = 0.5, and by ' �1.8% at z = 0.

The agreement in the PS shape degrades at low redshifts, where higher loop orders
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hkiJ i
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independent on the UV cutoff (“cosmology independent”1407.1342)



1-LOOP PT + UV
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nonperturbative correlator measured in N-body simulations. Working at finite R is

essential in practice, in order to extract the source terms from the simulation, but the

final results should be independent on the value chosen for R. We discuss this point

below.

The evolution equation for the subtracted PS therefore reads

@⌘�P
R
ab(k) =


� ⌦ac�P

R
cb(k) + e
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Ik;p1,p2�acd(k, p1, p2)�B
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R
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�
, (15)

where �hh
R
a (k)'

R
b (�k)i0 ⌘ hh

R
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R
b (�k)i0 � hh
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a (k)'R,ss

b (�k)i0. The subtracted

bispectrum, �B
R
abc(k, p1, p2) ⌘ B

R
abc(k, p1, p2) � B

R,ss
abc (k, p1, p2), in turn, solves the

equation
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where �hh
R
a '

R
b '

R
c i

0
⌘ hh

R
a '

R
b '

R
c i

0
� hh

R,ss
a '

R,ss
b '

R,ss
c i

0 and we have defined the deviation

from the single stream approximation of the trispectrum, �T
R
debc ⌘ T

R
debc �T

R,ss
debc , which,

in turn, solves an evolution equation which can be straightforwardly derived.

The system of coupled evolution equations solved by the subtracted correlation

functions must be truncated at some order. However, unlike the original TRG proposal

[13], where the evolution equations for the unsubtracted functions were considered,

there is a clear hierarchy in these equations which leads to a natural criterium for

the truncation. Indeed, we first notice that the sources of these equations are given

by the �hh
R
a '

R
b1'

R
b2 · · ·'

R
bni

0 correlators, since, if they all vanish, the single stream

approximation is exact. Moreover, the role of these di↵erences between correlators

is to replace the “wrong” behavior of the UV modes in the single stream approximation

with the “correct” ones, encoded in the correlators measured, for instance in N-body

simulations. However, while the two-point correlator hh
R,ss
a '

R,ss
b1

i
0 starts contributing to

the UV loops for P
R,ss
ab (k) at 1-loop order, hh

R,ss
a '

R,ss
b1

'
R,ss
b2

i
0 does it only from 2-loop,

since it corrects the single-stream bispectrum at 1-loop order, and so on. In summary,

if we want to correct the UV-loops behaviour of the l�loop order PS, then we need

consider only the correlators up to �hh
R
a '

R
b1'

R
b2 · · ·'

R
bl
i
0, and, correspondingly, only the

first l equations of the system.

At the lowest order, we will therefore have

P
R
ab(k) ' P

R,1�loop
ab (k) +�P

R,1�loop
ab (k) , (17)

in the R->0 limit 
(in practice, on the plateau)
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Figure 2. PS from di↵erent computational schemes divided by the Coyote PS. The
blue curve is the 1-loop SPT result. The orange curve is obtained from the UV-
improved ETRG system (20). The green curve is the UV- and IR-improved result
(33). The di↵erent panels correspond to di↵erent redshifts. The UV-improved curve
performs substantially better than the SPT result, however it is still does not properly
reproduces the BAO oscillations, which are instead well reproduced by the UV- and
IR-improved result. The horizontal dashed lines show the band for which our results
di↵er less than ±1% from the Coyote PS.

should be taken into account along the lines discussed below eq. (16). However, in

the following, we focus our attention on the residual BAO oscillations exhibited by the

orange lines, which indicate that only improving the UV e↵ects does not account for the

BAO damping well enough. In the next section we will discuss how to deal with this

issue.

4. IR resummation and BAO wiggles

The damping of the BAO wiggles in the PS, and of the corresponding peak in the

correlation function is mainly caused by random long range displacements [24]. It is

well known that such e↵ects are badly reproduced in SPT at any finite order, while they

are much better taken into account by the Zel’dovich approximation, which provides a

resummation at all SPT orders (see for instance, [25]). In our approach, the e↵ect of

these long range displacements on an intermediate scale k are encoded in the last term

at the RHS of eq. (5) when the momentum of the velocity field is q1 ⌧ k. We will now

discuss how they can be naturally resummed.

Indeed, if one applies again the equation of motion, eq. (1), to the correlator

h'a(k, ⌘)'b(�k, ⌘)i0, to get the evolution equation for the PS, then, the last term at

the RHS of eq. (5) gives

e
⌘

Z
d
3
q

(2⇡)3
k · q

q2


h'2(q)'a(k � q)'b(�k)i0 + h'a(k)'b(�k+ q)'2(�q)i0

�
. (21)

The consistency relations first derived in [17, 18] for the bispectrum give

h'2(q)'a(k � q)'b(�k)i0 ' �e
⌘k · q

q2
P

0(q) (Pab(k) � Pab(|k � q|)) +O

✓⇣
q

k

⌘0
◆
, (22)

in the q ⌧ k configuration. The consistency relation is depicted diagrammatically in

fig. 3. The second term in (21) gives the same contribution.

Notice that, while P
0(q) in eq. (22) is taken to be the linear PS, the other two are

fully nonlinear. Moreover, the RHS vanishes at the leading order in q/k, that is, if one

next order: 2-loop PT +            correlators hJ ��i

no fitting on the PS

residual BAO’s on the orange curves



BAO ARE LARGELY UV INDEPENDENT
The e↵ect of massive neutrinos on the BAO peak 12
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Figure 2. First row: Matter CF in real space, for massless neutrinos, and at redshift
z = 0. The right panel is a zoom of the left panel centered at the BAO peak. The
data points are from our N-body simulations; the red dashed, green solid, and blue
solid lines are, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17), multiplied by R2.
The black solid (dashed) line at small R2⇠ values in the left panel is the di↵erence (5)
between the CF from the FrankenEmu [18] N-body based emulator and ⇠(1) (and ⇠(2)),
also rescaled by R2. The black solid line in the right panel is the FrankenEmu CF,
times R2. Second row: same as in the first row, but at redshift z = 1.
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Figure 3. Ratio between the matter real space CF at two di↵erent redshifts, for
massless neutrinos. The top, middle, and bottom curves in the figure are ratios of CF
at z = 0.5, z = 1, z = 2, respectively, divided by the corresponding CF at z = 0. The
data are ratios between our N-body simulations; the red dashed, green solid, and blue
solid lines are ratios between, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17). The
black solid lines are ratios between CF obtained from the FrankenEmu emulator.

BAO: peak in the corr. function at ~100 Mpc/h

width of the linear peak ~ 20 Mpc/h

very linear!

quasi linear!
Large scale flows and BAO’s

Seo et al, 0910.5005, Padmanabhan et al 1202.0090, Tassev, Zaldarriaga 1203.6066, … 

A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ⇠(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⌘ d lnD/d ln a ⇠⌦0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su�ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.

c� 0000 RAS, MNRAS 000, 000–000
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A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ⇠(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⌘ d lnD/d ln a ⇠⌦0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su�ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.

c� 0000 RAS, MNRAS 000, 000–000

reconstruction

100 Mpc/h

O(6 Mpc/h) 

displacements

Padmanabhan et al, 1002.0990

Largest nonlinear (in Eulerian space) effect: random displacements (rms~ 6 Mpc/h)

CF: peak broadening,   P(k): damping of the peaks



THE BAO DAMPING IS A CONTROLLED PHYSICAL EFFECT!

It is largely taken into account in the Zel’dovich approximation:  
linear effect in lagrangian space!

It is not a nonlinear “noise” to be marginalised over. It contains physical 
information!

Ex. Massive neutrinos

Effect of Massive neutrinos on 
BAO peak
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Figure 4. Matter CFs in real space. Analogous of Figures 2 (z = 0) and 3 (ratios
between CFs at di↵erent z), but now for massive neutrinos. The figures in the first
row are for

P
m⌫ = 0.15 eV, while those in the second row are for m⌫ = 0.3 eV.

not improve significantly the ratios between CF’s.

Indeed, while the ⇠(1) CF does not perfectly reproduce the N-body CF, it tracks

extremely well how the CF changes with redshift. We see this from Figure 3, where we

show ratios between matter CF (of the same cosmology) computed at di↵erent redshift.

The ratios obtained from ⇠(1) are in excellent agreement with the ratios obtained from

our N-body data, as well as with the FrankenEmu. We also see that, as we just

mentioned, the inclusion of the P22 term does not provide a significant improvement

on these ratios.

Identical conclusions are obtained in the comparison between ⇠(1) and our N-body

data in the case of massive neutrinos. Notice that FrankenEmu does not provide data

for these cosmologies. We show this in Figure 4, where we present the CF at z = 0, and

the ratio between CFs at di↵erent redshift, in the case of
P

m⌫ = 0.15 eV (first row)

and 0.3 eV (second row). In these cases, we computed the velocity dispersion �2
v
using

the linear PS for total matter in eq. (3), that is for �m = ⌦c�c + ⌦b�b + ⌦⌫�⌫ , as it is

the source of the Poisson equation.

It is natural to ask whether an equivalent agreement takes place also in redshift

space. This is confirmed by Figure 5, where we show the comparison between the

angular-averaged redshift space CF (21) and the one obtained from the N-body data.

The linear correlations functions in real and redshift space are related to each other by

the Kaiser relation (21). Not surprisingly, this also overpredicts the BAO peak. On the

contrary, the CF ⇠̄(1)s shows an equal agreement with the N-body simulations as its real
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Figure 6. Ratio between the z = 0 matter redshift space CFs of two cosmologies
with di↵erent neutrinos masses. The first, second, and third row show the CF forP

m⌫ = 0.15, 0.3, 0.6 eV, respectively, divided by the corresponding CF for massless
neutrinos. The left column shows the ratios in real space. The data are ratios between
our N-body simulations; the red dashed, green solid, and blue solid lines are ratios
between, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17). The right column shows
the ratios in redshift space. The red dashed, and green solid lines are, respectively,
⇠̄Kaiser
s and ⇠̄(1)s , defined in eq. (21).

simulations, as described in the previous section. The comparison is less probing than in

the matter case, due to the increased sample variance of the latter (there are fewer halos

than dark matter particles in the simulations). This is particularly true at increasing

redshifts, and for this reason we only show halo data at z = 0, 0.5. The two solid

lines shown in the figure are obtained with either a constant density bias, b (k) = b10
(green line) or a bias of the type b (k) = b10 + b01 k2 (blue line), times the exponential

suppression due to the bulk flows, see eq. (24). The bias coe�cients are obtained by

PP
11(k, z) = e�

k2�2
v(z)

2 P lin(k; z)

increasing neutrino 
masses, 

Plin decreases, but also 
velocity dispersion 

decreases.
X
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X
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↓ 0.6% 

↑ 1.2% 
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Figure 4. Matter CFs in real space. Analogous of Figures 2 (z = 0) and 3 (ratios
between CFs at di↵erent z), but now for massive neutrinos. The figures in the first
row are for

P
m⌫ = 0.15 eV, while those in the second row are for m⌫ = 0.3 eV.

not improve significantly the ratios between CF’s.

Indeed, while the ⇠(1) CF does not perfectly reproduce the N-body CF, it tracks

extremely well how the CF changes with redshift. We see this from Figure 3, where we

show ratios between matter CF (of the same cosmology) computed at di↵erent redshift.

The ratios obtained from ⇠(1) are in excellent agreement with the ratios obtained from

our N-body data, as well as with the FrankenEmu. We also see that, as we just

mentioned, the inclusion of the P22 term does not provide a significant improvement

on these ratios.

Identical conclusions are obtained in the comparison between ⇠(1) and our N-body

data in the case of massive neutrinos. Notice that FrankenEmu does not provide data

for these cosmologies. We show this in Figure 4, where we present the CF at z = 0, and

the ratio between CFs at di↵erent redshift, in the case of
P

m⌫ = 0.15 eV (first row)

and 0.3 eV (second row). In these cases, we computed the velocity dispersion �2
v
using

the linear PS for total matter in eq. (3), that is for �m = ⌦c�c + ⌦b�b + ⌦⌫�⌫ , as it is

the source of the Poisson equation.

It is natural to ask whether an equivalent agreement takes place also in redshift

space. This is confirmed by Figure 5, where we show the comparison between the

angular-averaged redshift space CF (21) and the one obtained from the N-body data.

The linear correlations functions in real and redshift space are related to each other by

the Kaiser relation (21). Not surprisingly, this also overpredicts the BAO peak. On the

contrary, the CF ⇠̄(1)s shows an equal agreement with the N-body simulations as its real
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Figure 6. Ratio between the z = 0 matter redshift space CFs of two cosmologies
with di↵erent neutrinos masses. The first, second, and third row show the CF forP

m⌫ = 0.15, 0.3, 0.6 eV, respectively, divided by the corresponding CF for massless
neutrinos. The left column shows the ratios in real space. The data are ratios between
our N-body simulations; the red dashed, green solid, and blue solid lines are ratios
between, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17). The right column shows
the ratios in redshift space. The red dashed, and green solid lines are, respectively,
⇠̄Kaiser
s and ⇠̄(1)s , defined in eq. (21).

simulations, as described in the previous section. The comparison is less probing than in

the matter case, due to the increased sample variance of the latter (there are fewer halos

than dark matter particles in the simulations). This is particularly true at increasing

redshifts, and for this reason we only show halo data at z = 0, 0.5. The two solid

lines shown in the figure are obtained with either a constant density bias, b (k) = b10
(green line) or a bias of the type b (k) = b10 + b01 k2 (blue line), times the exponential

suppression due to the bulk flows, see eq. (24). The bias coe�cients are obtained by

PP
11(k, z) = e�

k2�2
v(z)

2 P lin(k; z)
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Figure 4. Matter CFs in real space. Analogous of Figures 2 (z = 0) and 3 (ratios
between CFs at di↵erent z), but now for massive neutrinos. The figures in the first
row are for

P
m⌫ = 0.15 eV, while those in the second row are for m⌫ = 0.3 eV.

not improve significantly the ratios between CF’s.

Indeed, while the ⇠(1) CF does not perfectly reproduce the N-body CF, it tracks

extremely well how the CF changes with redshift. We see this from Figure 3, where we

show ratios between matter CF (of the same cosmology) computed at di↵erent redshift.

The ratios obtained from ⇠(1) are in excellent agreement with the ratios obtained from

our N-body data, as well as with the FrankenEmu. We also see that, as we just

mentioned, the inclusion of the P22 term does not provide a significant improvement

on these ratios.

Identical conclusions are obtained in the comparison between ⇠(1) and our N-body

data in the case of massive neutrinos. Notice that FrankenEmu does not provide data

for these cosmologies. We show this in Figure 4, where we present the CF at z = 0, and

the ratio between CFs at di↵erent redshift, in the case of
P

m⌫ = 0.15 eV (first row)

and 0.3 eV (second row). In these cases, we computed the velocity dispersion �2
v
using

the linear PS for total matter in eq. (3), that is for �m = ⌦c�c + ⌦b�b + ⌦⌫�⌫ , as it is

the source of the Poisson equation.

It is natural to ask whether an equivalent agreement takes place also in redshift

space. This is confirmed by Figure 5, where we show the comparison between the

angular-averaged redshift space CF (21) and the one obtained from the N-body data.

The linear correlations functions in real and redshift space are related to each other by

the Kaiser relation (21). Not surprisingly, this also overpredicts the BAO peak. On the

contrary, the CF ⇠̄(1)s shows an equal agreement with the N-body simulations as its real
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Figure 6. Ratio between the z = 0 matter redshift space CFs of two cosmologies
with di↵erent neutrinos masses. The first, second, and third row show the CF forP

m⌫ = 0.15, 0.3, 0.6 eV, respectively, divided by the corresponding CF for massless
neutrinos. The left column shows the ratios in real space. The data are ratios between
our N-body simulations; the red dashed, green solid, and blue solid lines are ratios
between, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17). The right column shows
the ratios in redshift space. The red dashed, and green solid lines are, respectively,
⇠̄Kaiser
s and ⇠̄(1)s , defined in eq. (21).

simulations, as described in the previous section. The comparison is less probing than in

the matter case, due to the increased sample variance of the latter (there are fewer halos

than dark matter particles in the simulations). This is particularly true at increasing

redshifts, and for this reason we only show halo data at z = 0, 0.5. The two solid

lines shown in the figure are obtained with either a constant density bias, b (k) = b10
(green line) or a bias of the type b (k) = b10 + b01 k2 (blue line), times the exponential

suppression due to the bulk flows, see eq. (24). The bias coe�cients are obtained by

PP
11(k, z) = e�

k2�2
v(z)

2 P lin(k; z)

increasing neutrino 
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(Peloso, MP, Viel, Villaescusa-Navarro 1505.07477) 
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A Robust BAO Extractor 5

Applying the equation of motion (1) to the (equal-time) PS,

P
R
ab(k) = h'

R
a (k)'

R
b (�k)i0 , (11)

– where the prime indicates that we have divided by (2⇡)3 times the overall momentum

delta function – gives

@⌘P
R
ab(k) =


� ⌦acP

R
cb(k) + e

⌘
Ik;p1,p2�acd(p1,p2)B

R
bcd(k, p1, p2) � hh

R
a (k)'

R
b (�k)i0

+ (a $ b)

�
, (12)

where we have omitted the ⌘-dependence, and where the bispectrum is given by

B
R
abc(q1, q2, q3) = h'

R
a (q1)'

R
b (q2)'

R
c (q3)i

0
. (13)

Before proceeding, we emphasize that the only approximation in the equation above

is in the way we deal with the vorticity of the coarse-grained velocity field. This has two

components: a microscopic one, related to UV scales smaller than R, and one induced

by the coarse-graining procedure itself. While the first one is completely included in

the source terms hR
a , we deal with the second one at a perturbative level. While in this

section we have set the second vorticity component to zero from the beginning, one can

show, using the methods of [9], that including it perturbatively would give exactly the

same equations as those considered in the next sections. The e↵ect of vorticity on the

PS was investigated in [21], where it was found to be negligible at all scales and redshifts

of interest.

No other approximation has been imposed so far. In particular, we are not assuming

the single stream approximation, as it is usually done in SPT and other semi-analytic

methods. Eq. (1), and its PS counterpart, eq. (12), contain all the relevant physics:

the e↵ect of the UV scales on the intermediate ones, through the source h
R
a , the mode-

coupling between the intermediate scales, through the vertex functions, and the IR

displacements in the terms containing the vertex (7) for q1 ⌧ k. In the following, we

will discuss how to deal with all these e↵ects.

3. UV e↵ects

The source term h
R
a is responsible for all deviations from the single stream approximation

and all the nonlinear e↵ects occurring at small scales. It is therefore cleaner to consider

the subtracted PS,

�P
R
ab(k) ⌘ P

R
ab(k) � P

R,ss
ab (k) , (14)

where P
R,ss
ab (k) is the PS computed in the single stream approximation. It solves an

equation analogous to (12), in which all the quantities, including the hh
R
a '

R
b i

0 correlator

are obtained in the single stream approximation, in practice, by considering SPT or

other approximation schemes at some finite order. This correlator vanishes in the R ! 0

limit while its value at nonvanishing R takes into account all nonlinear e↵ects due to

modes q >
⇠ 1/R in the single stream approximation, to be subtracted from the fully
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Figure 2. PS from di↵erent computational schemes divided by the Coyote PS. The
blue curve is the 1-loop SPT result. The orange curve is obtained from the UV-
improved ETRG system (20). The green curve is the UV- and IR-improved result
(33). The di↵erent panels correspond to di↵erent redshifts. The UV-improved curve
performs substantially better than the SPT result, however it is still does not properly
reproduces the BAO oscillations, which are instead well reproduced by the UV- and
IR-improved result. The horizontal dashed lines show the band for which our results
di↵er less than ±1% from the Coyote PS.

should be taken into account along the lines discussed below eq. (16). However, in

the following, we focus our attention on the residual BAO oscillations exhibited by the

orange lines, which indicate that only improving the UV e↵ects does not account for the

BAO damping well enough. In the next section we will discuss how to deal with this
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4. IR resummation and BAO wiggles

The damping of the BAO wiggles in the PS, and of the corresponding peak in the

correlation function is mainly caused by random long range displacements [24]. It is
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h'a(k, ⌘)'b(�k, ⌘)i0, to get the evolution equation for the PS, then, the last term at

the RHS of eq. (5) gives

e
⌘

Z
d
3
q

(2⇡)3
k · q

q2


h'2(q)'a(k � q)'b(�k)i0 + h'a(k)'b(�k+ q)'2(�q)i0

�
. (21)

The consistency relations first derived in [17, 18] for the bispectrum give

h'2(q)'a(k � q)'b(�k)i0 ' �e
⌘k · q

q2
P

0(q) (Pab(k) � Pab(|k � q|)) +O

✓⇣
q

k

⌘0
◆
, (22)

in the q ⌧ k configuration. The consistency relation is depicted diagrammatically in

fig. 3. The second term in (21) gives the same contribution.

Notice that, while P
0(q) in eq. (22) is taken to be the linear PS, the other two are

fully nonlinear. Moreover, the RHS vanishes at the leading order in q/k, that is, if one

evolution equation for P(k)

UV

fully nonlinear!! consistency relations from Galilean invariance  
(Peloso, MP 1310.7915)
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Figure 3. The consistency relations allow the bispectra appearing in eq. (21) to be
rewritten as the product of a linear PS, P 0 (q), and a di↵erence of nonlinear PS.

sets the argument of the second PS inside parentheses to k. This is in agreement with

the form of the consistency relations derived in [17], which vanish if, as in this case, all

the fields are taken at equal times. However, as we now show, the di↵erent arguments

of the two PS is crucial when they have an oscillatory component.

Inserting (22) in (21) gives

� 2e2⌘
Z ⇤(k)

d
3
q

(2⇡)3

✓
k · q

q2

◆2

P
0(q) (Pab(k) � Pab(|k � q|))

' �2e2⌘
k
2

(2⇡)2

Z ⇤(k)

dq P
0(q)

Z 1

�1

dx x
2 (Pab(k) � Pab(k � qx))

= �2e2⌘
k
2

(2⇡)2

Z ⇤(k)

dq P
0(q)P̄ 1

ab(k; q)F
1(q rbao) (23)

where we have inserted a UV cuto↵ ⇤(k) <
⇠ k, in order to enforce the validity range of

the consistency relation (22). We have defined

P̄
n
ab(k; q) ⌘

R 1

�1 dx x
2n

⇣
1 �

Pab(k�qx)
Pab(k)

⌘

F n(q rbao)
Pab(k), (24)

e⌘Ik,p1,p2�acdBbcd(k, p1, p2) =

if the (nonlinear) P(k) has an oscillatory part:
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for q <
⇠ k, with

F
n(q rbao) ⌘

Z 1

�1

dx x
2n (1 � cos(q rbao x)) , (25)

so that, F 1(q rbao) = 2 (1 � j0(q rbao) + 2j2(q rbao))/3, where the jn(x) are the spherical

Bessel functions.

If the nonlinear PS has an oscillatory component,

Pab(k) = P
nw
ab (k)(1 + Aab(k) sin(k rbao)) ⌘ P

nw
ab (k) + P

w
ab(k) , (26)

with Aab(k) a smooth modulating function which damps the oscillations beyond the Silk

scale, then eq. (24) returns the oscillatory component itself plus a smooth contribution,

P̄
n
ab(k; q) = P

w
ab(k) +O

⇣
P

nw00

ab (k)/r2bao

⌘
, (27)

and other terms proportional to derivatives of Aab(k), which are suppressed since the

oscillatory part is proportional to ⌦b/⌦m. Therefore, eq. (23) gives

�2e2⌘k2 ⌅(rbao)P
w
ab(k) +O

⇣
P

nw00

ab

⌘
, (28)

with

⌅(rbao) ⌘
1

6⇡2

Z ⇤(k)

dq P
0(q) (1 � j0(q rbao) + 2j2(q rbao)) . (29)

The exact value of the cut-o↵ ⇤(k) (slightly) a↵ects the amplitude of the evolved BAO’s

but not their scale, as one can see by comparing the three red lines (dashed, solid, and

dotted) in Fig. 7, in which we plot the results for the oscillating part of the PS obtained

by multiplying the integrand in (29) by exp(�q/(c k)2) with c = 1/2, 1,1, respectively,

and integrating in q from 0 to 1. It should be noted that the integrand of eq. (23), as

far as the oscillatory part is concerned, is naturally cut-o↵ at the Silk scale. Therefore,

even removing the UV cuto↵ altogether (setting c = 1), scales q >
⇠ kSilk ' 0.12 h/Mpc

do not contribute to the resummation.

If we now consider the equation for the PS derived in the previous section, and we

add to it the IR resummation term, eq. (28), we have completed our goal: we have an

evolution equation in which IR, intermediate, and UV scales are taken into account.

We note that the last line of eq. (23) has been obtained by multiplying and dividing

the previous line by the function F
1 (q rbao) specified in eq. (25). For PS of the form

(26), the final line of of eq. (23) simplifies further into (27), where the scale rbao, which

is the comoving sound horizon at recombination, appears. For a given cosmology, we

can compute the rbao using eq. (6) of [26]. However, notice that the BAO extraction

procedure defined in the next section is quite insensitive to the input rbao value, see

discussion after eq. (36).

We can consider also the same equation for a “smooth” cosmology, in which the

initial PS has no BAO feature. They will not be generated by the evolution equation

itself. If we subtract this equation from the one for the real cosmology, we get an
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suppressed as 1/(k2r2bao)

Physically: large scale displacement act predominantly on P(k) (or CF) features 



TWO BENEFITS

1) A nonlinear evolution equation for the oscillating part of P(k) 
(including subdominant UV effects)

2) A tool to extract the BAO feature from a given (nonlinear) P(k)

BAO Extractor: bias and redshift space e↵ects 4

1-loop SPT by resumming the e↵ect of IR bulk flows, and it does not require to extract

any UV parameter from simulations. The robustness of this method against short-scale

e↵ects such as the nonlinear evolution of the dark matter field, redshift space distortions,

and halo bias is studied in Section 4. In Section 5 we present our conclusions. This is

followed by four appendices where we, respectively, summarize the TRG method that

we use to reproduce the nonlinear evolution of dark matter, perform the resummation

of the IR bulk flows in real and redshift space, present some details on the N-body

simulations used in this work, and investigate the e↵ect of nondiagonal terms in the PS

covariance relevant to our simulations, showing that they are negligible.

2. BAO extractor: definition

For any given power spectrum P (k) we define [20]

R [P ] (k;�, n) ⌘

R
�

��
dx x

2n
⇣
1� P (k�x ks)

P (k)

⌘

R
�

��
dx x2n (1� cos(2⇡x))

, (1)

where the BAO wavenumber is given by ks ⌘ 2⇡/rs, with rs the comoving sound horizon,

computed using, for the assumed cosmological model, eq. (6) of [30]. In this expression

we integrate around each value of the comoving momentum k in an interval given by

twice the “range” parameter � times the BAO wavenumber.

The operation (1) is similar to the moving average method, common in other fields

to discern smooth back-ground and rapid oscillations, and has the e↵ect of “extracting”

the oscillating part of the PS from the smooth one. In [20] we showed how the oscillating

PS projected out in this way to a large extent evolves independently under nonlinear

e↵ects.

We also verified that the operation R [P ], once applied to theoretical power spectra,

is very weakly dependent on the parameter n. This parameter might be relevant in

analyzing real data, in the case in which the experimental error varies significantly

within each interval [k � kbao �, k + kbao �]. In the analyses performed in this work we

fix n = 0 and will indicate R[P ](k;�, n = 0) with R[P ](k;�).

LSS power spectra comprise of a smooth broadband (“no-wiggle”) component, plus

a smaller (“wiggly”) component due to the BAO oscillations,

P (k) = P
nw (k) + P

w (k) ' P
nw(k) [1 + A(k) sin(k rbao)] , (2)

where A (k) is a smooth modulating function which damps the oscillations beyond

the Silk scale. While rs is the BAO scale of the assumed (reference) cosmological

model, which is needed to define the extractor (eq. (1)) and the various theoretical

formula, as for example, eq. (12), rbao is the true scale of the BAO oscillations in data.

Di↵erent computational techniques reproduce the P
nw (k) with di↵erent accuracy, and

for instance a percent accuracy at k >
⇠ O(0.1 h/Mpc) requires going beyond standard

perturbation theory, and accounting for UV e↵ects through methods such as Coarse

Grained Perturbation Theory [15, 17] or the E↵ective Field Theory of LSS [14, 16].
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Figure 5. The BAO extractor R[P ](k; ↵̄) applied to the linear PS (black-dashed line),
to the smooth linear PS (red-dotted line), and their di↵erences (black-solid line), for
two di↵erent values of the range parameter ↵̄.

oscillates around the x-axis. In the following plots, we will always subtract the same

R[P 0,nw] from all the di↵erent R[P ], in order to visualize oscillatory behaviors along

the horizontal axis and, at the same time, keep the extraction procedure as simple as

possible.

From the expression above, we can define a family of estimators for the ratio above.

Assuming the data are binned, we can write

R̂[P ](km; ↵̄, n) ⌘

PL(↵̄)
l=�L(↵̄) (km+l � km)

2n
⇣
1 �

Pm+l

Pm

⌘

PL(↵̄)
l=�L(↵̄) (km+l � km)

2n (1 � cos (rbao (km+l � km)))
, (37)

where the value of the maximum |l| in the sum, L(↵̄), is chosen such that

|km+l � km| 
2⇡↵̄

rbao
for |l|  L(↵̄) . (38)

Assuming that the errors on the PS at di↵erent bins are uncorrelated, the error on

R̂[P ](km; ↵̄, n) is given by

�R̂[P ](km; ↵̄, n) =

s
PL(↵̄)

l 6=0,l=�L(↵̄) (km+l � km)
4n

⇣
Pm+l

Pm

⌘2
⇣

�Pm
Pm

⌘2

+
⇣

�Pm+l

Pm+l

⌘2
�

PL(↵̄)
l=�L(↵̄) (km+l � km)

2n (1 � cos (rbao (km+l � km)))
. (39)

no need of  “nw” fitting functions
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Figure 6. The extractor R[P ](k; ↵̄) applied to the PS computed from N-body
simulations (grey area) and to the TRG result described in the text at redshift z = 1
(left column) and at z = 0 (right column). Di↵erent values of the range parameter
↵̄ and of the binning �k are shown. The grey area corresponds to assuming an error
�Pm
Pm

= 1% in each bin. The parameter n in (36) and (37) has been set to n = 0 We
also show, in blue-dashed lines, the e↵ect of the extractor applied to the linear PS.
For visualisation purposes, the same quantity R[P 0,nw](k), where P 0,nw is the smooth
component of the linear PS, has been subtracted from all the di↵erent R[P ](k).

therefore it is not an alternative to reconstruction, but rather, it provides a parameter

independent procedure to extract BAO information from reconstructed data.

As for the broadband part of the PS, we showed that a 1-loop SPT computation

supplemented with just one UV counterterm gives results in agreement with N-body

simulations up to kmax ⇠ 0.4 h/Mpc for z � 0.5, rapidly degrading at lower redshifts.

We have discussed how to systematically improve our approximation, by including higher

order SPT corrections and more correlators between the UV sources and the density

and velocity fields. The use of time-evolution equations considered here is particularly

fit to deal with models beyond ⇤CDM in which the boradband part of the PS carries a

distinctive signature, like cosmologies with massive neutrinos or based on modified GR,

as the scale-dependence of the growth factor can be directly implemented in the linear

evolution matrix in eq. (3).

BAO’s match with N-body at all scales down to z=0!
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�Pm
Pm

= 1% in each bin. The parameter n in (36) and (37) has been set to n = 0 We
also show, in blue-dashed lines, the e↵ect of the extractor applied to the linear PS.
For visualisation purposes, the same quantity R[P 0,nw](k), where P 0,nw is the smooth
component of the linear PS, has been subtracted from all the di↵erent R[P ](k).

therefore it is not an alternative to reconstruction, but rather, it provides a parameter

independent procedure to extract BAO information from reconstructed data.

As for the broadband part of the PS, we showed that a 1-loop SPT computation

supplemented with just one UV counterterm gives results in agreement with N-body

simulations up to kmax ⇠ 0.4 h/Mpc for z � 0.5, rapidly degrading at lower redshifts.

We have discussed how to systematically improve our approximation, by including higher

order SPT corrections and more correlators between the UV sources and the density

and velocity fields. The use of time-evolution equations considered here is particularly

fit to deal with models beyond ⇤CDM in which the boradband part of the PS carries a

distinctive signature, like cosmologies with massive neutrinos or based on modified GR,

as the scale-dependence of the growth factor can be directly implemented in the linear

evolution matrix in eq. (3).

BAO’s match with N-body at all scales down to z=0!
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Figure 2. PS from di↵erent computational schemes divided by the Coyote PS. The
blue curve is the 1-loop SPT result. The orange curve is obtained from the UV-
improved ETRG system (20). The green curve is the UV- and IR-improved result
(33). The di↵erent panels correspond to di↵erent redshifts. The UV-improved curve
performs substantially better than the SPT result, however it is still does not properly
reproduces the BAO oscillations, which are instead well reproduced by the UV- and
IR-improved result. The horizontal dashed lines show the band for which our results
di↵er less than ±1% from the Coyote PS.

should be taken into account along the lines discussed below eq. (16). However, in

the following, we focus our attention on the residual BAO oscillations exhibited by the

orange lines, which indicate that only improving the UV e↵ects does not account for the

BAO damping well enough. In the next section we will discuss how to deal with this

issue.

4. IR resummation and BAO wiggles

The damping of the BAO wiggles in the PS, and of the corresponding peak in the

correlation function is mainly caused by random long range displacements [24]. It is

well known that such e↵ects are badly reproduced in SPT at any finite order, while they

are much better taken into account by the Zel’dovich approximation, which provides a

resummation at all SPT orders (see for instance, [25]). In our approach, the e↵ect of

these long range displacements on an intermediate scale k are encoded in the last term

at the RHS of eq. (5) when the momentum of the velocity field is q1 ⌧ k. We will now

discuss how they can be naturally resummed.

Indeed, if one applies again the equation of motion, eq. (1), to the correlator

h'a(k, ⌘)'b(�k, ⌘)i0, to get the evolution equation for the PS, then, the last term at

the RHS of eq. (5) gives

e
⌘

Z
d
3
q

(2⇡)3
k · q

q2


h'2(q)'a(k � q)'b(�k)i0 + h'a(k)'b(�k+ q)'2(�q)i0

�
. (21)

The consistency relations first derived in [17, 18] for the bispectrum give

h'2(q)'a(k � q)'b(�k)i0 ' �e
⌘k · q

q2
P

0(q) (Pab(k) � Pab(|k � q|)) +O

✓⇣
q

k

⌘0
◆
, (22)

in the q ⌧ k configuration. The consistency relation is depicted diagrammatically in

fig. 3. The second term in (21) gives the same contribution.

Notice that, while P
0(q) in eq. (22) is taken to be the linear PS, the other two are

fully nonlinear. Moreover, the RHS vanishes at the leading order in q/k, that is, if one

compare with results for the broadband shape
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Figure 6. �2 of the shift ↵ between the real and redshift space PS for DM from
N-body simulations.

that it is not the case in redshift space.

On the other hand, the TRG result (red lines) reproduces the nonlinear shift at

better than 0.2% level both at z = 0 and than 0.1% at z = 1. Given that the

computational cost for this approach is the same needed for the 1-loop PS, the gain

represented by it at low redshifts is clear.
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that it is not the case in redshift space.

On the other hand, the TRG result (red lines) reproduces the nonlinear shift at

better than 0.2% level both at z = 0 and than 0.1% at z = 1. Given that the

computational cost for this approach is the same needed for the 1-loop PS, the gain

represented by it at low redshifts is clear.

shift of the BAO scale
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modify the BAO scale, an e↵ect which can crucially hinder the possibility of using BAO’s

as a cosmic ruler [31] (although, as we mentioned before, this e↵ect can be reduced by

reconstruction techniques). In order to quantify this e↵ect we define a likelihood function

as

�
2

a(↵) =
nmaxX

n,m=nmin

�R[Pa](kn;↵,�)C�1

n,m(�)�R[Pa](km;↵,�) , (9)

where

�R[Pa](kn;↵,�) ⌘ R[Pa](kn/↵;�)�R[Pdata](kn;�) , (10)

Pa the model PS as obtained in a given approximation, while Pdata is the measured

one, and C
�1

n,m(�) is the inverse of the matrix given in eq. (7), computed using the

experimental errors on the data PS. The sum is taken over the momenta kn in which

there are BAO oscillations (see Fig. 1), typically in the range

0.025 hMpc�1 <
⇠ kn

<
⇠ 0.3 hMpc�1

, (11)

where the upper end is limited by the goodness of the �2

a(↵) value, and therefore varies

for the di↵erent models/approximations. For those models providing a good fit up to

higher momenta, the �
2

a(↵) curve is narrower and therefore gives tighter constraints on

the extracted BAO scale.

In the following, we use the diagonal entries of the covariance matrix for the

extractor, eq. (7), to indicate the 1� errors on the extracted R[P ] functions in plots

such as those in Fig. (1), while we use the full matrix to evaluate the various �2

a(↵). As

for the covariance matrix for the PS from N-body simulations, covPm,n, we will estimate

its diagonal terms from the scattering of |�k|2 with k’s inside each k bin, while we will

neglect the nondiagonal terms. In Appendix D we will investigate the impact of the

non-diagonal terms on our analyses, showing that they are negligible.

3. A simple model for the extraction of the BAO scale

In this section we present a simple procedure to extract the BAO scale from a given

Pdata. We will use, as data, the halo PS in redshift space (see Appendix C for technical

details on our simulations and halo catalogs). The impact of the di↵erent types of

nonlinear e↵ects on R[P ], and the performance of di↵erent approximation methods in

dealing with them will be discussed in the next sections.

Our model PS is given by

Pmodel(k, µ;A) = e
�Ak2

Pres(k, µ) , (12)

with

Pres(k, µ) = P
nw,rs,0(k, µ) +�P

nw,rs,1�loop(k, µ)

+ P
w,rs,0(k, µ) e�k2⌅rs

(µ;rs) , (13)
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~ 0.5% shift in the BAO scale due to redshift effects
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Figure 9. �2 as a function of the shift parameter ↵ for di↵erent DM approaches vs
N-body in redshift space.

on the TRG result reproduces the N-body BAO scale at the 0.1% level, in line with its

real space counterparts (see Fig. (4)), while without FoG correction it still performs at

better than the percent level.

4.3. Halo bias

We now study the e↵ect of halo bias on the function R[P ]. We focus our discussion on

halos of mass M > 1013 M� identified in the N-body simulations described in Appendix

C, where we also plot the bias, that is the ratio between the halo and DM PS’s, for the

complete halo catalog and for its partition in di↵erent mass bins, see Fig. C1. We also

list, in Tab. C2, best fit values for a model bias function given by (b0 + b1k
2)2. As the

R[P ] operation is insensitive to a constant bias, we consider in this section, as we did

in Sect. 3, a single parameter model for the halo, again of the exponential form, e�Ak2 .

More refined models can of course be tested but as we will see, this one already provides

a very good fit.

The di↵erent PS give the R[P ]’s plotted in Fig. 10. The green band is obtained

from the total halo PS, while the DM PS from N-body simulations is given by the black

lines: the dashed ones are obtained from the unbiased PS, while the solid ones are from

the one multiplied by e
�Ak2 , with A fit from the total halo PS bias. The red lines are

obtained by the TRG approximation, again unbiased (dashed) and biased (solid).

Then, taking the halo PS (with the corresponding errors) as Pdata in eq. (9), we

study the shift in the BAO scale derived by modeling it using the di↵erent procedures.

shift correctly reproduced  
by TRG equations
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Figure 11. �2 as a function of the shift parameter ↵ for DM (from N-body and TRG)
vs. halos with M > 1013 M�.
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Extractor is only sensitive to scale-dependent bias
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Figure 2. The function �2 defined in (9) as a function of the shift parameter ↵
with respect to halo data using Pmodel,0(k;A) as a model. Each curve has been shifted
vertically so to be vanishing at its minimum. The e↵ect of removing the free parameter
A is shown by the comparison of the purple solid and dashed lines.

and Pdata = Phalo,0(k). The result is shown in Fig. 2, where we show the function

�
2(↵) � �

2(↵min) obtained by this procedure. We also show the e↵ect of removing the

parameter A by setting it to zero in (12). As we see, the simple model considered here

captures the correct BAO scale at better than the 0.1% level both at z = 0 and at

z = 1, moreover the 1� confidence level corresponds to 0.16% (0.14%) at z = 0 (z = 1).

Setting the exponential prefactor to unity (A = 0), still reproduces the BAO scale at

subpercent level, but with a reduced precision, especially at z = 1, where the e↵ect of

halo bias is larger, see Sect. 4.3.

For comparison, we also plot (brown solid line) the �
2 obtained by a di↵erent

procedure, which resembles more closely the standard one employed, for instance, in

[27]. In this case, the model PS is fit directly to the full Pdata PS, instead of considering

the R[P ] operation, therefore, more parameters are needed to model the broadband

feature. Following [27], we consider a model PS given by the 8�parameter function:

Pfit (k;↵) = P
smooth (k)

⇢
1 +


O

linear

✓
k

↵

◆
� 1

�
e
� k2⌃2

nl
2

�
, (19)

where the oscillatory component is obtained from the ratio between the total linear and

compare to “standard” analysis:
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where the oscillatory component is obtained from the ratio between the total linear and
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smooth linear power spectrum‡

O
linear (k) ⌘

P
0 (k)

P 0,nw (k)
, (20)

while the smooth component is given by

Psmooth (k) ⌘ B
2

PP
0,nw (k) + A1 k + A2 +

A3

k
+

A4

k2
+

A5

k3
, (21)

where the parameters A1,···,5 and BP marginalise over broad-band e↵ects including

redshift-space distortions and scale-dependent bias. Notice that, unlike our ⌅ function

of eq. (16), now also the exponential damping containing ⌃nl in (19) is treated as a

nuisance parameter. To quantify the precision with which this procedure can reproduce

the BAO scale, we fit Phalo with the expression (19), fixing ↵ = 1 and finding the best

fit values for the remaining 7 parameters {⌃nl, BP , A1, A2, A3, A4, A5}. With these

values fixed §, we then compute the likelihood

�
2

fit(↵) =
X

n

(Pfit(kn,↵)� Phalo(kn))
2

(�Phalo(kn))
2

, (22)

as a function of ↵.

As seen from the figure, both methods are able to return the BAO scale at the

subpercent level, as a best fit and are in mutual agreement within 1 �. The advantage

of the R[P ] method appears when looking at the width of the likelihood intervals, which,

for these “data”, is reduced with respect to the method based on (19): it gives a 1�

error on ↵ of 0.16% (0.14%) at z = 0 (z = 1) against 1.4% (1%) by the “standard”

procedure.

4. Nonlinear e↵ects on R[P ]

In this section we discuss the sensitivity of the function R [P ] (k;�) to various nonlinear

e↵ects.

4.1. Nonlinear evolution of the DM field

Assuming that N-body simulations fully account for DM nonlinearities on the scales of

interest for this paper, we discuss how di↵erent approximations a↵ect the R[P ] operation

and the extraction of the BAO scale from it. Besides linear theory and 1-loop SPT, we

will consider the TRG result of [20], which can be cast, in real space, in the form

P
TRG(k) = Pmodel(k;µ = 0, A = 0) +�P

nw,TRG(k) , (23)

where Pmodel has been defined in (12). �P
nw,TRG(k) ⌘ D(z)2�P

nw
11

(k; ⌘) is the UV

correction (⌘ ⌘ logD(z), (D(0) = 1)), where �P
nw
11

(k; ⌘) solves the TRG system

‡ In [27] the smooth PS is derived using the fitting formula of [36] instead of the procedure described
in Appendix A. This di↵erence does not change things appreciably.
§ We checked that the procedure is converging, in the sense that by fixing the initial ↵ to a slightly
di↵erent (±1%) value and extracting the corresponding parameters gives very similar �2 curves.
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nuisance parameter. To quantify the precision with which this procedure can reproduce

the BAO scale, we fit Phalo with the expression (19), fixing ↵ = 1 and finding the best

fit values for the remaining 7 parameters {⌃nl, BP , A1, A2, A3, A4, A5}. With these

values fixed §, we then compute the likelihood

�
2

fit(↵) =
X

n

(Pfit(kn,↵)� Phalo(kn))
2

(�Phalo(kn))
2

, (22)

as a function of ↵.

As seen from the figure, both methods are able to return the BAO scale at the

subpercent level, as a best fit and are in mutual agreement within 1 �. The advantage

of the R[P ] method appears when looking at the width of the likelihood intervals, which,

for these “data”, is reduced with respect to the method based on (19): it gives a 1�

error on ↵ of 0.16% (0.14%) at z = 0 (z = 1) against 1.4% (1%) by the “standard”

procedure.

4. Nonlinear e↵ects on R[P ]

In this section we discuss the sensitivity of the function R [P ] (k;�) to various nonlinear

e↵ects.

4.1. Nonlinear evolution of the DM field

Assuming that N-body simulations fully account for DM nonlinearities on the scales of

interest for this paper, we discuss how di↵erent approximations a↵ect the R[P ] operation

and the extraction of the BAO scale from it. Besides linear theory and 1-loop SPT, we

will consider the TRG result of [20], which can be cast, in real space, in the form

P
TRG(k) = Pmodel(k;µ = 0, A = 0) +�P

nw,TRG(k) , (23)

where Pmodel has been defined in (12). �P
nw,TRG(k) ⌘ D(z)2�P

nw
11

(k; ⌘) is the UV

correction (⌘ ⌘ logD(z), (D(0) = 1)), where �P
nw
11

(k; ⌘) solves the TRG system

‡ In [27] the smooth PS is derived using the fitting formula of [36] instead of the procedure described
in Appendix A. This di↵erence does not change things appreciably.
§ We checked that the procedure is converging, in the sense that by fixing the initial ↵ to a slightly
di↵erent (±1%) value and extracting the corresponding parameters gives very similar �2 curves.

need: P^nw(k) + 7 nuisance parameters+ ↵
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z1, α = 0.996694 ± 0.00416397
z2, α = 1.00498 ± 0.0042042
z3, α = 0.997989 ± 0.004373

compare to Beutler et al. 1607.03149

z1, ↵ = 1.000± 0.010

z2, ↵ = 0.9936± 0.0082

z3, ↵ = 0.9887± 0.0087

Notice, no TRG used here, only simple model+extractor



CONCLUSIONS

• IR and UV nonlinear effects clearly separated in TRG approach 

• UV effects require external input (or nonperturbative 
breakthrough) 

• IR effects are well understood and contain physical information 

• BAO extractor is robust: can be efficiently computed and 
measured 
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Figure 1. Dependence on the CG cuto↵ scale R of the coe�cient ↵R

k2
m

(blue curve),
↵R,ss

k2
m

(green curve), and of their di↵erence �↵
k2
m

(orange curve). The coe�cients are
obtained from b = 1 in eq. (18), for k = 0.1h/Mpc and at z = 0. As discussed
in the text, the di↵erence exhibits a much smaller dependence on the cut-o↵ scale.

Right panel: Scale dependence of k2 �↵(z0)
k2
m

for three di↵erent values of the cut-o↵ scale

R. The dotted curve is the theoretical prediction k2 times a z�dependent coe�cient,
obtained as explained in Appendix A.

source terms, eq. (10), is expanded in terms of the linear filtered fields, and therefore

the coe�cients of this expansion are obtained from the cross-correlator of the sources

with the linear fields. Here, on the other hand, the relevant cross-correlators involve

the sources and the nonlinear fields '
R
a , and therefore include e↵ects, like short scale

displacements and source-source correlators ( hh
R
a h

R
b i

0, where the second h
R
b is contained

in the nonlinear evolution of the '
R
b field) which are not included at 1-loop order in

EFToLSS. Moreover, we will directly measure these sources, and the coe�cient �↵(⌘),

from N-body simulation and then include the result into our evolution equations for the

PS. While this procedure can be followed also in the EFToLSS, more often, in practical

applications, one first derives an expression for the PS containing the “sound speed”

and other counterterms as parameters to be fitted from the PS measured in simulations.

In doing so, the physical meaning of these counterterms is less transparent, and the

amount of “overfitting”, in order to get the PS right, is di�cult to estimate.

In summary, we can choose R in the plateau region, or equivalently, take the formal

R ! 0 limit, and consider the evolution equation

@⌘�Pab(k; ⌘) =


� ⌦ac �Pcb(k; ⌘)

� �↵(⌘)
k
2

k2
m

h
P

1�loop
1b (k; ⌘) +�P1b(k; ⌘)

i
�a2 + (a $ b)

�
. (20)

In fig. 2 we show the ratios between eq. (17) (orange line) and the PS computed with

the Coyote interpolator of N-body simulations [23]. The agreement clearly improves over

the 1-loop SPT result (blue line) showing that the UV correction represented by the

h
R
a sources plays a decisive role, already at the lowest order considered here, namely,

correcting the UV of the 1-loop PS. At k = 0.1hMpc�1, the source correlator modifies

the PS by ' �0.6% at z = 1, by ' �1.1% at z = 0.5, and by ' �1.8% at z = 0.

The agreement in the PS shape degrades at low redshifts, where higher loop orders

hkiJ i
�(k)�(�k)i0nb / ↵nb

k2

k2m
h�(�k)�(�k)inb

hkiJ i
�(k)�(�k)i0pt / ↵pt

k2

k2m
h�(�k)�(�k)ipt


