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Motivation

LSS can probe fundamental physics:

Growth of structure and BAO constrain dark energy and modified
gravity

Growth of structure, shape of power spectrum and lensing versus
galaxy clustering constrains neutrino mass and number of effective
neutrino families

Inflation parameters (slope, running) from power spectrum shape

Features in power spectrum constrain some models of inflation
Primordial non-gaussianity probes inflation models and alternatives

LSS can probe the nature of dark matter (warm or fuzzy dark matter,
PBH as dark matter)




Cosmology meets statistics

Main theme of the talk: using the best possible statistical
analysis can greatly enhance statistical power of large
scale structure (LSS)

Example 1: PBH DM constraints from SN1A statistical
analysis (Zumalacarrequi & US 2017)

Example 2: towards “optimal” analysis of LSS (US et al
pYokiy))

Example 3: combining (CMB) lensing and LSS (Schmittfull
& US 2017)




LIGO black holes as dark matter?

Intriguing: not completely ruled out? (Bird etal, Sasaki etal)
LIGO rate gives very tight constraint (Misao's talk)

Clustering of BH and wider BH mass distribution has been
invoked to counter some of these limits (Garcia-Bellido etal)
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Perhaps we do not need another method to rule this model
out, but | will present a new method that is very clean

® Basicidea: lensing changes SN1A as a standard candle




Lensing by compact objects  “

Magnifiaction and distance

D(zap’) =

SNe distance modulus
m = 5log;o(Dr) + 25 — 2.5logyo(1 + Ap)

a=10 (no PBH)
-== =085 (all PBH)

PBH signatures (magnification PDF) T (s ) ot 1= 03

e Most lines of sight: ~ empty universe A
= 2 . :i \\\\ agnification
Ap=(D/De)"=1<0 S NN

» Few lines of sight: high magnification

P(Ap> 1)~ Ap~>

PBH-only (Rauch '91) convolved with LSS (Seljak & Holz '99)




Strong redshift dependence

Signatures: look for redshift
dependent change of PDF

Look for peak PDF away from
correct cosmology prediction
(degenerate with cosmology,
use external priors)

Look for (absence of) high
magnification events

p(p, z, ) at z=10.8
—— a=0 (no PBH)
--— a=0.85 (all PBH)

Magnification
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Pr(1; z, ) convolved with Gaussian o = 0.15

Ap (O..15/cru)




Statistical analysis

® [nformation isin full (redshift dependent) PDF: we can adopt
likelihood analysis with marginalization over all nuisance
parameters (noise, LSS, SN stretch and color...): hierarchical
Bayesian analysis with analytic marginalizations

® Analytic marginalization: numerical integrals of convolutions of
PBH signal with noise, with LSS, with intrinsic SN PDF, all
redshift dependent

I

l—«
Pr(p; 2, 0) = du'Prss(p',z)Pelp — p'(1 — o), ap]
0

Lz(é’aa) =/d,u,PL(;l,;,Z,;,Oé)PSNe(mz',O'i,Zi,,U,,O)

® SNe are independent, so likelihood is L=ITL.




SNe population

myp, = 5logg (Dr(2)) — 2.51og9(1 + Ap) + 25

Lz(é: a) = /d[,LPL(A,U; y s a)PSNe(mia T3y 2y Mith, 9)

SNe distribution

1
zi = — (Mob; — Men(2i, Ap) — 1)
A

of = gb,z'+k2 —07.(2)

Psne(z) = N'( \%)) exp (_%|x|2—k4)

6 O mean (), intrinsic scatter (k2), skewness (k3), kurtosis (k4),

standardization mep; = mp; — (M — aX1; + BC;)




Probability density function

3.5 1

3.0 1

2.5 1

2 €[0.90, 1.5]
NjyLa =34
Nunion = 48

2.0 1

1.5 -

1.0 -

0.5 1

0.0 1

—0.6 ~0.4 ~0.2 0.0 0.2 0.4

3.5

3.0 1 z € [0.50,0.9]

- Njpa = 151
Nunion = 119

2.0 1

1.5 1

—0.6 —0.4 —-0.2 0.0 0.2 0.4
— a=0.0
309 === o=1.0 z € [0.00,0.5]

—0.2 0.0 0.2
Ap (0.15/0,)

NjLa = 555
Nunion = 412

0.4

0.6

10t

10°

1071

102

10t

10°

101

103

102

10?

10°

101

Cumulative Ngne

z2=0.7

—————————————————

0.8 1.0

0.0

z2=02

50

0.2 0.4 0.6 0.8 1.0
Ap x (0.15/0,)




Outliers

® SN folks remove outliers

e
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1 sub-luminous

B
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® Most outliers are fainter, not
brighter
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® No evidence of outliers

getting more frequent with | - Una
redshift
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Results

. LA
B Union 2.1
0 Union + all outliers

0.16 -0.08 0.00 0.08 08 00 08 16 24 8 . . 1.6 025 0.00 025 0.50 0.2
m 100 k2 2 kq a(PBH)




Matter density prior

® We use Planck

CMB+SDSS BAO
BN JLA (no prior) I Union (no prior)
® We can also relax this W Union 2.1

prior: not very important

Suggests tails of pdf more
important than peak
(since peak PDF is
correlated with SN
cosmology)

0.240.28 0.32 0.36 0.40 0.2 04 06 08

Qu a (PBH)




Absence of strongly
magnified events

For a=1 there are 10 events
predicted with Au>0.4, none
are observed

P(0o,mean=10)= exp(-10)
=exp(-20/2), so this is about
4.5 sigma significance

Absence of events is very
constraining!

Very robust prediction

Cumulative Ngne

0.2 0.4
Ap x (0.15/0,)




Finite size of SN

The constraints do not have an upper mass limit and are
independent of mass distribution if Einstein radius larger than
SN1A size

Lower mass limit determined by the intrinsic size of SN1A
photosphere relative to mean Einstein radius of PBH averaged
along the line of sight

These effects kick in first at high magnifications (smallest
impact parameter) and last for low magnification lines of sight
(far from PBH)

SN1A: 20 days peak, 10,000km/s expansion, size of order
1.5x10%*°km, Einstein radius of order 103M_

We did a detailed analysis following Pei 1998




® These finite size effects start to
matter around 102M, ,and below

® The predicted number of highly
magnified events is suppressed

® There are no useful constraints for
PBH mass below 10"“M_,,, whose
Einstein radius is small compared to
SN1A size

z)dA’" (Cumulative)
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PBH mass range and constraints

Eridanos !‘ 3

SNe lensing
(this work)
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These constraints are on total DM fraction, independent of
the mass distribution

The constraints state that a<0.4 in PBG with M>10*M_




Statistical analysis of LSS

LSS is very non-Gaussian: nonlinear evolution of structure
How do we analyze such data?

Workhorse: 2-point function (power spectrum or correlation
function)

Non-linear

Also need its covariance matrix (4-point function)

Beyond power spectrum: higher order correlations (3-point
etc)

Peaks counting (clusters, or just density peaks)
Voids, nonlinear transforms (clipping, lognormal...)
Topological measures (genus...)

BAO reconstruction

Unclear how to combine these different statistics (mock sims)

Nongaussian: need covariance matrix

Do we just keep trying with new statistics or is there are way
to extract maximal information and prove it?

Can we convert 3d NL into 3d linear?




Example: features in P(k)

® Features are destroyed in nonlinear P(k) at high k due to

nonlinear evolution

® Can we recover it back from non-Gaussian information?
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A new approach: statistical Bayesian

analysis with full forward model
(w.Yu Feng, G. Aslanyan, C. Modi

Map making in cosmology: unique in that prior is well defined

Use data likelihood together with the prior and forward model to maximize
posterior prior data likelihood

l < |
L(s|d) = (2m)~M+N)/2 det(S) ~1/2 det(IN) /% exp (—% {sTS'ls +[d—F(s)]'N~'[d - F(s)]})

Prior: gaussian initial density Fourier modes s with linear power spectrum S,
acts as a reqgularization

Forward model F(s): take initial density modes and evolve them to final
galaxy positions F(s). This is a full simulation

Data d: anything can be used: galaxy position, magnitudes, colors, noisy
spectroscopy

[} [} [l [} » [} [} [} 2]
Data likelihood: often gaussian, diagonal in real space, with noise variance N




Solving full nonlinear problem: how to make
the best possible MAP?

® To getthe minimum variance map: maximize a posterior
(MAP), ie solve the optimization problem

2

L(s|d) = (2m)~M+N)/2 det(S)~1/% det(N) /2 exp (-3 {sTs—ls +[d—F(s)]'N~1[d— F(s)]})

How to predict data F(s) given initial modes s: run a
simulation for each configuration of s

Typical size: 3Gpc”3 volume, resolution of 2Mpc: 10 cells

How to find the maximum posterior for 10'° modes s?
Curse of dimensionality: V=2N, N=10%°, means we cannot
search blindly




How to find MAP in 10%° parameter space?
® Maximize posterior=minimize cost function

X*(8)=s'S7's+[d— F(s)]'N"'[d— F(s)|@ x*(s) = xi +29As+ AsDAs
gradient

2
D=1

= — g1 TN F"[d — ;
2 0s0s ST+ R R+ [d — F(8m)] Hessian

Newton’s method

Need a gradient R;;: derivative of a tull simulated data wrt all mnitial
modes s

Also need nonlinear model F(s): a full simulation

Need to compute fast F(s) and its gradient

Our approach: try any optimizer that exists. Currently we are doing
Gauss Newton with trust region and conjugate gradient

Needs gradients




Gradlent with backpropagation

One needs analytic derivative of every final data point
with respect to every initial mode!

Chain rule, applied to kick and drift PM operators

Matrix products, all time steps need to be stored for
backward prop.

Yu Feng slide

The basics of AD start from the chain rule of differentiation, which
claims the following: Function Evaluation

)
g;;e have two functions y = f(x) and z = g(y) = g(f(x))., r0 = 7”1 / \ / F(x)
0z; _ 0z; 0}’k _ 0z; . a}’k
g om s CRURCR®

We see that the chain rule converts a gradient of nested functions to

a sequence of tensor products. Backpropagation

-€
Let's nqw consider a scalar that comes from the nested evaluation of OF OF OF OF OF
n functions, — 5

(‘3—:cj or; 87";3 ort

or;
FG) = (710 - 07) @) = £ (F100) =), NNV

i maps to concepts in real-world problems: (‘I) [f 1D <<I) [f 2D ((I) [f 3D (@[ f 4]) p




Cost [CPU-hours]

Fast forward model: FastPM

Need a fast simulation that predicts the galaxy data sufficiently well

FastPM: PM which enforces correct evolution on large scales even with few
time steps (typical simulation 2000+ steps)

Kick-Drift scheme is exact on Zeldovich (different from usual PM)
Strong scaling tested to 10% cores (pencil FFTs)

5-10 time steps already give very good results: 200 CPU hours (minutes of real
time) for 10%° particles

Feng etal 2016
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FastPM performance on halos

1 Gyear Time Today

Elena Massara,
Yu Feng, US

Comparison against

very high resolution
simulation: 1-2%
accurate for 5 time
steps using
abundance matching
of halos

107!
k [AMpc~1]




Reconstruction of initial conditions of our universe
and final density map for a toy dark matter case
with low noise (with Grigor Aslanyan, Yu Feng
and Chirag Modi): 230 simulation calls




*high” noise
(P=2000Mpc/h”
3), low
smoothing

750Mpc/h box,
12873

High k
suppressed

Slices 6Mpc/h

400
linear recon

NL truth

400
NL recon




NL truth

® [ow noise, low
smoothing

750Mpc/h box,

128’\3 200 400
linear recon

reconstructs
well all scales




NL truth

® >d projections
(weak lensing)

No
reconstruction
along line of

j h 400 400
5'9 tl as linear recon NL recon

expected




2d projections
(weak lensing)

Good
reconstruction
transverse to
line of sight

More gaussian
because of
wider
projection

400
linear recon

400
NL recon




H i g h VS | OW Dataset name Noise Power (Mpc/h®) Noise seed Truth seed
N2 1 1234 181170
i N3 10 1234 181170
n O I S e N4 100 1234 181170
1000 1234 181170

Recon NL Recon LN NL Residual




Quantifying the results: transfer

function and corr. coeff.

LN Transfer Function

LN Cross Coefficient
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From optimal map to optimal
power spectrum

Integrate out the modes around the minimum variance map
(multivariate gaussian integrals)

= /P(s,d — F(s))ds

= (27) " M+N)/2 det(S) /2 det(IN) ~1/2 exp (%[éTDé —d N—ld']) X

I exp{—%[s _ 3" D[s — 3]}dMs
= (27) M2 det(SN D)1/ exp (%[sﬂus —d N—ld']) .

® Maximize L(d|®) wrt S(®) leads to optimal quadratic estimator

St : _18X2 _ q-1 far—1
® SisinsideDands” D=5, =S +RIN'R

aL((—)
5 @z %: 76, 0 o 59,591,.

InL(®+ 60)=InL(O) + Z




Newton’s method to maximum likelihood

® S:summary statistics, power spectrum, compressed into
bandpowers O,

— 261’ ©) _ I1,S 13738111, — b, dIn(SND)
00, by = 5'61' T80,

A 1
(FO®), = §[HIS_1.§T.§S_1H1 — by

. . 9°L(O©)
Fisher matrix Paies (891391/>

To solve for QML need the to average squares of minimum
variance map s” within bandpower : D has dropped out

Also need Fisher matrix (window and covariance matrix)
and bias b,




|II

“"Near-optimal” power spectrum
estimator

Can be constructed from minimum variance map s”

(Fé)[ = %[HIS‘lé'féS‘lH, - bl]

Fisher matrix gives bandpower mixing and covariance matrix

Noise bias b;: squaring noisy modes creates noise bias

Fisher matrix constructed from bandpower responses




Near optimal power spectrum
reconstruction: example

with Grigor Aslanyan, Yu
Feng and Chirag Modi) ~-- Best fit

e Truth
—— Linear theory

Unbiased P(k) —== Non-linear damping
reconstruction, with ¢ Reconstruction
linear wiggles at high k

This is the best possible
reconstruction of
baryonic oscillations or
other features

k (P(k) / Fiducial - 1)

Noise prevents high k
reconstruction




Fisher matrix: inverse covariance
and window matrix

® For periodic boxitis
diagonal even at high k

® At high k noise cause the
solution to go to zero

® |nthe absence of noise we
would be able to
reconstruct much better




This approach allows for a unification
of all LSS methods/observables

Easy to add more data d: need a model F(s) and its error (noise)
Can be directly applied to weak lensing

Any data can be added: galaxy magnitudes/colors, redshifts, SZ, X-
rays, 2d or 1d (spectra)

Data with less scatter relative to dark matter are better: what is the
lowest scatter observable (stellar mass? Luminosity and colors?)

Automatically includes all LSS methods: e.g. cluster abundance,
voids...

Key is probabilistic description of data and forward modeling

But how do we handle point objects (e.g. galaxies)?




How to make galaxies differentiable?

Galaxies appear to be discrete points, and this is not (easily)
differentiable

Halo finders are complicated and not (easily) differentiable

Instead we want to use local properties of dark matter density and
velocity to define galaxy observables. These may even be better

tracers

Neural networks are differentiable and can be trained on discrete
objects: we feed halo mass or position and the DM information

First results (Modi etal, in prep)




Neural Networks

e Deep/Convolution NNs AN output layer
e Simpler ones - Fully Connected Networks inputiayer
e Classification (NNp) for position

hidden layer 1 hidden layer 2

o Position mask z: ~-++ linear —— logistic
o 1if aneighboring cell has halo i T relu —— logistic 3x
o relu & logistic activation functions - - elu
e Regression (NNm) for mass -
o Halo mass (CIC convolved) at given point 0.5 -
o elu &linear activation functions 0.0
e Model =NNp * NNm 05
o Y=Ff(WX+Db) X0




Z slice -1 Z slice 0 Zslicel

Ll &

ldentifying Features

Anything you think affects halo formation! 100
e Density field at different smoothings: [, > . “ H N
DR‘I’” 1 g 1 1 2 1 1 g 1 2
e Difference of Gaussian smoothings: [, - [,
e Tidal field, velocity field, gradients 04 —

-~ 0=1.60

0.3 1 —— difference

NNp feature array - non local features

0.2 1

e value at (3*3*3 =) 27 neighbors of every point =
e |ocate maxima with 3 points 00

These are similar to features identified by CNNSs.




What are the networks doing?

FOF Halo Position (CIC)
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Reconstruction from halos

Initial Field Final Field Halo Mass Field

=
ke
+J
O
o
| -
p )
0
(o)
O
Q
o




Power spectrum from halos

Reconstruction

Initial Matter Final Matter

(=}

Halo Field

o
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Cross Correlation
o

o
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Il

—— N=5x10"% M,=10"
| —— Nn=1073,M,=10"

~= N=1073,M,=10"

10-1

10-1

-
—

e
o

o
®

o
o

Transfer Function

o
FS

o
[N

10~ 0 10~
k (h/Mpc) k (h/Mpc)

10-!
k (h/Mpc)

These results are encouraging, but more work 1s needed (RSD...)




Can we push beyond shell crossing?
with Y. Feng and M. Zaldarriaga

After shell crossing the mapping becomes non-injective: multiple
realizations of initial field give identical final density (simple case
study: 1d Zeldovich)

The method selects the solution with the lowest power, which may
not be the correct solution: fundamental limit?

Adding velocity information breaks the degeneracies: phase space
dynamics is fully reversible. However, coarse graining due to finite
sampling or noise destroys information.

The pre shell-crossing modes are unaffected

Numerically due to the non-convex nature of posterior it is very
difficult to converge to the global minimum




Shell crossings: 1-d Zeldovich

® Reconstructed solution is smoother than true solution
even in absence of noise

e What is optimal analysis in this case?
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CMB lensing vs galaxies

Schmittfull & US 2017

CMB lensing galaxies

L]
C © q C 9 9 q OLO
LlAX l ) ([ ()] ] O/

Can we get the best of both? Yes, with cross-correlation




LSST traces CMB kappa to z=4

LSSTz<i27C3ym)
DESI BGS

RCMB




Cross-correlation coefficient

reaches 0.95

Combined DESI+LSST
sample more than 90%
correlated with CMB-S4
lensing at L<100

[includes shot noise and
lensing noise]

Correlation with koyp [%0]

20 / R\

DESI BGS 2= 5




Primordial non-gaussianity
Local model (I)(x) = (IDG(x) + fNL(I)é(x)
Simple single field slow roll inflation predicts fai=0

Inflationary models beyond single field slow roll can give fni>1?

Alternatives to inflation generically give fri>>1?

Other models give different angular dependence of bispectrum

Scale dependent bias (Dalal etal 2008)




Sampling variance cancellation

® The response scales as b-1: so if we compare biased
galaxies with b>1 to unbiased galaxies or dark matter (b=1)
we cancel sampling variance (US 2009)

Galaxies

CMB lensing

] ] ] ]

| | | |

8§ 10 12 14 16 18 6 8 10 12 14 16 18 20
(4 4




f with several tracers: simulations
Hamaus, US, Desjacques 2011

ML

weighted FOF-halos
b, = 1.73, ¢ = 307.2 h*Mpc®

+80.0 =1.0 |
-1.3  +1.1 4
-85.4 =1.1

Responses need to be calibrated by simulations




Joint Kk, Kg, gg analysis:

sampling variance dominated at low |

e | : B e TR R | i G a<ie | E
— LSST <27 (3yr) 2=0-0.5 ]

A —  LSST <27 (3yr) 2=0.5-1 |
B - LSST i<27 (3yr) z=1-2
5 LSST i<27 (3yr) 2=2-3
LSST i<27 (3yr) 2=3-4
LSST i<27 (3yr) 2=4-7




Expected f , constraints:

factor of 2 improvement from sampling variance

redicted error below 1

dashed: no sky overlap, fgy =0.5, £1,.x = 500, no Limber

kg4 tSDSS+DESI
: +LSST i <25,2<4

- — +LSSTi<27,3yr,z<4
- —— +LSST <27, 3yr,z<7

2 10 20

emin




What else can we do with it?
Tracing amplitude with redshift

® Very tight errors, current analysis assumes linear bias

® (Cross-correlations essential to have redshift dependence

og(2z=2-3) og(z=4-7)
og(z=3-4) og(z=7-100)




Summary

LSS can probe fundamental physics in many ways: amplitude
versus redshift, shape of P(k)

LSS is not only probing large scales, but scales as small as
100AU (20*°km) using SN1A lensing

LSS is nonlinear, and optimal statistical analysis has many
challenges that next generation of analyses should address

The problem of optimal analysis of LSS remains open, but we
think we have a clear, but expensive path forward

Combining weak lensing with galaxy clustering gives us best of
both worlds (DM modes in 3d)

If we succeed we will have not millions, but billions of linear
modes to play with




