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Introduction: rotational motion of galaxies

NGC 5457

Most galaxies in the Universe rotate.
The rotation axes of neighboring
galaxies are correlated.
New observations find alignments of
jets in radio galaxies at z = 1 out to
(10-20) Mpc
(A. Taylor & P. Jagannathan (2016)).

Can these vortical motions be explained within standard ΛCDM?
Can we learn something about cosmology by observing them?
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Introduction: vorticity in cosmology

At first order in perturbation theory the velocity field of dark matter is a gradient
field with vanishing vorticity.

Helmholtz’s (third) theorem implies that no vorticity is generated in a perfect fluid
hence within the perfect fluid approximation the velocity remains a gradient field.
This theorem is valid also in General Relativity.
Therefore, within Lagrangian or Eulerian, Relativistic or Newtonian perturbation
theory, no vorticity is generated at any order.
This is not true for the momentum (sometimes called ’mass weighted velocity’)
which acquires a rotational component at second order in perturbation theory.
But CDM is not a (perfect) fluid. It is a collection of free streaming particles which
can be accurately described with the Vlasov equation.
This distinction is important since a fluid assigns to a given point in space a fixed
value of the velocity where as the distribution in phase space allows the full velocity
space in each volume element.
In a fluid description shell (orbit)-crossing is a singular process while in phase space
it is regular.
N-body simulations can accommodate shell crossing without problem, they are
actually nothing else than a poor woman’s Vlasov equation solver.
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Perturbative Results: Vlasov eq.

One might think that a perturbative approach to the Vlasov equation could be successful
but...

v v

... the flow of CMD is very cold. Contrary to the case of hot dark matter, a perturbative
treatment using the Vlasov equation is not adequate for CDM.
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Perturbative Results: velocity dispersion

But one can go to higher moments of the Vlasov equation, beyond the 0th and first
moments which yield the continuity and Euler equations for perfect fluids.

∂tδ +∇((1 + δ)v) = 0 ,(
∂t + v i∂i

)
vj +Hvj + ∂j Φ + 1

ρ
∂i (ρσij ) = 0 ,

(∂t + v k∂k )σij + 2Hσij + σik∂kv j + σjk∂kv i = 0
σijk = 0

The curl of the Euler eqn. then gives, ω = ∇ ∧ v,

∂ω

dt +Hω −∇ ∧ [v ∧ ω] = −∇ ∧
(

1
ρ
∇ (ρσ)

)
.

To lowest order in perturbation theory, the velocity dispersion take the form
σij = σ0

3 a−2δij .
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Perturbative Results: vorticity power spectrum

We have solved the vorticity equation to lowest non-vanishing order
(Cusin, Tansella & RD, 2017).

〈ω(2)
i (k, t)ω(2) ∗

j (k′, t)〉 = (2π)3 (δij − k̂i k̂j
)
δ(k− k′)Pω(k, t) .

Pω(k) = 1
9
σ2

0D+(t)
H2

0Ωm

∫
d3w

(2π)3

(
w · (k− w)
w2|k− w|2

)2

|w ∧ k|2
[
2k · w− k2]2 Pδ(w)Pδ(|k− w|)

Pω(k, t) k→0→ k4D+(t)
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Perturbative Results: vorticity power spectrum

The rotational velocity spectrum, PR = k−2Pω compared to the gradient velocity
spectrum PG = k−2Pθ, θ = ∇ · v.
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Vorticity from N-body simulations: Pueblas et al.

From
Pueblas & Scoccimarro ’09
Using a Delauny tessellation for the
velocity field.

Name Lbox Npart mpar Nrealizations softening

LR1280 1280 6403 59.94 50 0.07

LR512 512 2563 59.94 1 0.2

MR512 512 5123 7.49 1 0.04

MR320 320 6403 0.94 1 0.015

HR160 160 6403 0.12 1 0.00625

SHR160 160 10243 0.029 1 0.00625

TABLE I: All our simulations have Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.046, h = 0.72 and σ8(z = 0) = 0.9. They were run
using the Gadget2 code [47]. Lbox is in units of h−1 Mpc and mpar is the particle mass in units of 1010h−1M⊙.

fected by the finite volume of the simulation (see
Fig. 6 in [48]). For such boxes, the damping of the
linear spectrum by the propagator is much less se-
vere, and while the mode coupling power is some-
what larger, it cannot compete with the nearly ex-
ponential scale dependence of the propagator. Thus
one expects to see higher divergence power in smaller
boxes. This is confirmed further by looking at simu-
lations of same box size (LR512 and MR512, on one
hand, and HR160 and SHR160 on the other). The
ratio of the power spectra in boxes of the same size
but very different mass resolutions does not show
any significant (percent-level) deviation from unity.

Finally, note that finite volume effects are not ex-
pected to affect the vorticity power spectrum, as it is
dominated by small scale structures. That the vor-
ticity is sensitive to mass resolution rather than box
size is clear from comparing the LR512 and MR512
results, which differ by a factor of 8 in mass reso-
lution but have the same box size. Figure 3 shows
their vorticity power spectra differ by a factor of
about four.

It is worth noting that the velocity power spec-
trum obeys Pv(k) = k2[Pθ(k) + Pw(k)]. Thus, the
resolution dependence of Pw seen in Fig. 3 means
that when Pw is comparable to Pθ, a similar depen-
dence on resolution affects the velocity power spec-
trum. Therefore, spurious vorticity can lead to an
overestimate of the velocity power spectrum at non-
linear scales.

FIG. 4: Time dependence of the divergence and vortic-
ity power spectra. The divergence power spectrum at
z = 1 and z = 3 are linearly extrapolated to z = 0 for
comparison. The vorticity power spectrum was similarly
scaled using Eq. (3) with nw = 7. In the non-linear
regime, both divergence and vorticity grow slower than
the large-scale extrapolation.

C. Time Dependence

As will be shown later, in order to calculate how
much vorticity affects the evolution of the density
power spectrum, it is necessary to determine the
time dependence of the vorticity power spectrum. In

5

The vorticity and divergence spectra, Pω and Pθ. They find a slope Pω ∝ k2.5 and time
dependence Pω ∝ D7

+.

The results shown are from a L = 256Mpc simulations with N = 5123 particles using
Gadget-2 with softening length 0.04.
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Vorticity from N-body simulations: Zhu etal.

From
Zhu, Yu &Pen ’17

12

FIG. 13: The power spectra for the decomposed Lagrangian
velocity. The linear part of the velocity is dominant at k !
0.25 h/Mpc. The nonlinear contribution becomes important
at k = 0.25 h/Mpc. The curl part is already non-negligible
on scales where the displacement can still by the gradient.

To measure the power spectra of these three components,
we use two sets of simulations. The large box simulation
involves 10243 dark matter particles in a cubic box of
length 600 h/Mpc and the small box simulation involves
10243 dark matter particles in a cubic box of length
150 h/Mpc. Each set of simulation have ten independent
realizations with independent random initial conditions.
The power spectrum of displacement is defined as

Pψ(k) =
∑

i

Pψi(k), (A5)

where i denotes x, y, or z components. Figure 12 shows
the power spectra measured from the two sets of sim-
ulations. The displacement power spectra are averaged
over ten realizations. The nonlinear displacement field on
large scales is well described by the Zeldovich displace-
ment for k ! 1 h/Mpc. The nonlinear E-mode displace-
ment dominates over the linear E-mode displacement at
k = 1 h/Mpc. The B-mode displacement is negligible on
scales smaller than k = 10 h/Mpc.

Appendix B: Lagrangian velocity field

The Lagrangian velocity describes the growth of the
Lagrangian displacement,

v(q) = ψ̇(q), (B1)

where the dot denotes partial derivative with respect to
time. Since both fields are defined in Lagrangian space,
we can decompose the Lagrangian velocity similarly,

v(q) = vE(q) + vB(q), (B2)

where vE = (k · v)k/k2 and vB = v − vE . The E-mode
displacement can be decomposed into

vE(q) = v
(l)
E (q) + v

(nl)
E (q) (B3)

where

v
(l)
E (k) = Wv(k)vL(k). (B4)

Here, vL(k) is derived from the linear density field,

vL(k) = afH
ikδL(k)

k2
, (B5)

and the velocity window function is

Wv(k) =
PθEδL(k)

PδL(k)
, (B6)

where θE = −∇ · v/(afH). Now we can write the La-
grangian velocity as

v(q) = v
(l)
E (q) + v

(nl)
E (q) + vB(q), (B7)

where different velocities describe the growth of the corre-
sponding Lagrangian displacements. The velocity power
spectrum is defined as

Pv(k) =
∑

i

Pvi(k), (B8)

In Fig. 13, we show the velocity power spectra for differ-
ent velocities. We only present the results from the large
box simulations mentioned above since the Lagrangian
velocity is much more nonlinear than the displacement.
The linear theory can only describe the Lagrangian veloc-
ity up to k ! 0.25 h/Mpc. The nonlinearities dominate
on scales where the displacement can still be described
by linear theory. The B-mode Lagrangian velocity is al-
ready non-negligible on scales k " 1.4 h/Mpc. This is
simply because that the Lagrangian velocity corresponds
the most nonlinear contribution to the Lagrangian dis-
placement as we discussed above.

The fact that the Lagrangian velocity is more nonlin-
ear than the displacement implies that it is more im-
portant to study the nonlinearity of the velocity rather
than the displacement to model the reconstructed den-
sity field. This also implies we can use the much more
linear displacement to calculate the higher order terms of
the velocity field using perturbation theories, in order to
construct O(2) peculiar velocity reconstruction schemes.

Appendix C: Shift velocity field

The shift velocity corresponds to the z-component of
the Lagrangian velocity,

vs(q) = vz(q)ẑ, (C1)

The gradient and rotational velocity spectra, k3PG (k) and k3PR (k). They find a slope
PR ∝ k0. It is not clear whether these are spectra are Fourier transforms from Eulerian or
Lagrangian coordinates.

The results shown are from a L = 600Mpc simulations with N = 10243 particles on a
5123 grid using CUBEP3M using multi-grid techniques to compute the displacement field
and velocity (in Lagrangian coordinates).
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Vorticity from N-body simulations: gevolution

We performed N-body simulations using gevolution.
Gevolution is a relativistic PM N-body code using a weak field approximation of the
metric, which computes all 6 degrees of freedom of the gravitational field
( Adamek, Daverio, RD, Kunz (2016)).
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Vorticity with gevolution: velocity reconstruction

We (Jelic-Cimek, Lepori & RD, in preparation) have tested different velocity
reconstruction methods which are in good agreement.
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Ruth Durrer (Université de Genève, DPT & CAP) Cosmological Vorticiy Kyoto, Feb 27, 2018 12 / 20



Vorticity with gevolution: vorticity power spectrum

The resulting spectrum behaves as k2.5 on large scales.
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Vorticity with gevolution: time dependence of vorticity
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The resulting spectrum behaves as aγ on large scales with γ ' 5.
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Observation of vorticity

So far vorticity has been observed by considering the alignment of the angular
momentum of galaxies, very non-linear objects which might be affected strongly by
non-gravitational physics.

Can we do better?

Like gradient velocity, vortical velocity leads to redshift space distortions. But these only
determine the radial component of the velocity, hence cannot distinguish between
gradient and vortical motion.

Gradient RSD: P(k, µ) =
(

1 + f
bµ

2)2 Pg (k)

Rotational RSD: PRSDω(k, µ) = H−2µ2(1− µ2)Pω(k)

In real space: ξ(r , µ) = ξ0(r) + ξ2(r)P2(µ) + ξ4(r)P4(µ)

ξn(r) = H
−2

2π2

∫
Pω(k)jn(kr)k2dk
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RSD monopole & quadrupole

Constraints for vorticity from structure formation:

Pω(k, z) = AV k2D7
+(z) (k/k∗)n`

[1 + (k/k∗)]n`+ns

n` = 1.3 , ns = 4.3 , k∗ = 0.7 h/Mpc , AV ' 10−5(Mpc/h)3 .
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(from Bonvin, RD, Koshravi, Kunz, Sawicki, 2017)
Red region: Scalar signal with error for SKA at z̄ = 0.35. Black dashed: including
vorticity with AV = 5× 10−3.
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Limits from the RSD hexadecapole
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(from Bonvin, RD, Koshravi, Kunz, Sawicki, 2017)

Left: Red region: Scalar signal with error for SKA at z̄ = 0.35. Black: including vorticity
with AV = 3× 10−5 (dotted line), AV = 10−4 (dashed line) and AV = 10−3 (dot-dashed
line). Right: non-linear scalar, linear scalar, non-linear scalar+vector.
Constraints on AV from an SKA like survey for AV using data from x ∈ [xmin, 40Mpc/h],
z ∈ [0.1, 2], ∆z = 0.1.

xmin [Mpc/h] mono quad hexa total
2 3.7× 10−5 4.2× 10−6 8.7× 10−7 8.7× 10−7

10 9.4× 10−4 2× 10−3 7.1× 10−5 7.1× 10−5

20 7.2× 10−2 4.6× 10−2 1.6× 10−3 1.6× 10−3
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Conclusions

Vorticity is a virtually unexplored observable in cosmology.

Its generation by non-linear gravitational dynamics should be observable in the near
future.

It is sensitive to non-gravitational interactions, to the nature of dark matter and to
modifications of gravity.

Most interesting would be to observe deviations from the pure N-body expectations!

Thank You !
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Ruth Durrer (Université de Genève, DPT & CAP) Cosmological Vorticiy Kyoto, Feb 27, 2018 18 / 20



Shell crossing of a plane wave
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Resolution dependence of vorticity
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