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Constructive gravity

Standard approach to modified gravity:

E↵ective field theory approach: stipulate a modification of the
Einstein-Hilbert action.

! What about the well-posedness of the
initial value problem i.e. predictivity?

New approach discussed here:

Fundamental approach: derive gravity action such that the theory
is predictive.

How to implement predictivity on general (e.g. non-metric)
backgrounds? How to construct dynamics from kinematics?

! ‘Constructive gravity’ program
[Cf. Hojman, Kuchǎr & Teitelboim (1976); Rätzel, Rivera & Schuller (2011); Giesel, Schuller,

Witte & Wohlfarth (2012); Düll, Schuller, Stritzelberger & Wolz (2017); Schuller & Werner (2017)]



Generalized spacetime

Consider a smooth manifold M with chart (U, x) and some smooth
tensor fields G for geometry and F for matter, of arbitrary order.

Spacetime geometry is probed by test matter, with linear field
equations. The most general such test matter field PDE in (U, x) is
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with some multi-index A, and highest derivative order k , assumed
to be finite.



Principal polynomial

The (reduced) principal polynomial of (⇤) is P : T ⇤
M ! R,
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with totally symmetric principal polynomial tensor P⌫1...⌫deg P .

Note: although (⇤) was written in a chart, P is indeed tensorial.

Then the (generalized) null cone is {p 2 T
⇤
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Cauchy problem

We are interested in causal kinematics of the generalized spacetime
(M,G ,F ), which is determined by the Cauchy problem.

Given (⇤) and initial data, the Cauchy problem is well-posed if

• (⇤) has a unique solution in U

• which depends continuously on the initial data.

Then necessarily ()), P is hyperbolic:

9 h 6= 0 such that 8 p : P(p + fh) = 0, only for f real.
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Dual polynomial

So far, only covectors (momenta) have been considered. However,
for predictivity, we also need time-orientation and hence dual
vectors (trajectories). It turns out that:

If P is hyperbolic, then the dual polynomial P] : TM ! R exists,
via the Gauss map p 7! N with P(p) = 0,P](N) = 0.

Note: hyperbolicity of P does not imply hyperbolicity of P].

Now introduce a time-orientation vector field T 2 TM over U.

Denoting a null vector field by N, P
](N) = 0, then any vector field

X can be decomposed as X = N + tT , for some t : U ! R.



Bihyperbolicity

Thus, we obtain

8 X : 0 = P
](N) = P

](X � tT ), t real,

in other words, a hyperbolicity condition for P]!

Hence, a predictive kinematics for (M,G ,F ) implies that

• P be hyperbolic for causality; then also P
] exists;

• P
] be hyperbolic as well, for time-orientation.

This is called bihyperbolicity.

Note: this yields

• an energy-distinguishing property for observers, that is,
p(T ) > 0 or p(T ) < 0 8 hyperbolic T , and a

• unique Legendre map L : T ⇤
M ! TM (‘pulling indices’).



From kinematics to dynamics

Consider a hypersurface ⌃ embedded in spacetime, � : ⌃ ,! M,
with 3 tangent (spacetime) vectors ei = �µ

,i@µ.

The conormal n, satisfying n(ei ) = 0, with normalization P(n) = 1
gives rise to a unique hypersurface normal vector field

T = L (n).

Thus, one obtains a frame field {T , e1, e2, e3}.

Now writing hypersurface deformations with lapse N and shift
N = N
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yields a generalized ADM-split.



Deformation algebra

Now introducing normal and tangential deformation operators,
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the change of a tensor field is Ḟ [�] = (H (N ) + D(N ))F [�].

The spacetime kinematics is defined by the deformation algebra,

[D(N ),D(N 0)] = �D(£NN 0)

[D(N ),H (N )] = �H (£NN )

[H (N ),H (N 0)] = �D((degP � 1)P ij(N 0@jN �N@jN
0)@i ),

where P
ij is constructed from the principal polynomial tensor.



Canonical dynamics for G

Hypersurface deformation changes G according to
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Passing to canonical variables (G ,⇡), the dynamics Ġ = {G ,H},
⇡̇ = {⇡,H} is obtained from an action of the form

S [G ,⇡,N ,N i ] =
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Ĥ is called superhamiltonian, and D̂ is called supermomentum.



Dynamical evolution algebra

Now we stipulate that this dynamical hypersurface evolution
coincide with the above hypersurface deformation, that is,

H G = {G , Ĥ}, DiG = {G , D̂i}.

These are called closure conditions. Hence, the kinematical
deformation algebra gives rise to a dynamical evolution algebra,

{D(N ),D(N 0)} = D(£NN 0)

{D(N ),H(N )} = H(£NN )

{H(N ),H(N )} = D((degP � 1)P ij(N 0@jN � N@jN
0)@i ).

Solving these equations would yield the gravitational dynamics.
! This is actually possible!



Supermomentum and superhamiltonian

The supermomentum obeys a subalgebra and is found explicitly,

D̂(N ) =
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The non-local superhamiltonian part is Ĥnon�loc = �@i (MAi⇡A),
leaving the local part Ĥloc such that overall

Ĥ[G ,⇡] = Ĥloc[G ,⇡) + Ĥnon�loc[G ,⇡].

It defines a canonical velocity of G , KA = @Ĥloc
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, and a Lagrangian
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@KA as required.



The closure equations

Thus one obtains a functional di↵erential equation for the
gravity Lagrangian L[G ,K ) from the evolution algebra and
the closure conditions.

This can be converted to a set of partial di↵erential equations,
called the closure equations, with the ansatz

L[G ,K ) =
1X

k=0

C [G ]A1...AkK
A1 . . .KAk .

For general G , the result is an infinite set of linear, homogeneous
PDEs whose solution, if it exists, is L.

Hence, predictive gravitational dynamics can be derived from the
underlying spacetime kinematics.



General relativity and beyond

One of those di↵erential construction equations for the C [G ]A1...Ak

of the gravity Lagrangian reads thus,
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Now suppose that G = g , a Lorentzian metric, then M
Ai = 0 and

C can depend on at most second order derivatives of the metric.

The full analysis yields C = �
1

2

p
�g(R � 2⇤) with integration

constants  and ⇤, i.e. GR! Cf. also Lovelock’s theorem.

Applying this formalism to non-metric spacetime kinematics yields
gravitational dynamics beyond GR.
First results obtained for area metric geometry.



Conclusions and outlook

• Predictive spacetime kinematics can be implemented
mathematically with bihyperbolicity in general.

• The constructive gravity approach allows the derivation of
gravitational dynamics from bihyperbolic kinematics.

• Application to non-metric kinematics yields dynamics beyond
GR: the first derived, predictive modified gravity theories.

• There will be a Constructive Gravity parallel session at the
upcoming Marcel Grossmann meeting in Rome in July.


