


Motivation
� LSS can probe fundamental physics: 

� Growth of structure and BAO constrain dark energy and modified 
gravity

� Growth of structure, shape of power spectrum and lensing versus 
galaxy clustering constrains neutrino mass and number of effective 
neutrino families

� Inflation parameters (slope, running) from power spectrum shape

� Features in power spectrum constrain some models of inflation

� Primordial non-gaussianity probes inflation models and alternatives

� LSS can probe the nature of dark matter (warm or fuzzy dark matter, 
PBH as dark matter)
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Cosmology meets statistics
� Main theme of the talk: using the best possible statistical 

analysis can greatly enhance statistical power of large 
scale structure (LSS)

� Example 1: PBH DM constraints from SN1A statistical 
analysis (Zumalacarregui & US 2017)

� Example 2: towards “optimal” analysis of LSS (US et al 
2017)

� Example 3: combining (CMB) lensing and LSS (Schmittfull
& US 2017)
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LIGO black holes as dark matter?
� Intriguing: not completely ruled out? (Bird etal, Sasaki etal)

� LIGO rate gives very tight constraint (Misao’s talk)

� Clustering of BH and wider BH mass distribution has been 
invoked to counter some of these limits (Garcia-Bellido etal)

� Perhaps we do not need another method to rule this model 
out, but  I will present a new method that is very clean

� Basic idea: lensing changes SN1A as a standard candle 5
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� Strong redshift dependence

� Signatures: look for redshift 
dependent change of PDF

� Look for peak PDF away from 
correct cosmology prediction 
(degenerate with cosmology, 
use external priors)

� Look for (absence of) high 
magnification events

� How to do all of this at once? 
Likelihood analysis 
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Statistical analysis
� Information is in full (redshift dependent) PDF: we can adopt 

likelihood analysis with marginalization over all nuisance 
parameters (noise, LSS, SN stretch and color…): hierarchical 
Bayesian analysis with analytic marginalizations

� Analytic marginalization: numerical integrals of convolutions of 
PBH signal with noise, with LSS, with intrinsic SN PDF, all 
redshift dependent

� SNe are independent, so likelihood is L=PiLi
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SN data 
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Outliers

� SN folks remove outliers 

� Most outliers are fainter, not 
brighter

� No evidence of outliers 
getting more frequent with 
redshift
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Results
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Matter density prior
� We use Planck 

CMB+SDSS BAO

� We can also relax this 
prior: not very important

� Suggests tails of pdf more 
important than peak 
(since peak PDF is 
correlated with SN 
cosmology) 
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Absence of strongly 
magnified events
� For a=1 there are 10  events 

predicted with Dµ>0.4, none 
are observed

� P(0,mean=10)= exp(-10) 
=exp(-20/2), so this is about 
4.5 sigma significance

� Absence of events is very 
constraining!

� Very robust prediction
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Finite size of SN
� The constraints do not have an upper mass limit and are 

independent of mass distribution if Einstein radius larger than 
SN1A size

� Lower mass limit determined by the intrinsic size of SN1A 
photosphere relative to mean Einstein radius of PBH averaged 
along the line of sight

� These effects kick in first at high magnifications (smallest 
impact parameter) and last for low magnification lines of sight 
(far from PBH)

� SN1A: 20 days peak, 10,000km/s expansion, size  of order 
1.5x1010km, Einstein radius of order 10-3Msun

� We did a detailed analysis following Pei 1998
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� These finite size effects start to 
matter around 10-2Msun and below

� The predicted number of highly 
magnified events is suppressed

� There are no useful constraints for 
PBH mass below 10-4Msun, whose 
Einstein radius is small compared to 
SN1A size
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PBH mass range and constraints
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These constraints are on total DM fraction, independent of 
the mass distribution

The constraints state that a<0.4 in PBG with M>10-2Msun



Statistical analysis of LSS
� LSS is very non-Gaussian: nonlinear evolution of structure

� How do we analyze such data? 

� Workhorse: 2-point function (power spectrum or correlation 
function)

� Also need its covariance matrix (4-point function)

� Beyond power spectrum: higher order correlations (3-point 
etc)

� Peaks counting (clusters, or just density peaks)

� Voids, nonlinear transforms (clipping, lognormal...)

� Topological measures (genus…)

� BAO reconstruction

� Unclear how to combine these different statistics (mock sims)

� Nongaussian: need covariance matrix

� Do we just keep trying with new statistics or is there are way 
to extract maximal information and prove it?

� Can we convert 3d NL into 3d linear? 
19



Example: features in P(k)
� Features are destroyed in nonlinear P(k) at high k due to 

nonlinear evolution

� Can we recover it back from non-Gaussian information? 
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A new approach: statistical Bayesian 
analysis with full forward model 

(w. Yu Feng, G. Aslanyan, C. Modi
� Map making in cosmology: unique in that prior is well defined

� Use data likelihood together with the prior and forward model to maximize 
posterior                                                                    prior                  data  likelihood

� Prior: gaussian initial density Fourier modes s with linear power spectrum S, 
acts as a regularization

� Forward model F(s): take initial density modes and evolve them to final 
galaxy positions F(s). This is a full simulation

� Data d: anything can be used: galaxy position, magnitudes, colors, noisy 
spectroscopy

� Data likelihood: often gaussian, diagonal in real space, with noise variance N
21



Solving full nonlinear problem: how to make 
the best possible MAP?

� To get the minimum variance map: maximize a posterior 
(MAP), ie solve the optimization problem 

� How to predict data F(s) given initial modes s: run a 
simulation for each configuration of s

� Typical size: 3Gpc^3 volume, resolution of 1Mpc: 1010 cells 

� How to find the maximum posterior for 1010 modes s? 
Curse of dimensionality: V=2N, N=1010, means we cannot 
search blindly
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How to find MAP in 1010 parameter space? 
� Maximize posterior=minimize cost function 
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Hessian

gradient

Newton’s method

Need a gradient Rij: derivative of a full simulated data wrt all initial 
modes s
Also need nonlinear model F(s): a full simulation
Need to compute fast F(s) and its gradient
Our approach: try any optimizer that exists. Currently we are doing 
Gauss Newton with trust region and conjugate gradient
Needs gradients



Gradient with backpropagation
� One needs analytic derivative of every final data point 

with respect to every initial mode!

� Chain rule, applied to kick and drift PM operators

� Matrix products, all time steps need to be stored for 
backward prop.

� Low number of time steps is crucial 

24

Yu Feng slide



Fast forward model: FastPM
� Need a fast simulation that predicts the galaxy data sufficiently well

� FastPM: PM which enforces correct evolution on large scales even with few 
time steps (typical simulation 1000+ steps)

� Kick-Drift scheme is exact on Zeldovich (different from usual PM)

� Strong scaling tested to 104 cores (pencil FFTs)

� 5-10 time steps already give very good results: 100 CPU hours (minutes of real 
time) for 1010 particles

25

Feng etal 2016



FastPM performance on halos
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Comparison against 
very high resolution 
simulation: 1-2% 
accurate for 5 time 
steps using  
abundance matching 
of halos

Elena Massara, 
Yu Feng, US



27

Reconstruction of initial conditions of our universe 
and final density map for a toy dark matter case 
with low noise (with Grigor Aslanyan, Yu Feng
and Chirag Modi): 230 simulation calls

FINAL (nonlinear)                            INITIAL (linear)



� “high” noise 
(P=1000Mpc/h^
3), low 
smoothing

� 750Mpc/h box, 
128^3 

� High k 
suppressed

� Slices 6Mpc/h
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� Low noise, low 
smoothing

� 750Mpc/h box, 
128^3 

� reconstructs     
well all scales
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� 2d projections 
(weak lensing)

� No 
reconstruction 
along line of 
sight, as 
expected
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� 2d projections 
(weak lensing)

� Good 
reconstruction 
transverse to  
line of sight

� More gaussian
because of 
wider 
projection
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High vs low 
noise
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Quantifying the results: transfer 
function and corr. coeff.  
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From optimal map to optimal 
power spectrum

� Integrate out the modes around the minimum variance map 
(multivariate gaussian integrals)

� Maximize L(d|Q) wrt S(Q) leads to optimal quadratic estimator

� S is inside D and s^
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Newton’s method to  maximum likelihood
� S: summary statistics, power spectrum, compressed into 

bandpowers Ql

� Fisher matrix

� To solve for QML need the to average squares of minimum 
variance map s^ within bandpower : D has dropped out

� Also need Fisher matrix (window and covariance matrix) 
and bias bl 36



“Near-optimal” power spectrum 
estimator

� Can be constructed from minimum variance map s^

� Fisher matrix gives bandpower mixing and covariance matrix

� Noise bias bl: squaring noisy modes creates noise bias

� Fisher matrix constructed from bandpower responses
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Near optimal power spectrum 
reconstruction: example

� with Grigor Aslanyan, Yu 
Feng and Chirag Modi)

� Unbiased P(k) 
reconstruction, with 
linear wiggles at high k

� This is the best possible 
reconstruction of 
baryonic oscillations or 
other features

� Noise prevents high k 
reconstruction
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Fisher matrix: inverse covariance 
and window matrix

� For periodic box it is 
diagonal even at high k

� At high k noise cause the 
solution to go to zero 

� In the absence of noise we 
would be able to 
reconstruct much better

39



This approach allows for a unification 
of all LSS methods/observables

� Easy to add more data d: need a model F(s) and its error (noise)

� Can be directly applied to weak lensing

� Any data can be added: galaxy magnitudes/colors, redshifts, SZ, X-
rays, 2d or 1d (spectra)

� Data with less scatter relative to dark matter are better: what is the 
lowest scatter observable (stellar mass? Luminosity and colors?)

� Automatically includes all LSS methods: e.g. cluster abundance, 
voids…

� Key is probabilistic description of data and forward modeling

� But how do we handle point objects (e.g. galaxies)? 
41



How to make galaxies differentiable?
� Galaxies appear to be discrete points, and  this is not (easily) 

differentiable

� Halo finders are complicated and not (easily) differentiable

� Instead we want  to use local properties of dark matter density and 
velocity to define galaxy observables. These may even be better 
tracers

� Neural networks are differentiable and can be trained on discrete 
objects: we feed halo mass or position and the DM information

� First results (Modi etal, in prep)
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Reconstruction from halos
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Power spectrum from halos
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These results are encouraging, but more work is needed (RSD…)



Can we push beyond shell crossing?

� After shell crossing the mapping becomes non-injective: multiple 
realizations of initial field give identical final density (simple case 
study: 1d Zeldovich)

� The method selects the solution with the lowest power, which may 
not be the correct solution: fundamental limit?

� Adding velocity information breaks the degeneracies: phase space 
dynamics is fully reversible. However, coarse graining due to finite 
sampling or noise destroys information. 

� The pre shell-crossing modes are unaffected

� Numerically due to the non-convex nature of posterior it is very 
difficult to converge to the global minimum 48

with Y. Feng and M. Zaldarriaga



Shell crossings: 1-d Zeldovich
� Reconstructed solution is smoother than true solution 

even in absence of noise

� What is optimal analysis in this case? 
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CMB lensing vs galaxies

50

Schmittfull & US 2017

Galaxies are 3d (spectro) or 2.5d (photoz), CMB lensing is 2d
Can we get the best of both? Yes, with cross-correlation



LSST traces CMB kappa to z=4
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higher redshift, we assume dn/dz = 0.14 arcmin�2 at
5  z  6, and dn/dz = 0.014 arcmin�2 at 6  z  7.
MS: Justify using https://arxiv.org/pdf/1704.06535.pdf
We split the galaxy sample into six broad to-
mographic redshift bins given by (zmin, zmax) 2
{(0, 0.5), (0.5, 1), (1, 2), (2, 3), (3, 4), (4, 7)}, noting that
there is no need for finer redshift bins in our application
because the CMB lensing redshift kernel is very broad,
although it is important to use more than one redshift
bin to be able to re-weight the redshift bins to match
the CMB lensing kernel. Assuming a survey area of
18, 000 deg2, the total number of galaxies in each red-
shift bin is Ntot 2 {9.3⇥ 108, 1.55⇥ 109, 1.40⇥ 109, 2.4⇥
108, 9.4 ⇥ 107, 4.3 ⇥ 107}, i.e. there are about a billion
objects in each of the low-redshift bins, and more than
40 million objects at z > 4. MS: what sky fraction?
compare against goldrush paper and cite We assume a
fiducial linear galaxy bias of b(z) = 1 + z following for
example [? ].

MS: OLD: Note that we do not use realistic sky ar-
eas, but instead assume fsky = 0.5 for all surveys. Could
improve code to use correct sky areas, but not sure how
to get covariance of two surveys with di↵erent sky ar-
eas. Could argue that results are cleaner with fixed and
equal fsky because can then simply rescale constraints for
di↵erent fsky, maybe? MS: We do not include photo-z
errors. Hope this is not too bad because lensing kernel is
very broad. Could matter for tracer cross tracer though.
Maybe include photo z errors in forecasts?

FIG. 3. Redshift distribution and tomographic redshift bins.
For CMB lensing (solid black), we plot the dn/dz that would
yield C if integrated over, with arbitrary normalization. It
peaks at z ' 2 and drops at lower and higher z, although this
is di�cult to see because of the logarithmic vertical axis.
MS: check again if CMB lensing dndz really gives correct
CMB lensing Ckappa.

C. DESI number counts

N
BGS
tot = 9.64e + 06 Say how we split in redshift bins

etc.

D. SDSS number counts

Say how we split in redshift bins etc.

E. CMB lensing-LSS correlation coe�cient

The performance of the cross-correlation analyses de-
pends on the cross-correlation coe�cient

r` =
Ĉ

g
`q

Ĉ

` Ĉ

gg
`

(8)

between the reconstructed CMB lensing map  and ob-
served galaxy samples g, where the power spectra Ĉ in-
clude shot noise and lensing reconstruction noise. Fig. 4
shows the correlation coe�cient between LSST samples
and lensing reconstruction with CMB-S4 noise levels.
The low-redshift LSST sample at 0  z  0.5 peaks at
75% correlation with  on very large scales, ` = 2, and
drops rapidly with higher `. For higher redshift LSST
samples, the peak correlation with the lensing map is
at higher `, because a fixed physical scale is mapped to
smaller angular scale at higher redshift. We also show
the low-redshift DESI BGS sample in Fig. 4 because this
also has a substantial correlation with , reaching 60%
at low `.

For any given angular scale `, the lensing field gets
contributions from a wide range of scales and redshifts,
satisfying k �(z) = `. Therefore, combining the LSS sam-
ples, which probe di↵erent scales and redshifts, increases
the correlation coe�cient with . This is shown by the
black line in Fig. 4, where the LSST and DESI BGS sam-
ples are optimally combined to maximize the correlation
coe�cient of the combined tracer with the lensing map
(see Ref. [10] for a derivation of these weights). The
combined LSS sample is more than 94% correlated with
the CMB-S4 lensing reconstruction at `  20, reaching a
peak correlation of 96%. This high correlation coe�cient
motivates exploring sample variance cancellation tech-
niques. On smaller scales, the cross-correlation drops,
but is still 60% at ` = 1000.

IV. POWER SPECTRUM SIGNALS AND
SIGNAL-TO-NOISE

V. SIMPLE ORDER OF MAGNITUDE
ESTIMATES

The goal of this section is to give order of magnitude es-
timates for the parameter constraints computed in more
detail in the rest of the paper.



Cross-correlation coefficient 
reaches 0.95
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Primordial non-gaussianity
� Local model 

� Simple single field slow roll inflation predicts fnl=0

� Inflationary models beyond single field slow roll can give fnl>1?

� Alternatives to inflation generically give fnl>>1?

� Other models give different angular dependence of bispectrum

� Scale dependent bias (Dalal etal 2008)

€ 

Φ x( ) =ΦG x( ) + fNLΦG
2 x( )



Sampling variance cancellation
� The response scales as b-1: so if we compare biased 

galaxies with b>1 to unbiased galaxies or dark matter (b=1) 
we cancel sampling variance (US 2009)
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fnl with several tracers: simulations
Hamaus, US, Desjacques 2011

Responses need to be calibrated by simulations



Joint kk, kg, gg analysis: 
sampling variance dominated at low l
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Expected fnl constraints: 
factor of 2 improvement from sampling variance

predicted error below 1 

58
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MS: maybe copy more old notes here
The full Fisher analysis above automatically includes

sample variance cancellation, because it includes over-
sampling of the same modes by including cross-spectra
between all observed fields and the covariance between
all measurable spectra. To test how much the sampling
variance cancellation aspect contributes to the total pa-
rameter constraints, we compare against a modified anal-
ysis that tries to exclude sample variance cancellation.
In that analysis we assume that each field (CMB lensing
map or galaxy redshift bin) is observed on its own patch
of sky, so that there is no sky overlap between any two
observed fields. Di↵erent observed fields then probe dif-
ferent volumes, so that no Fourier mode in the Universe is
probed by more than one measurement, and no sample
variance cancellation can be exploited. We implement
this by dropping all cross-spectra between two di↵erent
fields from the data vector and setting all cross-spectra
to zero in covariances, i.e.

No sky overlap: d` =
�
C

11
` , C

22
` , . . . , C

NN
`

�
,

cov
⇣
C

ii
` , C

jj
`

⌘
= �ij

2

2`+ 1
(Cii

` )
2
, (30)

excluding, e.g., hgLSSTz=0�0.5,CMBi and hgLSSTz=0�0.5, g
DESI
BGS i

from the data vector and covariance. We then compute
the improvement factor due to sample variance cancella-
tion by comparing the analysis with perfect sky overlap
between all fields against that with no sky overlap be-
tween any two fields. 2

MS: Mention discussion of combined maps and spectra
in appendix.

VI. FISHER ANALYSIS RESULTS

A. Primordial non-Gaussianity

1. Summary of setup

We first compute the precision of the non-Gaussian
amplitude fNL expected from a joint analysis of CMB-S4

2 A potential concern of the “no sample variance cancellation case”
without sky overlap is that we increase the total probed volume
by assuming that di↵erent fields are observed on di↵erent patches
of the sky, increasing the number of independent Fourier modes
that are measured. For example, for two samples, working on two
separate patches increases the total number of Fourier modes by
a factor two, which should reduce sample variance error bars
by a factor

p
2. This can unintentionally improve parameter

constraints, for example when constraining �8 assuming fixed
bias parameters. The “no sample variance cancellation” analysis
might therefore be better than it should be, so that we might un-
derestimate the true improvement factors due to sample variance
cancellation. A practical argument for comparing analyses with
and without sky overlap is that this can inform observing strate-
gies of CMB-S4 and LSST, quantifying how much gain there is if
the surveys are on the same patch of sky. MS: Does Pat agree?

FIG. 9. MS: Date: 20 Aug 2017
Constraints on primordial non-Gaussianity amplitude fNL as
a function of minimum wavenumber `min, for di↵erent LSS
surveys (colors), with full sky overlap between observations
(solid), and with no overlap between any two observed fields
(dashed), assuming fixed `max = 500 in all cases. As in
all other fNL plots, we marginalize over one bias amplitude
parameter per galaxy redshift bin and over f fake

NL defined in
Eq. (??) (otherwise there would be no degradation for non-
overlapping sky patches). Integrations along the line of sight
are computed exactly at `  50, and using the Limber ap-
proximation at ` > 50 where it matches the exact result.
MS: so having sky overlap just breaks a degeneracy that we in-
troduced by hand? is this really sample variance cancellation
then? MS: If marginalizing over �8, constraints without sky
overlap degrade quite a bit if `min & 5, but it does not a↵ect
constraints with sky overlap. So again, having sky overlap
helps to break degeneracies that are present when marginal-
izing over �8. Maybe mention.
MS: improvement from having sky overlap only helps if we
marginalize over f fake

NL . If not marginalizing over f fake

NL , we
can get full constraint directly from gg and sky overlap and
cross-correlation do not help.

lensing and galaxy clustering in SDSS, DESI and LSST.
We use the data vector (C

, C
gi , Cgigj ) in the Fisher

analysis described above, where gi are broad galaxy red-
shift bins suitable for cross-correlation with CMB lensing
(see Section ??). Throughout this section, we marginal-
ize over one bias amplitude parameter per galaxy redshift
bin and over the f fake

NL parameter rescaling the total mat-
ter power spectrum. To accurately model the large-scale
fNL signal we compute exact line-of-sight integrals on
large scales `  50 following Appendix A 2 b, and use the
Limber approximation only on small scales ` > 50.

2. Baseline results

Under the above assumptions, Fig. 9 shows the ex-
pected fNL precision as a function of the minimum multi-



What else can we do with it? 
Tracing amplitude with redshift

59

� Very tight errors, current analysis assumes linear bias

� Cross-correlations essential to have redshift dependence



Summary
� LSS can probe fundamental physics in many ways: amplitude 

versus redshift, shape of P(k)

� LSS is not only probing large scales, but scales as small as 
100AU (1010km) using SN1A lensing

� LSS is nonlinear, and optimal statistical analysis has many 
challenges that next generation of analyses should address

� The problem of optimal analysis of LSS remains open, but we 
think we have a clear, but expensive path forward

� Combining weak lensing with galaxy clustering gives us best of 
both worlds (DM modes in 3d)

� If we succeed we will have not millions, but billions of linear 
modes to play with
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